Using NMR to study Macromolecular Interactions

John Gross, BP204A UCSF

Outline

Multidimensional NMR

Macromolecular Interactions

Dynamics

Dealing with large complexes

Structure Determination

Part IV- Methods to quantify slow dynamics in proteins

Slow Exchange Between Two States

$$k_{ex} = k_{open} + k_{close}$$

Using HSQC to measure slow exchange

ZZ-exchange, Montelione and Wagner

Insert delay to allow exchange

Exchange Cross-Peaks

Cross-peaks from a conformational change during delay e.i.-red to blue

ZZ-exchange peak intensity dependence on delay

Fit to obtain populations and rate constants

Expressions for the linewidth in the Fast Exchange Limit $(k_{ex} > \Delta \omega)$

$$A \xrightarrow{k_{\text{for}}} B$$

$$k_{\text{rev}}$$

Populations p_a , p_b $k_{ex}=k_{for}+k_{rev}$

$$R_{2} = \overline{R}_{2 \text{ (ns - ps)}} + \frac{P_{a} P_{b} \Delta \omega^{2}}{k_{ex}}$$

$$\Delta\omega = \omega_{a} - \omega_{b}$$

Spin Echo

to measure ms-usec dynamics

mber 12, 2009

Spin Echo to Measure R2

cpmg experiment

image: Mikael Akke (Lund University)

CPMG Protocol

Dynamics Constants from Relaxation Dispersion

Regulation of Vav1 activity by autoinhibition

How is this GEF activated?

Example from literature

Internal dynamics control activation and activity of the autoinhibited Vav DH domain

Pilong Li^{1,3}, Ilídio R S Martins¹⁻³, Gaya K Amarasinghe^{1,3,4} & Michael K Rosen¹

Nature Structural and Molecular Biology, 15:6 (2008)

Figure 2

Figure 3

Figure 4

Model

