
Despite the real and growing public health 
threat posed by antibiotic resistance1,  
pharmaceutical companies continue to divest 
from antibacterial research. The reasons 
for this divestment are partly technical, as 
replacing historically useful broad-spectrum 
agents with new drugs with similar spectra 
has proven to be extremely challenging, and 
partly economic, as antibiotics have a poor 
projected return on investment. As a result, 
the overall private sector investment in new 
antibacterial agents is below critical funding 
levels2.

Although the incredibly urgent need 
for novel antibacterial therapies seems to 
have finally forced the regulatory land-
scape to accept more focused and less 
costly clinical trials3, conventional drug 
discovery approaches (for example, target-
based or phenotypic high-throughput 
screening (HTS)) have not worked in 
this therapeutic area4. A Review by Payne 

et al.4 that described the challenges at 
GlaxoSmithKline (GSK) in identifying 
promising new leads for genetically vali-
dated antibacterial targets illustrated this 
conundrum: between 1995 and 2001, an 
extensive evaluation of hundreds of poten-
tial targets and 70 primarily biochemical 
HTS campaigns were performed. Despite 
this, few progressable leads were identified, 
and none of these could be elaborated into 
development candidates. In the majority 
of the screening campaigns no hits were 
identified. As a result, one of the recom-
mendations of these authors was to shift 
efforts towards chemically diverse libraries as 
sources of new antibacterials4.

The divergent physicochemical property 
profiles of antibacterials have also been pub-
lished5. The size and hydrophobicity of a set 
of 147 antibacterials, which are either on the 
market or in clinical trials, were compared 
to a set of 4,623 drugs that lack antibacterial 

properties, and broad-spectrum antibacterial 
agents were found to be substantially more 
polar than other drugs. Compounds with the 
particular molecular weights, LogD values 
and polar surface areas of antibacterials are 
typically not well-represented in corporate 
screening collections designed to target 
human proteins.

Nevertheless, although screening more 
diverse collections may well be valuable, in 
our experience it is not sufficient to improve 
the success rates of traditional antibacterial 
drug discovery projects. Here, we first  
present the results from AstraZeneca’s anti-
bacterial discovery efforts between 2001  
and 2010, which illustrate that hit identi-
fication was not the main challenge in our 
target-driven drug discovery programmes. 
Instead, the process of converting inhibitors 
of purified target enzymes into compounds 
with whole-cell activity was the most  
frequent point of attrition in our antibacterial 
screening efforts — a challenge that has been 
impeded in most part by a lack of under-
standing of the rules governing cell penetra-
tion. We also discuss novel approaches that 
are emerging to address these challenges, 
including how our understanding of bacterial 
permeability can be improved through the 
combined use of genomics and computa-
tional modelling based on recently solved 
porin crystal structures6.

HTS results and the lessons learned
An analysis of the results of 65 high-
throughput screens of essential bacterial 
targets against the AstraZeneca corporate 
compound collection (TABLE 1) revealed 
major differences in the overall hit rates, 
as well as in our definition of leads, as 
compared to the work at GSK described by 
Payne et al.4. The triage and subsequent  
follow‑up of the AstraZeneca campaigns  
led to three molecule classifications: active, 
hit and lead. An active was defined as a 
compound that was above the threshold for 
noise in a single-concentration screen run 
in triplicate. A hit was a more generically 
defined, albeit with project-specific  
differences. Generally, a hit was defined as a 
compound with a lack of activity in artefact 
assays but a reproducible dose response, 
typically in two separate assays with similar 
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Table 1 | Summary of HTS results for 65 screens performed at AstraZeneca from 2001–2010 

Screen name Target protein* or activity Antibacterial class Species HTS result

Alr Alanine racemase (Alr) Cell wall synthesis inhibitor Escherichia coli No hits

Ddl d-alanine-d-alanine ligase (Ddl) Cell wall synthesis inhibitor Streptococcus 
mutans

Hits with derivatives;  
no leads

GlmU UDP-N-acetylglucosamine phosphorylase 
(GlmU)

Cell wall synthesis inhibitor Haemophilus 
influenzae

Leads identified13,14

GlmU1 Glucosamine-phosphate N-acetyltransferase 
(GlmU)

Cell wall synthesis inhibitor E. coli Leads identified

GlmU2 UDP-N-acetylglucosamine diphosphorylase 
(GlmU)

Cell wall synthesis inhibitor Streptococcus 
pneumoniae

Hits with derivatives;  
no leads

GlmU3 Glucosamine‑1‑phosphate N-acetyltransferase 
(GlmU)

Cell wall synthesis inhibitor S. pneumonaie Hits with derivatives;  
no leads

IspD 4‑diphosphocytidyl‑2C‑methyl-d-erythritol 
synthase (IspD)

Cell wall synthesis inhibitor E. coli No hits

KdsA 3‑deoxy-d-manno-octulosonate 8‑phosphate 
synthase (KdsA) 

Cell wall synthesis inhibitor E. coli No hits

KdsA Helicobacter 
pylori

3‑deoxy-d-manno-octulosonate 8‑phosphate 
synthase (KdsA) 

Cell wall synthesis inhibitor H. pylori Hits with derivatives;  
no leads

MurA UDP-N-acetylglucosamine-enolpyruvyl 
transferase (MurA)

Cell wall synthesis inhibitor E. coli Hits with derivatives;  
no leads

MurA2 UDP-N-acetylglucosamine 1‑carboxyvinyltrans-
ferase (MurA2) 

Cell wall synthesis inhibitor S. mutans Hits with derivatives;  
no leads

MurB UDP-N-acetylenolpyruvoylglucosamine 
reductase (MurB) 

Cell wall synthesis inhibitor Neisseria 
meningitidis

Hits with derivatives;  
no leads

MurB2 UDP-N-acetylenolpyruvoylglucosamine 
reductase (MurB) 

Cell wall synthesis inhibitor E. coli Hits with derivatives;  
no leads

MurC UDP-N-acetylmuramate-l-alanine ligase (MurC) Cell wall synthesis inhibitor E. coli Leads identified16

MurC H. pylori UDP-N-acetylmuramate-l-alanine ligase (MurC) Cell wall synthesis inhibitor H. pylori Hits with derivatives;  
no leads

MurC2 UDP-N-acetylmuramate-l-alanine ligase (MurC) Cell wall synthesis inhibitor Pseudomonas 
aeruginosa

Hits with derivatives;  
no leads

MurD UDP-N-acetylmuramoyl-l-alanine-d-glutamate 
ligase (MurD)

Cell wall synthesis inhibitor Enterococcus 
faecalis

Hits with derivatives;  
no leads

MurD2 UDP-N-acetylmuramoyl-l-alanine-d-glutamate 
ligase (MurD)

Cell wall synthesis inhibitor E. coli No hits

MurE UDP-N-acetylmuramoyl-l- 
alanyl-d-glutamate‑2,6‑ 
diaminopimelate ligase (MurE)

Cell wall synthesis inhibitor E. coli Hits with derivatives;  
no leads

MurF UDP-N-acetylmuramoyl-tripeptide-d-alanyl-d-
alanine ligase (MurF)

Cell wall synthesis inhibitor P. aeruginosa Hits with derivatives;  
no leads

MurI Glutamate racemase (Murl) Cell wall synthesis inhibitor H. pylori Hits with derivatives;  
no leads17

MurI3 Glutamate racemase (Murl) Cell wall synthesis inhibitor Staphylococcus 
aureus

Hits with derivatives;  
no leads

UppS Undecaprenyl diphosphate synthetase (IspU) Cell wall synthesis inhibitor E. coli Hits with derivatives,  
no leads

CoaD Phosphopantetheine adenylyltransferase 
(CoaD) 

Cofactor mimetic S. mutans Leads identified18

PPAT Pantetheine-phosphate adenylyltransferase 
(CoaD)

Cofactor mimetic S. pneumoniae Hits with derivatives;  
no leads

CoaE Dephospho-CoA kinase (CoaE) Cofactor mimetic S. pneumoniae Leads identified

P E R S P E C T I V E S

530 | AUGUST 2015 | VOLUME 14	  www.nature.com/reviews/drugdisc

© 2015 Macmillan Publishers Limited. All rights reserved



NadF NAD+ kinase (NadK) Cofactor mimetic E. coli Hits with derivatives;  
no leads

NadK NAD+ kinase (NadK) Cofactor mimetic S. pneumoniae Hits with derivatives;  
no leads

RibF FAD synthetase (RibF) Cofactor mimetic S. aureus Hits with derivatives;  
no leads

RibF 2nd reaction FAD synthase, FMN adenyltransferase (RibF) Cofactor mimetic S. aureus Hits with derivatives;  
no leads

DnaB Replicative DNA helicase (DnaB) DNA synthesis inhibitor E. coli Hits with derivatives;  
no leads

DnaE DNA polymerase IIIα (DnaE) DNA synthesis inhibitor H. influenzae Hits with derivatives;  
no leads

DnaE2 DNA polymerase IIIα (DnaE) DNA synthesis inhibitor S. pneumoniae Hits with derivatives;  
no leads

DnaG DNA primase (DnaG) DNA synthesis inhibitor E. coli Hits with derivatives;  
no leads

DnaG2 DNA primase (DnaG) DNA synthesis inhibitor S. aureus No hits

Gmk Guanylate kinase (Gmk) DNA synthesis inhibitor E. coli Hits with derivatives;  
no leads

LigA NAD+ dependent DNA ligase (LigA) DNA synthesis inhibitor H. influenzae Leads identified19

Ndl NAD+ dependent DNA ligase (LigA) DNA synthesis inhibitor S. pneumoniae Leads identified

PrsA Ribose-phosphate diphosphokinase (Prs) DNA synthesis inhibitor S. aureus No hits

PyrH UMP kinase (PyrH) DNA synthesis inhibitor S. aureus Leads identified20

PyrH2 UMP kinase (PyrH) DNA synthesis inhibitor E. coli Leads identified

Tmk dTMP kinase (Tmk) DNA synthesis inhibitor S. pneumoniae Leads identified21

AccAD Carboxyltransferase activity of acetyl CoA 
carboxylase (AccA and AccD)

Fatty acid synthesis inhibitor E. coli Leads identified

AccC Biotin carboxylase activity of acetyl CoA 
carboxylase (AccC)

Fatty acid synthesis inhibitor E. coli Leads identified

BirA Biotin ligase (BirA) Fatty acid synthesis inhibitor E. coli No hits

FabH β-ketoacyl-(acyl carrier protein) synthase III 
(FabH)

Fatty acid synthesis inhibitor E. coli Leads identified

FabH2 β-ketoacyl-(acyl carrier protein) synthase III 
(FabH)

Fatty acid synthesis inhibitor E. coli Leads identified

LepB Signal peptidase I (LepB) Protein secretion inhibitor E. coli Hits with derivatives;  
no leads

Asd Aspartate semialdehyde dehydrogenase (Asd) Protein synthesis inhibitor H. pylori Hits with derivatives;  
no leads

MAP Methionine aminopeptidase (Map) Protein synthesis inhibitor E. coli Hits with derivatives;  
no leads

Trnsl1 Ribosome 16S rRNA, paromomycin 
(aminoglycoside) binding

Protein synthesis inhibitor E. coli Hits with derivatives;  
no leads

TT22 Coupled transcription–translation Protein synthesis inhibitor E. coli Hits with derivatives;  
no leads

PheRS Phenylalanine tRNA synthetase (PheS and PheT) Protein synthesis inhibitor E. coli Leads identified23

TilS tRNA Ile-lysidine synthase (TilS) Protein synthesis inhibitor E. coli Hits with derivatives;  
no leads

TrmD tRNA (guanine37-N1)-methyltransferase (TrmD) Protein synthesis inhibitor H. influenzae Hits with derivatives;  
no leads

TrmD2 tRNA (guanine37-N1)-methyltransferase (TrmD) Protein synthesis inhibitor H. influenzae Leads identified24

Ef-Tu Nucleotide exchange factor (Ef-Tu–Ef-Ts) 
interaction (TufA and TufB)

Protein synthesis inhibitor E. coli Hits with derivatives;  
no leads

RNAP DNA-directed RNA-polymerase (RpoA, RpoB 
and RpoC)

RNA elongation inhibitor E. coli Hits with derivatives;  
no leads

Table 1 (cont.) | Summary of HTS results for 65 screens performed at AstraZeneca from 2001–2010

Screen name Target protein* or activity Antibacterial class Species HTS result
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conditions but orthogonal detection  
systems. In evaluating these data, a Hill 
slope was used as a quality measure, with 
values between 0.5 and 2.0 typically deemed 
acceptable for continued evaluation of 
hits. For targets in which cooperativity was 
reasonably anticipated amongst inhibitors 
(for example, in multimeric enzymes such 
as phosphopantetheine adenylyltransferase 
(CoaD))7 a higher Hill slope of 3.0 was 
allowed. In retrospect, however, none of  
the lead series that was progressed main-
tained a Hill slope above 2.0. Hits were  
also evaluated for acceptable chemical  
properties and, typically, activity across  
a broad spectrum of bacterial isozymes  
(for broad-spectrum projects).

A lead was defined as an example 
member of a hit series for which we had 
an understanding of how to optimize the 
drug-like properties and an evidence-based 
hypothesis of how to obtain antibacterial 
whole cell activity, and was a compound that 
demonstrated a progressable structure–activity  
relationship (SAR), a lack of mammalian 
cytotoxicity and a target-specific mechanism 
of inhibition. The last criterion was viewed 
as essential, but it could be difficult to inter-
pret for earlier hit series for which, at the 
time, weak (or no) antimicrobial activity was 
measurable, and thus, straightforward selec-
tion of resistant mutants was not possible. 
As such, the mechanism of inhibition was 
evaluated through a holistic approach that 
combined both enzyme kinetics and binding 
studies to establish confidence in inhibitor 
modality8 and, typically, selectivity against 
the human homologue, if present. These 
results were further evaluated in conjunction 
with cellular studies, in which inhibition 

of the anticipated target functions in intact 
cells was evaluated. A discussion of possible 
approaches to this problem has recently been 
published9, but it is beyond the scope of this 
Opinion article. However, as an example, 
radioactive macromolecule incorporation 
studies may provide early indications of 
appropriate cellular target engagement,  
and in the case of Gram-negative organisms 
these studies can be performed in an  
efflux-attenuated strain, as the dose response 
may occur below the minimum inhibitory 
concentration (MIC)10. Alternatively, projects 
may track a specific metabolite or macro
molecule, or, for compounds with anti
bacterial activity, projects can track potency 
loss in a strain overexpressing the target11.

The criteria we used for hits and leads 
seem to be in line with those reported by 
Payne et al.4, with two possible differences 
that may be difficult to assess. First, defini-
tions of chemical tractability are not easy to 
compare between the two groups, an issue 
that has been previously discussed regarding  
medicinal chemistry bias12. Second, we  
identified active compounds for more targets 
than did previous reports. Although we can-
not fully understand this difference without 
a direct case‑by‑case comparison, our defini-
tion of a hit may have been more permissive 
than the low micromolar activity required  
in previous efforts.

Overall, the process of triaging high-
throughput screens was implemented to  
rigorously interrogate a high volume of  
projects, anticipating high attrition rates.  
As such, the incentive for the hit‑to‑lead 
teams at the time was to quickly identify 
the most promising opportunities and 
to avoid diverting resources to risky or 

difficult-to‑optimize series. One consequence 
of this strategy was that the triage during 
these early stages commonly employed  
filters such as undesirable chemical features, 
mammalian cytotoxicity and predicted  
off-target effects, such as inhibition of  
the human ether-à-go‑go-related gene  
potassium channel 1 (ERG)13. These prac-
tices were adopted to cope with the sheer 
volume of hit lists, and they arguably dis-
couraged medicinal chemistry teams from 
developing an understanding of how tightly 
these detrimental features were coupled 
with desirable SAR, potentially resulting in 
the premature elimination of viable chemi-
cal compounds. Therefore, the hit‑to‑lead 
conversion rates presented here probably 
represent conservative estimates of the suit-
ability of the library for screening against 
antibacterial targets.

Of the 65 campaigns, 57 identified hits 
(TABLE 1). Notable exceptions included the 
IspD, MurD2 and DnaG2 screens, which 
assayed for the activity of 4‑diphospho-
cytidyl‑2‑methyl-d-erythritol synthase 
(IspD), uridine diphosphate (UDP)-N-
acetylmuramoyl-l-alanine-d‑glutamate 
ligase (MurD) and DNA primase (DnaG), 
respectively, and did not identify bio-
chemically active molecules. For example, 
a triage of the most promising molecules 
with activity against IspD resulted in no 
compounds that passed the biochemical 
criteria. In this case, 200 compounds were 
tested in dose–response assays, but all of the 
compounds that had a measurable IC50 also 
demonstrated behaviour consistent with 
aggregation (such as a large IC50 ratio when 
run in a second assay at a higher enzyme 
concentration)14.

SuperC Supercoiling activity of DNA gyrase (GyrA and 
GyrB)

Topoisomerase inhibitor E. coli Hits with derivatives;  
no leads

ParE Topoisomerase IV ATP-hydrolyzing subunit 
(ParE)

Topoisomerase inhibitor E. coli Leads identified

Pae efflux P. aeruginosa (MexABCDXY–) cell survival Not known (phenotypic 
screen)

P. aeruginosa No hits

Waap E. coli (WaaP–) cell survival Not known (phenotypic 
screen)

E. coli Leads identified

Hinf (acrB–) H. influenzae (AcrB–) cell survival Not known (phenotypic 
screen)

H. influenzae Hits with derivatives;  
no leads

CWR Cell wall reporter assay67 Not known (phenotypic 
screen)

E. coli Leads identified

AntiB (G-pos) Cell survival Not known (phenotypic 
screen)

S. pneumoniae Hits with derivatives;  
no leads

dTMP, deoxy-thymidine monophosphate; HTS, high-throughput screening; UDP; uridine diphosphate, UMP, uridine monophosphate. *Protein abbreviations are 
indicated in brackets.

Table 1 (cont.) | Summary of HTS results for 65 screens performed at AstraZeneca from 2001–2010

Screen name Target protein* or activity Antibacterial class Species HTS result
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Table 2 | Summary of hits and the confirmed chemical series that were pursued as a result of these screening efforts

Target Number 
of HTS 
actives

Number 
of hits

Example hit structure Example lead structure

GlmU 10,012 2 MeO

N
H

O
OMe

S N

O

O

Haemophilus influenzae (GlmU) IC
50

 = 7.8 μM 
H. influenzae (AcrB–) MIC >64 μg mL–1 
cLogD* = 1.79

MeO OMe

N
H

O

S N

O

O O

HO

O

H. influenzae (GlmU) IC
50

 = 0.023 μM
H. influenzae (AcrB–) MIC = 32 μg mL–1

cLogD = -0.40

MurC 799 90

N

HO

N

N

N
H

N

HN

NHN

Pseudomonas aeruginosa IC
50 

= 1.0 μM
P. aeruginosa MIC >64 μg mL–1

cLogD = 2.68

N
H

N

N

N
H

N

HN

NN

HO

P. aeruginosa IC
50

 = 0.001 μM
P. aeruginosa (MexABCDXY–) MIC = 1.5 μg mL–1

P. aeruginosa MIC >64 μg mL–1

cLogD = 3.35

CoaD 3,814 114

Cl

HN O

N

N

OMe

OMe

Staphylococcus aureus IC
50 

=7.3 μM
Streptococcus pneumoniae IC

50
 = 0.20 μM

cLogD = 2.97

Cl

Cl
HN

O
N

N
HN

N
OH

O

NH2

O

S. aureus IC
50

 =0.00087 μM
S. pneumoniae IC

50
 = 0.000065 μM

Staphylococcus aureus MIC = 0.12 μg mL–1

S. pneumoniae MIC = 0.03 μg mL–1

In vivo active at 100 mg kg–1 S. pneumoniae
cLogD = 2.06

CoaE 1,398 10

HN

O

N

S

O

O O

Escherichia coli (CoaE) IC
50

 = 13 μM
H. influenzae (CoaE) IC

50
 = 30 μM

cLogD = 2.26

HN

O

N

S

O

O O

Cl

Cl

E. coli (CoaE) IC
50

 = 1.7 μM
H. influenzae (CoaE) IC

50
 = 7.8 μM

cLogD = 2.07

LigA 5,742 31

N

N

S

N

N

O

OH

OH
HO

NH2

H. influenzae IC
50

 = 0.50 μM
S. aureus IC

50
 = 0.081 μM

cLogD = 1.40

N

N

O

N

N

O

OH

OH

NH2

H. influenzae IC
50

 = 0.082 μM
H. influenzae MIC = 8 μg mL–1

S. aureus IC
50

 = 0.06 μM
S. aureus MIC = 2 μg mL–1

cLogD = 1.78
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PyrH 5,312 59

N

N N

N
O

N
H

O

N
H

N

E. coli IC
50

 = 10 μM
cLogD = 2.05

N

N N

N
O

N
H

O

N
H

N
CF3

E. coli IC
50

 = 0.7 μM
E. coli (TolC–) MIC >200 μM
E. coli MIC >200 μM
cLogD = 2.02

Tmk 1,273 16

O
N

N

H
N OO

S. pneumoniae IC
50

 = 3.4 μM
cLogD = 2.97

O
N

N

H
N OO

HO2C

Br

S. pneumoniae IC
50

 = 0.0002 μM
S. pneumoniae MIC = 0.01–0.02 μg mL–1

cLogD = 1.16

AccA and 
AccD

3,341 39

O

N
NH

OMe

N

O

HN

O
F

F

F

S. aureus IC
50

 = 7.24 μM
S. aureus MIC >200 μM
cLogD = 2.63

N

O

HN

O
F

F

F

N

N
O

F3C

S. aureus IC
50

 = 0.035 μM
S. aureus MIC = 50 μM
cLogD = 3.77

AccC 6,105 67

N

MeO

NN

N

N NH2

E. coli IC
50

 = 9.0 μM
E. coli (TolC–) MIC >200 μM
cLogD = 0.34

N

NN

N

N NH2

E. coli IC
50

 = 0.10 μM
E. coli (TolC–) MIC = 12.5 μM
cLogD = 2.00

FabH 7,629 112
HO

HN S

O
O

E.coli IC
50

 = 15 μM
S. aureus IC

50
 >200 μM

cLogD = 3.05

O
N

Cl
N N

OH

O

S. aureus IC
50

 = 0.018 μM
S. aureus MIC = 25 μM
cLogD = 2.62

Table 2 (cont.) | Summary of hits and the confirmed chemical series that were pursued as a result of these screening efforts

Target Number 
of HTS 
actives

Number 
of hits

Example hit structure Example lead structure
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Of the 57 programmes for which hits 
were identified, 19 found leads after the hits 
were further investigated and refined by our 
chemistry team. These analyses to identify 
leads were based on molecules with a plausible 
SAR for the biochemical target, selectivity  
over mammalian cell cytotoxicity and a  
good range of biochemical activity that  
was dependent on the target bacteria:  
typically for Gram-positive targets, our  
teams were seeking activity against S. aureus 
and S. pneumoniae; for Gram-negative  
targets, activity against P. aeruginosa and  
A. baumannii were desired to progress efforts.

Reasons for attrition. The large degree of 
attrition seen in the identification of anti
bacterial compounds was probably driven by 
several causes. Some of these are common to 
many HTS projects outside of antibacterial 

drug discovery, such as a lack of a confirmed 
dose response or interference with assay-
detection methodology as confirmed in 
orthogonal assays. However, some of the 
attrition is unique to the identification of 
novel antibacterials. At the time of many of 
these screens, the commercially viable (and 
therefore accepted) therapeutic profile was 
broad-spectrum activity against both Gram-
positive and Gram-negative organisms. This 
paradigm meant that the HTS strategy and 
hit triage required biochemical activity across 
a panel of isozymes from several relevant 
Gram-positive and Gram-negative organisms 
for a molecule to progress. This paradigm has 
since shifted, and target-specific pathogen 
approaches may now have a regulatory and 
commercial path forward3, which was not  
the perception during the era of HTS and  
biochemical screening of antibacterial targets.

Another factor that led to very high  
attrition was the attempt to incorporate 
many drug-like properties upfront to gener-
ate chemical matter suitable for both intra-
venous and oral formulation. In addition, a 
substantial proportion of hits were discarded 
on the basis of presumed chemical unde-
sirability and/or toxicity, usually based on 
particular chemists’ prior experience with 
similar or related compounds12. Finally, a 
stringent filter was implemented to ensure 
that the growth of human cell lines (mainly 
A549 lung carcinoma cells) was not inhib-
ited in order to mitigate potential for toxicity 
early in the screening funnel. This filter was 
intended to remove compounds that were 
intrinsically toxic to both human and bacte-
rial cells through a shared mechanism; how-
ever, it is also likely that the filter removed 
antibacterial compounds that coincidentally 

TrmD 1,281 
(FBLG)

18

N

NH

S

O

S. aureus IC
50

 = 7.24 μM
S. aureus MIC >200 μM
cLogD = 2.13

N

NH

S

O
O

HN

N

HO

S. aureus IC
50

 = 0.035 μM
S. aureus MIC = 50 μM
cLogD = 0.42

ParE 2,127 111
Cl

F

H
N

N

N

Br

NH

HN
N

E. coli IC
50

 = 5 μM
S. pneumoniae IC

50
 = 17 μM

cLogD = 3.50

Cl

F

F
F

F

H
N

N

N

N
N

OH

O

N

E. coli IC
50

 = 0.07 μM
S. pneumoniae IC

50
 = 0.001 μM

S. pneumoniae MIC = 0.006 μM
cLogD = 2.30

CWR 
assay67

5,719 106

O

F

N
HN

N

E. coli (TolC–) IC
50

 = <0.06 μg mL–1

E. coli = 8 μg mL–1

cLogD = 4.37

O

N

N
HN

N

N

E. coli (TolC–) IC
50

 = <0.06 μg mL–1

E. coli = 2 μg mL–1

cLogD = 3.57

AccA, acetyl-CoA carboxyltransferase α-subunit; AccC, biotin carboxylase; AccD, acetyl-CoA carboxyltransferase β-subunit; CoaD, phosphopantetheine 
adenylyltransferase; CoaE, dephospho-CoA kinase; CWR, cell wall reporter; FabH, β-ketoacyl-(acyl carrier protein) synthase III; FBLG, fragment-based lead 
generation; GlmU, uridine diphosphate (UDP)-N-acetylglucosamine phosphorylase; HTS, high-throughput screening; IC

50
, inhibitor concentration at 50% effect;  

LigA, NAD+ dependent DNA ligase; MIC, minimum inhibitory concentration; MurC, UDP-N-acetylmuramate-l-alanine ligase; ParE, topoisomerase IV 
ATP-hydrolyzing subunit; PyrH, uridine monophosphate kinase; Tmk, deoxy-thymidine monophosphate kinase; TrmD, tRNA (guanine37-N1)-methyltransferase. 
*cLogD is the ‘computed’ LogD, using AstraZeneca’s proprietary predictive model, AZlogD

7.4
.

Table 2 (cont.) | Summary of hits and the confirmed chemical series that were pursued as a result of these screening efforts

Target Number 
of HTS 
actives

Number 
of hits

Example hit structure Example lead structure
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exhibited mammalian cell toxicity through 
distinct mechanisms that might have been 
circumvented during lead identification and 
optimization.

Hits to leads. From these screening efforts, 
19 programmes identified viable hits that 
were further advanced with exploratory 
chemistry efforts (13 examples are shown 
in TABLE 2) — an important distinction 
from the efforts previously reported by 
GSK4, wherein no hits were identified for 
many of these targets. Although finding 
hits with biochemical activity was not 
unusual for these screens, finding hits with 
whole-cell wild-type antibacterial activity 
in relevant pathogens without equipotent 
mammalian cell cytotoxicity was a rare 
event — only the cell wall reporter (CWR) 
screen led to such a compound (TABLE 2). 
However, similar to the efforts of GSK, in 
most cases leads that exhibited antimicro-
bial activity had to be derived from early 
optimization efforts and so, in these situa-
tions, the decision to optimize the molecule 
through iterative chemical modifications 
was made before cellular antibacterial activity  
(as measured by MIC15) was obtained. 

Thus, the main objective of these early 
optimization campaigns was to probe the 
SAR of the series in hand and determine 
whether cellular activity could be achieved. 
Of the 19 programmes with progressable 
chemical matter, several led to potent anti-
bacterial activity in Gram-positive bacteria 
with efficacy in animal models (including 
those targeting CoaD7, topoisomerase IV 
(ParE)16 and deoxy-thymidine monophos-
phate (dTMP) kinase (Tmk)17); however, 
none of the programmes led to novel and 
potent Gram-negative antibacterial develop
ment candidates. Some of the reasons for 
this are explained below.

Physicochemical property trends. A physico
chemical property analysis allowed us to 
conclude that many antibacterial targets 
exhibited a preference for compounds  
with substantially higher lipophilicity than 
was optimal for maintaining bacterial  
permeability, particularly when compounds 
targeting Gram-negative pathogens were 
analysed. In a recent publication18, we pre-
sented a detailed analysis of HTS output and 
compared the physical properties of ~3,200 
compounds — synthesized for internal 

antibacterial programmes over the past 
3 years — that were run against a panel of 
important pathogens (both wild-type and 
permeabilized mutants). Compounds that 
had antibacterial activity against any of the 
pathogens at a concentration of ≤8 μg mL–1 
were included in the analysis, and their 
activity was compared to the physicochemi-
cal properties of HTS actives generated from 
other AstraZeneca screening campaigns 
over the past 5 years (FIG. 1). Notably, the 
lowest LogD values were observed among 
those bacterial species with the fewest treat-
ment options (FIG. 1). Many HTS actives have 
much higher lipophilicities than typical 
actives against important pathogens. There 
are exceptions, including hydrophobic com-
pounds such as inhibitors of the deacetylase 
LxpC, which do show good cellular activity. 
However, these exceptions frequently come 
with a range of issues associated with high 
lipophilicity, including high levels of plasma 
protein binding, cytotoxicity, efflux and 
off-target promiscuity19–21. Furthermore, 
for some targets the average lipophilicity of 
biochemical actives and hits is even higher 
than the collection average. This raises the 
possibility that such screens may select 

Figure 1 | Mean LogD values for internal AstraZeneca antibacterial 
project compounds and for exemplar hits from other disease areas.  
The mean LogD values were calculated at pH 7.4 using AstraZeneca internal  
software that was parameterized on a continual basis using new data. Error 
bars indicate the 99% confidence interval for the mean of calculated LogD 
values for each category on the x axis. a | The mean LogD values for active 
compounds targeting 10 key pathogens are indicated by yellow diamonds, 
and the number of active compounds (n) with a minimum inhibitory con-
centration (MIC) ≤8 μg mL–1 is indicated in parentheses. The mean LogD 
values of inactive compounds (MIC >64 μg mL–1) are indicated by red hexa-
gons. The mean of a random sample of 45,000 compounds from the 
AstraZeneca screening collection is shown for reference. b | The mean 
LogD values for hits from ten representative high-throughput screens are 

indicated by green circles, and the number of hits (n) included in the analysis  
is indicated in parentheses. A. baumannii, Acinetobacter baumannii;  
AccA, acetyl-CoA carboxyltransferase α-subunit; AccC, biotin carboxylase; 
AccD, acetyl-CoA carboxyltransferase β-subunit; CoaD, phosphopanteth-
eine adenylyltransferase; E. coli, Escherichia coli; FabH, β-ketoacyl- 
(acyl carrier protein) synthase III; H. influenzae, Haemophilus influenzae; 
K. pneumoniae, Klebsiella pneumoniae; LigA, DNA ligase; MurC, uridine 
diphosphate (UDP)-N-acetylmuramate-l-alaninetransferase; P. aeruginosa, 
Pseudomonas aeruginosa; ParE, topoisomerase IV; PyrH, uridine mono
phosphate (UMP) kinase; S. aureus, Staphylococcus aureus; S. pneumoniae, 
Streptococcus pneumoniae; S. pyogenes, Streptococcus pyogenes;  
Tmk, deoxy-thymidine monophosphate (dTMP) kinase; TrmD, tRNA 
(guanine37-N1)-methyltransferase.
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for hydrophobic binding sites that favour 
intrinsic binding energetics, which further 
bias molecules towards having LogD values 
above what is normally seen for marketed 
antibacterial agents. Although many pro-
gressable hits were identified for most of the 
AstraZeneca screening targets, the progres-
sion of these projects into lead optimiza-
tion proved extremely difficult, as hits were 
typically ~3–4 log units more hydrophobic 
than the average hydrophobicity of a typical 
antibacterial agent (FIG. 2).

In response to the lack of molecules 
with whole-cell activity for use as starting 
molecules in our programmes, conven-
tional wisdom amongst medicinal chem-
ists often supported design strategies that 
drive biochemical potency to nanomolar 
levels to achieve meaningful activity (typi-
cally single-digit micromolar) against intact 
bacteria, often with this observation extend-
ing to include even hypersensitive mutant 
strains. Although this may have been an 
accepted strategy in the field during the HTS 
era of antibacterial drug discovery, several 
examples presented here demonstrate the 
limitations of this approach. For example, 
for inhibitors of UDP-N-acetylmuramate-l-
alanine ligase (MurC) or CoaD, nanomolar 
activity was achieved without marked anti-
bacterial activity. Conversely, the strategy 
of only driving potency against the target 
has not received universal support. Indeed, 
privileged scaffolds or targets exist for 
which good antibacterial activity can be 
achieved without large differences between 
the target-binding and whole-cell activity 
potencies. One such example is the group of 
benzoxoborole-derived inhibitors that target 
leucyl-tRNA synthetase22. These inhibitors 
typically had only micromolar biochemical 
activity but nonetheless exhibited impres-
sive antibacterial potency. Clearly, a detailed 
understanding of the cellular context of the 
target, and whether or not its correspond-
ing biochemical assay adequately represents 
physiological conditions, is key for successful 
execution of this strategy.

Although it is simple to suggest that 
teams should focus on designing com-
pounds with a low LogD as well as simulta-
neously increasing the biochemical potency, 
in our experience, lipophilicity typically 
increases with potency. This tendency is 
highly dependent on the nature of the target 
binding site; however, lipophilic compounds 
are difficult to avoid for targets with large 
hydrophobic active sites. For example, in 
identifying compounds that inhibit MurC 
(FIG. 2), chemists that were designing and 
synthesizing compounds over the course  

of the project encountered a very common  
problem: the most potent compounds 
that the teams generated tended to be very 
hydrophobic (FIG. 2). Efforts to reduce lipo-
philicity are generally met with reduced 
biochemical potency (FIG. 2), which further 
exacerbates the separation between their 
activity and the MICs in important patho-
gens23. Teams may eventually give up trying 
to find hydrophilic compounds and focus 
on the hydrophobic compounds, hoping to 
identify compounds potent enough to negate 
the loss of activity due to outer membrane 
permeability barriers. We have found that this 
approach generally does not work.

The AstraZeneca team also screened 
several diverse chemical libraries with a 
range of physical properties and character-
istics outside of the typical screening col-
lection with the hopes of overcoming some 
of the abovementioned issues. Phenotypic 
screens were also pursued in an attempt to 
identify compounds with acceptable MICs 
from the start of the programme. Neither 

target-based nor phenotypic screening 
approaches against these diverse libraries 
yielded any substantial differences in hit 
frequency when compared to the standard 
AstraZeneca proprietary screening sets 
used in the 65 high-throughput screens 
highlighted above. In many of these efforts 
hydrophobicity remained an issue, such that 
the most interesting molecules identified 
still exhibited a LogD >3, even when present 
in smaller numbers among the original 
screening sets18.

It should also be noted that having  
chemical series in the appropriate physical  
property space does not automatically 
increase the probability of finding whole-cell 
active compounds. For example, compounds 
that inhibit β-ketoacyl-(acyl carrier protein) 
synthase III (FabH) had favourable physical 
properties (FIG. 1), but only a few examples 
exhibited very weak activity in Gram-positive 
strains and no activity in Gram-negative 
strains. There are several obvious reasons for 
this observation, including a lack of target 

Figure 2 | The relationship over time between the biochemical potency against Pseudomonas  
aeruginosa MurC and the cLogD of newly synthesized programme compounds.  As chemists 
were designing and synthesizing compounds over the course of the project (shown as sequential 
compound registrations on the x axis) the most potent examples trended towards having a high hydro-
phobicity (dark red squares). Efforts to reduce the hydrophobicity were generally met with reduced 
biochemical potency (green squares). The molecules are grouped by hydrophobicity, as measured by 
‘computed’ LogD (cLogD) values, calculated using AstraZeneca’s proprietary predictive model, 
AZlogD

7.4
, as indicated in the key. 
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affinity and engagement, translocation of 
the drug across the bacterial membrane and 
whether the target protein is essential.

Screening of natural products was once a 
rich source of antibacterial leads and drugs 
for the pharmaceutical industry. Although 
there continue to be recent examples of 
important new discoveries (for example, 
teixobactin, which was discovered from pre-
viously ‘unculturable’ microbes24) many large 
pharmaceutical companies have divested 
their natural product platforms in favour 
of more-general screening collections that 
can target multiple therapy areas. Numerous 
pharmaceutical companies, including ours, 
have wondered whether a return to natural 
product screening may address some of the 
issues highlighted above, as natural products 

have chemical properties that are diverse 
from typical corporate screening collec-
tions; for example, many natural products 
are highly polar, zwitterionic or bind their 
targets covalently25. In addition to their 
chemical diversity, these natural products 
use specific bacterial-membrane penetration 
mechanisms (which are often unknown) that 
are even more important for antibacterial 
discovery. It is our belief that reinvestment 
solely in general natural product screening 
to find new antibacterial natural products 
may not be as valuable as a strategy that also 
aims to understand the detailed mechanisms 
by which many of these large structures pen-
etrate not only the outer membrane but also, 
in some cases, the cytoplasmic membrane of 
Gram-negative pathogens.

Getting drugs into bugs
Our experience indicates that there are 
a number of essential bacterial targets 
that could be more successfully pursued 
if research teams had a better under-
standing of how to design molecules that 
efficiently permeate bacteria, especially 
Gram-negative species. Here we describe 
innovative approaches to address this 
knowledge gap.

A defining feature of the bacterial cell 
wall is peptidoglycan, a cross-linked poly-
mer that provides mechanical strength and 
structure, the thickness and shape of which 
is species dependent26 (FIG. 3). Gram-positive 
bacteria generally use a thick peptidoglycan 
layer to protect a single cytoplasmic mem-
brane, whereas Gram-negative bacteria rely 

Figure 3 | Gram-negative and Gram-positive cell walls. Gram-negative 
bacteria rely on both an inner and an outer membrane surrounding a 
thin peptidoglycan matrix and a periplasmic space (part a), whereas 
Gram-positive bacteria generally use a thicker peptidoglycan layer to 
protect a single cytoplasmic membrane (part b)27. Transport of anti
biotics and other extracellular compounds across bacterial membranes 
occurs both actively and passively, depending on the nature of the 

transporter. There are numerous components associated with both types 
of cell walls that limit the ability of antibiotics to penetrate these struc-
tures, such as efflux pumps that expunge toxins, defensive enzymes, 
such as β‑lactamases, and complex carbohydrate networks that create a 
protective capsule coating. Integral and peripheral membrane proteins 
are shown in light and dark green, respectively. LPS, lipopolysaccharide;  
LTA, lipoteichoic acid; WTA, wall teichoic acid.
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on both an inner and an outer membrane 
surrounding a thinner peptidoglycan  
matrix and a periplasmic space27. There 
are numerous components associated with 
both types of cell walls that limit the ability 
of antibiotics to penetrate these structures, 
including efflux pumps that expunge toxins, 
defensive enzymes (such as β‑lactamases) 
and complex carbohydrate networks  
that create a protective capsule coating27.  
In particular, the Gram-negative outer  
membrane can be highly impermeable in 
certain non-fermenting bacterial species,  
such as Pseudomonas aeruginosa and 
Acinetobacter baumannii, providing them 
with an extremely effective barrier to the 
vast majority of molecules, except those 
required for growth and metabolism28.  
In these organisms, nutrients are permitted 
access through the outer membrane by a 
handful of active transport systems and by 
passive β‑barrel transport proteins, some 
of which can exhibit a surprising degree 
of selectivity. For example, P. aeruginosa 
encodes genes for more than 30 porins29 
and has a number of subfamilies specific for 
amino acids, sugars and even phosphate. 
Among these, mutations in occD1 (also 
known as oprD; encoding OccD1) confer 
resistance to carbapenems, implicating 
porins in the uptake of these antibiotics. 
Although the contribution of efflux systems 
and other defence mechanisms cannot be 
overlooked, a detailed understanding of 
the key interactions leading to compound 
recognition by, and passage via, porins such 
as OccD1 may help to enable the design of 
molecules with improved permeation across 
this barrier in these important pathogens. 
Ultimately, this understanding may lead to 
more effective antibiotics, especially those 

that target proteins in the periplasmic space 
(inhibitors of Gram-negative cytoplasmic 
targets obviously face the additional chal-
lenge of traversing both the periplasm and 
the inner membrane). The following detailed 
examination of OccD1 helps to illustrate this 
concept.

The X‑ray crystal structure of OccD1 
revealed a channel formed by an 18‑strand 
β‑barrel and a lumen characterized by 
a basic ladder of arginine residues that 
is thought to participate in substrate 

recognition and translocation30. The structures  
of a large number of porins from the outer-
membrane carboxylate channel (Occ) family  
have also been solved6, showing overall 
conservation of the folding and tertiary 
structure within the family and highlighting 
variations in a putative recognition pocket. 
However, among the members of these porin 
families there are also amino acid variations 
in the otherwise conserved basic ladder, sug-
gesting that substrate recognition might not 
be localized in these systems but rather that 
several recognition elements might work 
together to achieve high substrate specificity 
without the tight binding that is generally 
observed for ligand–receptor interactions  
in structure-based drug design.

Molecular simulations have been used 
to model the overall kinetics of transloca-
tion that result from the multiple tran-
sient interactions between a porin and its 
substrate31–33. A key challenge to in silico 
approaches for studying kinetic processes 
is the need for relatively long and atomi-
cally detailed simulations to adequately 
sample key interactions that contribute to 
the free-energy profile for translocation. 
These simulations require vast amounts of 
computer time, specialized hardware34 or 
clever but potentially error-prone sampling 
schemes. Metadynamics is one such sam-
pling technique that applies small repulsive 

Box 1 | Tn-seq in antibacterial research

Next-generation transposon junction sequencing (Tn-seq) combines the power of transposon 
mutagenesis with next-generation sequencing37. The approach relies on the availability of a 
saturated library of transposon mutants that has been generated in a bacterial strain of interest. 
Total genomic DNA (gDNA) is isolated from the transposon library after it has been grown under 
the desired experimental condition, such as passage through an infection model or treatment with 
an antibiotic. Once harvested and purified from surviving bacteria, total gDNA is sheared and 
PCR-amplified using oligonucleotides that contain both transposon-specific sequences and 
‘barcodes’ that allow for high-throughput sequencing of transposon junctions. After massive 
parallel sequencing is performed, the barcodes are used to map each transposon back to the 
genome. The contribution of each gene to the overall fitness of the bacteria during the experiment 
can therefore be calculated by comparing the frequency of occurrence of each mutant before and 
after treatment, as the change in frequency reflects the effect of the mutation on bacterial survival 
under those conditions. In addition to revealing roles for individual genes, this method allows for 
accurate and quantitative determination of genetic interactions on a genome-wide scale. Tn-seq 
also has an advantage over traditional microbial genetic screens (which often rely on relatively 
stringent, positive selection) and target identification and/or validation during the course of 
infection, as it does not depend on a pre-existing, defined set of insertionally inactivated strains 
(although confirmation of any observed patterns still requires the generation and characterization 
of individual mutants). However, as with traditional approaches, the results from this method are 
limited to non-essential genes. Although most applications of Tn-seq to date have focused on the 
characterization of fitness and/or virulence determinants in a wide variety of bacterial pathogens 
(such as Staphylococcus aureus52, Escherichia coli53, Yersinia pestis54, Acinetobacter baumannii55  
and Pseudomonas aeruginosa56,57) it has also been used for target identification58 and to identify 
mechanisms of antibiotic activity (see the Discuva website) and resistance59. Other systems-level 
platforms that are complementary to Tn-seq, such as RNAseq60–62, microbial proteomics63,64 and 
metabolomics65,66, also have great potential to become useful in antibiotics research; however, a 
detailed description of these emerging technologies is beyond the scope of this Opinion article.

Glossary

cLogD
The ‘computed’ LogD, using a predictive model.  
The values in this paper were calculated using 
AstraZeneca’s proprietary model, AZlogD7.4.

Hill slope
A measure of binding or linkage cooperativity that can 
reflect a deviation from simple 1:1 stoichiometry  
(for which the Hill slope is equal to 1). The term is named  
in honour of A. V. Hill, the recipient of the 1922 Nobel 
Prize in Physiology or Medicine.

IC50

Inhibitor concentration at 50% effect. This is a generalized 
measure of inhibitory potency for a dose response,  
and dependent upon the conditions of the specific assay. 
Ideally, the relationship between this result and the 
intrinsic binding inhibition constant (Ki) may be  
understood from mechanism of inhibition studies.

LogD
The distribution coefficient, measured as the relative 
partitioning of all ionizable forms of a small molecule 
between a hydrophobic (octanol) and aqueous phase 
buffered to a particular pH, usually 7.4. This term 
describes the relative hydrophobicity of a chemical 
compound and is different to the related partition 
coefficient, logP, which describes the partitioning of  
only the neutral (non-ionized) form of the compound 
between phases.

Minimum inhibitory concentration
This measurement reflects the lowest concentration  
of compound that visibly inhibits the growth of an  
organism after overnight incubation.
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forces to each state visited by a system in 
order to overcome barriers on the potential 
energy surface, encouraging the surface to 
sample new configurations35. Combined 
with clusters of (inexpensive) graphical 
processing units, these techniques enable 
the mapping of the free energy profile for 
translocation through the porin with a few 
hours of computer time. We have recently 
used this technology to construct an in silico 
platform for the high-throughput evaluation 
of compounds in the OccD family of porins 
(OccD1 and OccD3), and we used this  
platform to gain insights into the differences 
in permeability between imipenem, which 
mimics the native OccD1 substrate arginine, 
and meropenem36.

A basic understanding of the complex 
interplay of mechanisms driving compound 
uptake across bacterial membranes is an 
absolute prerequisite for the rational design 
of compounds with higher affinity and/or  
rates of transport. We can now comple-
ment the powerful computational methods 
described above with a variety of biological 
tools that characterize bacterial physiology 
on a global scale, such as next-generation 
transposon junction sequencing (Tn-seq)37 
(BOX 1). Recently, we used this approach to 
assess the contribution of all potential outer 

membrane transporters to carbapenem 
uptake by P. aeruginosa by identifying  
transposon-induced mutants in genes 
encoding outer membrane transporters that 
were substantially enriched after drug treat-
ment. Although this study focused on outer 
membrane transporters, it is important to 
note that, due to its global nature, Tn-seq 
generates data related to all mechanisms of 
resistance, not just the reduction of com-
pound uptake. We found that carbapenems 
are transported not only by OccD1 (as has 
been well-established in the literature) but 
also by a closely related channel, OccD3 
(also known as OpdP)36. Although identifi-
cation of this alternative uptake mechanism 
is logical, considering the high homology 
between the two porins, its discovery is 
important as it was previously undetectable 
using traditional methods6,38. Specific key 
residues in both porins, identified through 
the computational modelling methods 
described above (FIG. 4), were then evaluated 
for their role in carbapenem passage rela-
tive to the uptake of their natural substrates 
using a robust cell-based compound uptake 
assay. Finally, results from these studies led 
to the design of novel analogues with uptake 
mechanisms that were quite distinct from 
the parent compounds36.

It is tempting to consider circumventing 
the challenges of compound penetration 
across bacterial membranes via the use of 
‘Trojan horse’ strategies that ‘trick’ the bacteria  
into taking up antibiotics by conjugating 
them to moieties that are normally used to 
transport nutrients into the cells. Indeed, 
researchers have been intrigued for decades 
by a number of bioactive natural products 
with structural elements that mimic the 
natural substrates of peptide, sugar phos-
phate, nucleoside, polyamine and iron 
siderophore uptake pathways39,40. Although 
there have been some efforts to exploit these 
uptake mechanisms to deliver inhibitors of 
cytoplasmic targets41, most have focused on 
molecules with ‘warheads’ that target cell 
wall synthesis by inhibiting penicillin bind-
ing proteins, which are located in the peri-
plasm42. However, the appeal of this strategy 
is tempered by the strong potential for rapid 
induction or emergence of resistance, which 
is likely to be mediated through mutations in 
genes encoding the targeted transport mech-
anism. For example, one such compound 
had a sufficiently attractive antibacterial 
range, in vitro potency and chemical proper-
ties that it was advanced to Phase I clinical 
trials in 2010, but it has yet to progress  
further43. This may be due to the lack of cor-
relation between in vitro activity and in vivo 
efficacy that has been observed for this class 
of compounds by two independent research 
groups (A.M., manuscript in preparation, 
and REF. 44), which is attributed to a bacte-
rial adaptation phenotype that occurs during 
infection but not under standard in vitro 
conditions of bacterial growth.

Another challenge faced by antibacterial 
researchers is the lack of a robust method to 
precisely and rapidly measure compound 
uptake by bacterial cells. This type of assay 
would greatly enable not only research into 
bacterial membrane penetration as described 
above but also inform the correlation of tar-
get inhibition to whole cell activity for a given 
series of inhibitors. Most existing techniques 
rely on either fluorescent45 or radiometric46 
detection methods, or those based on liquid 
chromatography and mass spectrometry47,48 
that require multiple wash steps and/or oil-
based separation of cells from media. All of 
these approaches require both bacteria- and 
compound-specific optimization and none 
is amenable to higher throughput screening. 
However, recent advances in bioanalytical 
tools and their applications — for example 
single cell metabolomics based on mass  
spectrometry, microfluidics and capillary 
separations49 — may aid in answering this 
problem in the near future.

Figure 4 | Effect of porin point mutations on antibiotic transport. Crystal structure of the porin 
OccD1 (Protein Data Bank identifier: 3SY7)6,30, illustrating the effect of point mutations in the porin on 
translocation of meropenem36. The locations of the point mutations are indicated by white boxes, and 
the effects of the point mutations are colour coded: red indicates a reduction in permeability, yellow 
indicates no effect and green indicates an increase in permeability.
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Conclusions and next steps
Our analysis of antibacterial HTS  
programmes at AstraZeneca suggests that  
the outlook for identifying novel antibacterial 
agents might not be as bleak as previously con-
sidered. However, although many biochemical 
screens of genetically validated targets can 
clearly identify suitable chemical matter that 
warrants further investigation, there remains a 
substantial gap in the understanding of how to 
convert these hits into leads with cellular  
activity. The good news is that there are several 
efforts underway that may help to address this 
gap. These include the Innovative Medicines 
Initiative on Translocation50, a 5‑year, 
€30 million collaborative effort between the 
European Union, the European Federation 
of Pharmaceutical Industries and Associates 
(EFPIA) and Europe’s leading academic scien-
tists. This initiative aims to solve the riddle of 
how drugs enter Gram-negative bacteria using 
multiple workstreams, such as the assembly 
of a shared set of clinical isolates that cover 
a range of relevant membrane-permeability 
resistance mechanisms, the development and 
optimization of in vitro assays to better mimic 
envelope permeability at infection sites and 
omics approaches to characterize and quantify 
porin and efflux-pump changes that occur 
during infection. Greater understanding of the 
role of porins in drug permeation is also being 
gained through the determination of bacterial 
porin structures using X‑ray crystallography, 
the use of molecular simulations to under-
stand porin function and specificity, and the 
use of genetically regulated strains to deter-
mine or confirm the role of porins in permea-
tion (including cells with point mutations 
in the porins to elucidate structural require-
ments for substrate recognition). All of these 
approaches have not been routinely available 
in the antibacterial discovery programmes 
carried out to date.

Initial results from our laboratories indi-
cate that an approach that combines these 
new technologies in a concerted fashion 
is cause for a positive outlook on potential 
breakthroughs in understanding the uptake 
of other antibiotic classes. Ultimately, this 
may lead to new strategies that can be used 
to design more penetrant drugs in a coherent 
manner. The advent of these technologies — 
coupled with a new regulatory framework 
to simplify the development of pathogen-
specific therapies3 and an improved funding 
landscape aided by government initiatives 
and open innovation models51 — may sub-
stantially enhance our ability to discover  
the novel antibacterial therapies that are  
desperately needed to address the threat  
of multidrug-resistant pathogens.
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ERRATUM

ESKAPEing the labyrinth of antibacterial discovery
Ruben Tommasi, Dean G. Brown, Grant K. Walkup, John I. Manchester and Alita A. Miller
Nature Reviews Drug Discovery 8, 529–542 (2015)

In the legend of Figure 3, Gram-negative and Gram-positive bacteria were incorrectly labelled. This has been corrected in 
the online version of the article.
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