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Species-specific activity of antibacterial drug 
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The spread of antimicrobial resistance has become a serious public 
health concern, making once-treatable diseases deadly again and 
undermining the achievements of modern medicine1,2. Drug 
combinations can help to fight multi-drug-resistant bacterial 
infections, yet they are largely unexplored and rarely used in 
clinics. Here we profile almost 3,000 dose-resolved combinations of 
antibiotics, human-targeted drugs and food additives in six strains 
from three Gram-negative pathogens—Escherichia coli, Salmonella 
enterica serovar Typhimurium and Pseudomonas aeruginosa—to 
identify general principles for antibacterial drug combinations and 
understand their potential. Despite the phylogenetic relatedness of 
the three species, more than 70% of the drug–drug interactions that 
we detected are species-specific and 20% display strain specificity, 
revealing a large potential for narrow-spectrum therapies. Overall, 
antagonisms are more common than synergies and occur almost 
exclusively between drugs that target different cellular processes, 
whereas synergies are more conserved and are enriched in drugs that 
target the same process. We provide mechanistic insights into this 
dichotomy and further dissect the interactions of the food additive 
vanillin. Finally, we demonstrate that several synergies are effective 
against multi-drug-resistant clinical isolates in vitro and during 
infections of the larvae of the greater wax moth Galleria mellonella, 
with one reverting resistance to the last-resort antibiotic colistin.

To study the characteristics and conservation of drug–drug inter-
actions in bacteria, we selected three gamma-proteobacterial species, 
E. coli, S. Typhimurium and P. aeruginosa, all of which belong to the 
highest-risk group for antibiotic resistance3. We used model labora-
tory strains rather than multi-drug-resistant (MDR) isolates to derive 
general principles behind drug–drug interactions without being con-
founded by horizontally transferred antibiotic resistance elements, 
and to facilitate follow-up experiments and comparisons with previ-
ous and future results. To further assess whether drug responses vary 
between strains of the same species, we included two strains per species 
(Extended Data Fig. 1a), probing each in up to 79 compounds alone 
and in pairwise combinations. The compounds comprised 59% antibi-
otics (covering all major classes), 23% human-targeted drugs and food 
additives—most of which have reported antibacterial and/or adjuvant 
activity4,5—and 18% other compounds with known bacterial targets or 
genotoxic effects, such as proton motive force inhibitors or oxidative 
damage agents, owing to their potential relevance for antibiotic activity 
and/or uptake6,7 (Extended Data Fig. 1a, Supplementary Table 1). We 
profiled up to 2,883 pairwise drug combinations in each of the 6 strains 
(17,050 combinations in total). We assessed each drug combination in 
a 4 × 4 tailored-dose matrix (Methods, Supplementary Table 1), used 
optical density as growth readout and calculated fitness as the growth 
ratio between drug-treated and untreated cells (Extended Data Figs. 1, 2,  

Methods). All experiments were done at least twice, and on average 
four times, with high replicate correlation (average Pearson correla-
tion = 0.93, Extended Data Fig. 3a, b).

We quantified all drug–drug interactions using the Bliss independ-
ence model (Extended Data Fig. 1b, Methods). Consistent with its null 
hypothesis, interaction scores were zero-centred for all species 
(Extended Data Fig. 3c). From all the scores (ε) obtained per combina-
tion (4 × 4 dose matrix), we derived a single interaction score (ε�) that 
ranged from −1 to 1 (Methods). Synergies and antagonisms were con-
sidered significant if P < 0.05 (Benjamini–Hochberg corrected, 10,000 
repetitions of a two-sided Wilcoxon rank-sum test). Strong interactions 
had an additional effect size requirement for |ε�| > 0.1, whereas weak 
interactions could satisfy the effect-size threshold for one of the two 
strains of the same species but be slightly below the threshold for the 
other (|ε�| > 0.06, Methods). In total, we detected 19% interactions 
(synergies and antagonisms combined) for E. coli, 16% for  
S. Typhimurium and 11% for P. aeruginosa (Supplementary Table 2). 
These hit rates are between the >70% hit rate for 21 antibiotics previ-
ously tested in E. coli8 and the <2% hit rate for a larger set of combina-
tions previously tested in a number of different fungal species9. 
Discrepancies are likely due to: (i) drug selection biases, (ii) single-drug 
concentrations used in previous studies, which increase false-negative 
and -positive rates, and (iii) different strategies of data analysis. For 
example, we observed that drugs that lack antibacterial activity engage 
in fewer interactions (Extended Data Fig. 3e): the previous study in 
fungi9 screened pairwise combinations of 6 antifungals with 3,600 
drugs, most of which had no antifungal activity—probably explaining 
the low number of interactions detected—and the study in E. coli8 pro-
filed only bioactive antibiotics. Out of the 79 drugs tested here, all had 
at least 1 interaction, and a median of 5–13 interactions, in the different 
strains (Extended Data Fig. 3f).

Because, to our knowledge, drug combinations have not previously 
been systematically probed in bacteria, we lacked a ground truth for 
benchmarking our dataset. To overcome this limitation, we selected 242 
combinations and created a validation set using higher-precision 8 × 8 
checkerboard assays (Extended Data Fig. 4a, b, Supplementary Table 3, 
Methods). We used this validation set both to assess the performance of 
our interaction identification approach and to benchmark our screen 
(Extended Data Fig. 4c, d). Overall, we had a precision and recall of 
91% and 74%, respectively. The slightly lower recall can be partially 
explained by the larger coverage of drug concentration range in the val-
idation experiments, which improves our ability to detect interactions 
(Extended Data Fig. 5). We confirmed 90% of all the weak interactions 
that we probed in the validation set (n = 46, Extended Data Fig. 6, 
Supplementary Table 3), which supports the rationale of our interaction 
identification approach. Indeed, including weak interactions in our 
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hits increases the recall (Extended Data Fig. 4d). For a handful of the  
synergies observed between antibiotics of the same class (β-lactams), 
we confirmed the interactions using the Loewe additivity model 
(Extended Data Fig. 4e), which is more suitable for assessing interac-
tions between drugs with the same target.

Overall, we detected 1,354 antagonistic and 1,230 synergistic interac-
tions. Although this suggests that the two occur with similar frequencies, 
antagonisms are nearly 50% more prevalent than synergies after correct-
ing for our ability to detect both types of interactions (Fig. 1a). This is 
because we can detect antagonisms only for 75% of combinations (when 
at least one drug inhibits growth; Extended Data Fig. 3d, Methods), 
whereas synergies are detectable for nearly all combinations. A higher 
prevalence of antagonisms has also been reported for antifungals10.

Notably, antagonisms and synergies exhibited a clear dichotomy in 
our data. Antagonism occurred almost exclusively between drugs that 
target different cellular processes, whereas synergies were also abundant 
for drugs of the same class or that target the same process (Fig. 1b–e, 
Extended Data Fig. 7). Mechanistically, antagonism can be explained by 
interactions at the drug-target level, as the two inhibitors can help the 
cell to buffer the distinct processes that are perturbed. DNA and protein 
synthesis inhibitors act this way in bacteria11 (Fig. 1b). Consistent with 
this being a broader phenomenon, in genome-wide genetic interactions 
studies in yeast, alleviating interactions (antagonisms) are enriched 
between essential genes (the targets of anti-infectives), which are part 
of different functional processes12. However, antagonism can also 
occur at the level of intracellular drug concentrations (Extended Data 
Fig. 8a). We tested 16 antagonistic interactions of different drugs with 
gentamicin or ciprofloxacin in E. coli to investigate the extent to which 
this occurs. Although initially detected at a growth inhibition level, all 
antagonisms held true at a killing level, with 14 of the 16 antagonisms 
working (at least partially) via decreasing the intracellular gentamicin 
or ciprofloxacin concentrations (Extended Data Fig. 8b). In several of 
the cases that we tested, this probably occurred because the second 
drug decreased the proton motive force-energized uptake of gentamicin 
or increased the AcrAB–TolC-dependent efflux of ciprofloxacin, as 
antagonisms were neutralized in the respective mutant backgrounds 

(Extended Data Fig. 8c). Overall, our results suggest that a large fraction 
of antagonisms is due to modulation of intracellular drug concentra-
tions, rather than to direct interactions of the primary drug targets 
(Extended Data Fig. 8d, e).

Unlike antagonistic interactions, synergies often occurred between 
drugs that target the same cellular process (Fig. 1b–e, Extended Data 
Fig. 7). In fact, synergies are significantly enriched within drugs of the 
same category across all three species (P < 10−16, Fisher’s exact test), 
given that in our dataset there are about 15-fold-more possible drug 
combinations across drug categories than within them. Mechanistically, 
by targeting the same functional process at different steps, drug combi-
nations could bypass the redundancies of this process and thus have a 
synergistic effect. For example, the many synergies that exist between 
different β-lactams are probably because of their different affinities to 
the numerous and often-redundant penicillin-binding proteins (Fig. 1b, 
Extended Data Figs. 4e, 7a, b).

As with antagonisms, synergies can also occur owing to modula-
tion of intracellular drug concentrations. Consistent with a general 
permeabilization role of membrane-targeting compounds in many 
organisms9,13,14 and with drug uptake being a major bottleneck for 
Gram-negative pathogens, one quarter of all the synergies that we 
detected contained at least one out of the eight membrane-targeting  
drugs used in our screen (two-sided Wilcoxon rank-sum test, P = 0.06). 
However, membrane-targeting compounds also account for about 18% 
of antagonisms, which suggests that perturbations in membrane integ-
rity can also decrease intracellular drug concentrations. Consistently, 
benzalkonium decreases the intracellular concentration of both gen-
tamicin and ciprofloxacin, probably by interfering with their import 
into the cell (Extended Data Fig. 8b, c).

We next examined the conservation of drug–drug interactions. 
Interactions within species were highly conserved (Fig. 2a, Extended 
Data Fig. 9a, b), with conservation being 53–76% depending on the spe-
cies (Fig. 2b). Conservation is actually higher (68–87%, on average 80%) 
if we disregard non-comparable interactions for which the concentra-
tion range tested precluded us from detecting synergy or antagonism for 
both strains (Fig. 2b, Extended Data Fig. 3d). The high conservation of 

b c

d

a

e

W
ith

in

Acr
os

s

In
te

ra
ct

io
ns

0

50

150

250

0

50

150

250
P = 3.8 × 10–11

W
ith

in

Acr
os

s

In
te

ra
ct

io
ns

P = 1.03 × 10–15

n = 471 interactions
Synergy

Antagonism

0

0.05

0.10

0.15

In
te

ra
ct

io
ns

(o
b

se
rv

ed
/d

et
ec

ta
b

le
)

Cell wall

Membrane

Oxidative
stress

Protein 
synthesis

Human
PMF

DNA
Tetracycline

Aminoglycoside

Human
drug

Other protein
synthesis inhibitor

Other DNA

PMF

Macrolide

RNA
polymerase

Oxidative stress

Other membrane

Other cell wall

Fluoroquinolone

Multiple

Folic acid
biosynthesis

Food
additive

LPS

Fatty acid
biosynthesis

-Lactam

Ant
ag

on
ism

Syn
er

gy

Fig. 1 | Principles of drug–drug interaction networks. a, Antagonism 
is more prevalent than synergy. Fraction of observed over detectable 
interactions for the six strains. We detect more antagonistic (1,354) than 
synergistic (1,230) interactions, although our ability to detect antagonisms 
is lower than our ability to detect synergies (12,778 versus 16,920 
combinations). b, c, Drug–drug interaction networks in E. coli. Nodes 
represent either drug categories (b) or drugs grouped according to the 
general cellular process that they target (c). Node colours represent general 
cellular processes: blue, cell wall; yellow, DNA; red, protein synthesis; teal, 
human-targeted or food additive; lilac, membrane; green, oxidative stress 
or protein motor force (PMF). Node size reflects the number of drugs 

within category. Edges represent synergy (blue) or antagonism (orange), 
and thickness reflects the number of interactions. Interactions between 
drugs of the same category or general cellular target are represented by self-
interacting edges. Conserved interactions, including weak interactions, are 
shown. LPS, lipopolysaccharide. d, e, Count of synergistic and antagonistic 
drug–drug interactions in E. coli. Antagonisms occur almost exclusively 
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(e). χ2-test P values are shown for the difference in frequency of synergies 
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drug–drug interactions within species is consistent with the finding that 
these interactions are generally robust to simple genetic perturbations15. 
Despite the high degree of conservation within species, 13–32% of the 
interactions remained strain-specific, with the majority being neutral 
in the second strain. Very few drug combinations synergized for one 
strain and antagonized for the other (16 interactions), but such strain 
differences held in our validation set (Supplementary Table 2).

Although conservation is relatively high within species, it is very 
low across species (Fig. 2c, Extended Data Fig. 9c). The majority (70%) 
of interactions occurred in only one species and only 5% were con-
served in all three species, despite their close phylogenetic relationship. 
Because conservation is much higher at the single-drug level across the 
three species—which share resistance or sensitivity to 73% of the drugs 
(Supplementary Table 1, Methods)—this indicates that drug combina-
tions can impart species specificity to the drug action. Such specifici-
ties can be beneficial for creating narrow-spectrum therapies with low 
collateral damage, by using synergies that are specific to pathogens and 
antagonisms that are specific to abundant commensals.

Moreover, we found that despite synergies being less prevalent 
(Fig. 1a), they are significantly more conserved than antagonisms 
(Fig. 2d). This is presumably because (i) synergies are enriched between 
drugs of the same category, and interactions within functional processes 

are conserved across evolution16; (ii) membrane-targeting drugs have a 
general potentiation effect in Gram-negative bacteria; and (iii) antago-
nisms often depend on drug import or uptake (Extended Data Fig. 8), 
which are controlled by less-conserved envelope machineries.

Exploring the network of conserved drug–drug interactions across 
the three species (Extended Data Fig. 9d) exposed several potential 
Achilles’ heels of Gram-negative bacteria, such as the strong synergy of 
colistin with macrolides17, and revealed that known antibiotic classes 
often behave non-uniformly. For example, the well-known synergy 
between β-lactams and aminoglycosides is confined to the potent 
aminoglycosides used in our screen (amikacin and tobramycin) and 
β-lactams (piperacillin, aztreonam and cefotaxime) that specifically 
target the cell-division-related penicillin-binding proteins, consistent 
with previous reports18. To address whether pairwise drug interactions 
are driven by mode of action (that is, drug classes interacting in a purely 
synergistic or antagonistic manner with one another)8, we calculated a 
monochromaticity index for all drug category pairs, across all species 
(Methods). For highly monochromatic category pairs, the monochro-
maticity index approaches 1 and −1 for antagonism and synergy, respec-
tively. The monochromaticity index is high overall, especially between 
well-defined antibiotic classes. Yet, a number of these classes—includ-
ing β-lactams, tetracyclines and macrolides—have mixed antagonisms 
and synergies with other antibiotic classes (Extended Data Fig. 9e). 
β-lactams have diverse affinities to their multiple penicillin-bind-
ing-protein targets (potentially explaining the mixed interactions with 
other classes) but the same does not apply to protein synthesis inhibitors, 
which have unique targets. In this case, non-uniform class behaviour 
may be due to different chemical properties of the class members, and 
thus different dependencies on uptake and efflux systems. Aggregating 
the monochromaticity index per drug category reinforced the view that 
broader categories exhibit less concordant interactions (Extended Data 
Fig. 9f). Besides membrane-targeting drugs, human-targeted drugs were 
the category that exhibited the most synergies, which suggests that many 
human-targeted drugs may act as adjuvants.

Because antibiotic classes interacted largely in a monochromatic fash-
ion, clustering drugs according to their interactions recapitulated the 
class groupings (Extended Data Fig. 10). For example, cell-wall inhibi-
tors grouped together, with further subdivisions being reflective of target 
specificity. However, exceptions—such as the macrolides, which split—
were also evident. Azithromycin, the only dibasic macrolide, separates 
from its class co-members and clusters with two other basic antibiotics, 
bleomycin and phleomycin. Compared with other macrolides, azithro-
mycin interacts with and crosses the outer membrane of Gram-negative 
bacteria in a distinct manner17,19 and also has different binding kinetics 
with the peptide exit tunnel of the 50S ribosomal subunit20. For drugs 
with unknown or less-well-defined targets, clustering hinted at possible 
modes of action. Among them, we selected the flavouring compound 
vanillin, which clusters together with the structurally related acetyl-
salicylic acid (aspirin). Salicylate and aspirin induce the expression of 
the major efflux pump in enterobacteria, AcrAB–TolC, by binding and 
inactivating the transcriptional repressor MarR21 (Fig. 3a). Consistent 
with a similar action, vanillin treatment increased levels of AcrA protein 
in E. coli, owing to marA overexpression (Fig. 3b, c). Higher AcrA levels 
upon vanillin or aspirin treatment led to higher minimal inhibitory 
concentrations for chloramphenicol and ciprofloxacin (Fig. 3d, e). As 
previously reported for salicylate22, vanillin exerts an additional minor 
effect on drug resistance in a MarR- and MarA-independent man-
ner (Fig.  3c–e), presumably via the MarA homologue Rob.

To test whether detected interactions are relevant for resistant iso-
lates, we selected seven strong and conserved synergies—comprising 
antibiotics, human-targeted drugs or food additives—and assessed 
their efficacy against six MDR E. coli and Klebsiella pneumoniae clinical 
isolates in total. All strains were recovered from patients with infec-
tions, and belong to successfully spread clonal lineages that contain 
extended spectrum β-lactamase resistance and various highly prevalent 
carbapenemases23,24. One K. pneumoniae strain (929) is also resistant 
to the last-resort antibiotic, colistin, owing to a chromosomal mutation 
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(Supplementary Table 4) that puts the strain in the category of exten-
sively drug-resistant isolates. All drug pairs acted synergistically in most 
of the strains that we tested (Fig. 4a, Extended Data Fig. 11a). We fur-
ther tested colistin–clarithromycin and spectinomycin–vanillin with an 
established infection model for evaluating antibacterial activity, using 
the larvae of G. mellonella. Both combinations also acted synergistically 
in vivo by increasing the rates of G. mellonella survival during infection 
(Fig. 4b, Extended Data Fig. 11b).

The strongest of these synergies is between colistin and different 
macrolides (Fig. 4, Extended Data Fig. 11). Although other polymyxins 
are known to help macrolides to cross the outer membrane of Gram-
negative bacteria17, this particular synergy occurred at low colistin con-
centrations (<0.3 μg ml−1) and was active even for the intrinsically 
colistin-resistant strain (K. pneumoniae 929, Fig. 4), which implies that 
macrolides may also potentiate colistin via an as-yet-unknown mecha-
nism. Similar resensitization of colistin-resistant pathogens to colistin 

by macrolides was recently reported for plasmid-borne colistin resist-
ance25, indicating that this synergy is independent of the resistance 
mechanism. In addition to antibiotic pairs, combinations of human- 
targeted drugs or food additives with antibiotics were also effective 
against MDR isolates, even when the former lacked antibacterial activ-
ity on their own (Extended Data Fig. 11).

One such compound, vanillin, potentiated the activity of spectino
mycin in E. coli MDR isolates. This was intriguing, because vanillin  
antagonizes many other drugs including other aminoglycosides 
(Supplementary Table 2). We confirmed that this interaction is spe-
cific to spectinomycin and vanillin, and not to other aminoglycosides 
or aspirin, and thus independent of the vanillin effect on AcrAB–TolC 
(Extended Data Fig. 12a–c). We then probed a genome-wide E. coli  
gene knockout library26 to identify mutations that abrogate the  
vanillin–spectinomycin interaction, but do not influence the inter-
action between vanillin and amikacin (another aminoglycoside).  
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One of the top hits was mdfA, which encodes a transporter of the major 
facilitator superfamily that exports both charged and neutral com-
pounds27 (Extended Data Fig. 12c). Consistent with MdfA modulating 
spectinomycin uptake, ΔmdfA (mdfA deletion mutant) cells were more 
resistant to spectinomycin and not responsive to vanillin (Extended 
Data Fig. 12d), whereas cells overexpressing mdfA were more sensitive 
to spectinomycin (Extended Data Fig. 12d, e), as previously reported28, 
with vanillin further exacerbating this effect (Extended Data Fig. 12d). 
Vanillin addition also increased the intracellular spectinomycin con-
centration in an mdfA-dependent manner (Extended Data Fig. 12f). 
At this point, it is unclear how MdfA—which is known to export com-
pounds out of the cell—facilitates spectinomycin import into the cell. 
However, the phylogenetic occurrence of mdfA is concordant with the 
species-specificity of this interaction, as we detected this synergy in  
E. coli and S. Typhimurium but not in P. aeruginosa and K. pneumoniae 
isolates, which lack mdfA. This synergy underlines the importance of 
exploring the role of food additives in combinatorial therapies5.

In summary, we generated a comprehensive resource of pairwise 
drug combinations in Gram-negative bacteria, which illuminates 
key principles of drug–drug interactions and provides a framework 
for assessing their conservation across organisms or individuals 
(Supplementary Discussion). Such information can form the basis for 
similar screens in other microbes, studies investigating the underlying 
mechanism of pairwise drug combinations11,15,29 and computational 
predictions of their outcomes30,31. Some of the principles that we have 
identified probably go beyond anti-infectives and microbes32. For anti-
bacterial drug therapies, our study shows that non-antibiotic drugs 
hold promise as adjuvants, offers a new path for narrow spectrum ther-
apies and identifies effective synergies against MDR clinical isolates 
(Supplementary Discussion). Further experimentation is required to 
address whether such synergies have clinical relevance.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0278-9.

Received: 11 May 2017; Accepted: 24 May 2018;  
Published online 4 July 2018.

	1.	 President of the General Assembly of the United Nations. Press release: 
high-level meeting on antimicrobial resistance (http://www.un.org/
pga/71/2016/09/21/press-release-hl-meeting-on-antimicrobial-resistance/) 
(2016).

	2.	 Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. 
Nature 529, 336–343 (2016).

	3.	 Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the 
WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. 
Dis. 18, 318–327 (2018).

	4.	 Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance 
antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

	5.	 Brown, D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic 
discovery void? Nat. Rev. Drug Discov. 14, 821–832 (2015).

	6.	 Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A 
common mechanism of cellular death induced by bactericidal antibiotics. Cell 
130, 797–810 (2007).

	7.	 Ezraty, B. et al. Fe–S cluster biosynthesis controls uptake of aminoglycosides in 
a ROS-less death pathway. Science 340, 1583–1587 (2013).

	8.	 Yeh, P., Tschumi, A. I. & Kishony, R. Functional classification of drugs by 
properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).

	9.	 Robbins, N. et al. An antifungal combination matrix identifies a rich pool of 
adjuvant molecules that enhance drug activity against diverse fungal 
pathogens. Cell Reports 13, 1481–1492 (2015).

	10.	 Cokol, M. et al. Large-scale identification and analysis of suppressive drug 
interactions. Chem. Biol. 21, 541–551 (2014).

	11.	 Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal microbial response 
to antibiotics underlies suppressive drug interactions. Cell 139, 707–718 (2009).

	12.	 Costanzo, M. et al. A global genetic interaction network maps a wiring diagram 
of cellular function. Science 353, aaf1420 (2016).

	13.	 Farha, M. A. & Brown, E. D. Chemical probes of Escherichia coli uncovered 
through chemical–chemical interaction profiling with compounds of known 
biological activity. Chem. Biol. 17, 852–862 (2010).

	14.	 Stokes, J. M. et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics 
and overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028 (2017).

	15.	 Chevereau, G. & Bollenbach, T. Systematic discovery of drug interaction 
mechanisms. Mol. Syst. Biol. 11, 807 (2015).

	16.	 Ryan, C. J. et al. Hierarchical modularity and the evolution of genetic 
interactomes across species. Mol. Cell 46, 691–704 (2012).

	17.	 Vaara, M. Outer membrane permeability barrier to azithromycin, 
clarithromycin, and roxithromycin in Gram-negative enteric bacteria. 
Antimicrob. Agents Chemother. 37, 354–356 (1993).

	18.	 Giamarellou, H., Zissis, N. P., Tagari, G. & Bouzos, J. In vitro synergistic activities 
of aminoglycosides and new beta-lactams against multiresistant Pseudomonas 
aeruginosa. Antimicrob. Agents Chemother. 25, 534–536 (1984).

	19.	 Imamura, Y. et al. Azithromycin exhibits bactericidal effects on Pseudomonas 
aeruginosa through interaction with the outer membrane. Antimicrob. Agents 
Chemother. 49, 1377–1380 (2005).

	20.	 Petropoulos, A. D. et al. Time-resolved binding of azithromycin to Escherichia 
coli ribosomes. J. Mol. Biol. 385, 1179–1192 (2009).

	21.	 Hao, Z. et al. The multiple antibiotic resistance regulator MarR is a copper 
sensor in Escherichia coli. Nat. Chem. Biol. 10, 21–28 (2014).

	22.	 Chubiz, L. M., Glekas, G. D. & Rao, C. V. Transcriptional cross talk within the 
mar-sox-rob regulon in Escherichia coli is limited to the rob and marRAB operons. 
J. Bacteriol. 194, 4867–4875 (2012).

	23.	 Göttig, S., Hamprecht, A. G., Christ, S., Kempf, V. A. & Wichelhaus, T. A. Detection 
of NDM-7 in Germany, a new variant of the New Delhi metallo-β-lactamase with 
increased carbapenemase activity. J. Antimicrob. Chemother. 68, 1737–1740 
(2013).

	24.	 Göttig, S., Gruber, T. M., Stecher, B., Wichelhaus, T. A. & Kempf, V. A. In vivo 
horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial 
outbreak. Clin. Infect. Dis. 60, 1808–1815 (2015).

	25.	 MacNair, C. R. et al. Overcoming mcr-1 mediated colistin resistance with colistin 
in combination with other antibiotics. Nat. Commun. 9, 458 (2018).

	26.	 Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene 
knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

	27.	 Yardeni, E. H., Zomot, E. & Bibi, E. The fascinating but mysterious mechanistic 
aspects of multidrug transport by MdfA from Escherichia coli. Res. Microbiol. 
https://doi.org/10.1016/j.resmic.2017.09.004 (2017).

	28.	 Bohn, C. & Bouloc, P. The Escherichia coli cmlA gene encodes the multidrug 
efflux pump Cmr/MdfA and is responsible for isopropyl-β-d-
thiogalactopyranoside exclusion and spectinomycin sensitivity. J. Bacteriol. 180, 
6072–6075 (1998).

	29.	 Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 
(2011).

	30.	 Wildenhain, J. et al. Prediction of synergism from chemical–genetic interactions 
by machine learning. Cell Syst. 1, 383–395 (2015).

	31.	 Chandrasekaran, S. et al. Chemogenomics and orthology-based design of 
antibiotic combination therapies. Mol. Syst. Biol. 12, 872 (2016).

	32.	 Lehár, J. et al. Synergistic drug combinations tend to improve therapeutically 
relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

Acknowledgements We thank P. Beltrao (EBI) and T. Bollenbach (University 
of Cologne) for providing feedback on the manuscript; K. M. Pos (Goethe 
University) for the anti-AcrA antibody; D. Helm and the EMBL Proteomics Core 
Facility for help with mass spectrometry experiments; the EMBL GBCS and the 
Centre for Statistical Analysis for advice on data analysis; S. Riedel-Christ for 
help with G. mellonella experiments; and the members of the Typas laboratory 
for discussions. This work was partially supported by EMBL internal funding, the 
Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation to A.Ty., 
the JPIAMR Combinatorials grant to F.B. (ANR) and A.Ty. (BMBF), and the DFG 
(FOR 2251) to S.G. A.M. and J.S. are supported by a fellowship from the EMBL 
Interdisciplinary Postdoc (EIPOD) program under Marie Curie Actions COFUND.

Reviewer information Nature thanks A. Koul, K. Lewis and the other anonymous 
reviewer(s) for their contribution to the peer review of this work.

Author contributions A.R.B. and A.Ty. conceived and designed the study. A.R.B., 
A.Te. and J.B. performed the screen; A.R.B., A.Te. and N.N. the validation screen; 
and A.R.B., M.B., A.M., J.S., S.B., M.Z. and J.Z.B. the mechanistic follow-up work. 
S.G. characterized the clinical isolates. A.R.B., A.Te. and S.F. performed the 
clinical isolate checkerboards, and E.H. and S.G. performed the G. mellonella 
infection experiments. A.R.B. analysed all data. B.P., F.B., S.G. and A.Ty. 
supervised different parts of this study; B.E., M.M.S. and P.B. provided advice. 
A.R.B. and A.Ty. wrote the paper with input from M.M.S., P.B. and S.G. All authors 
approved the final version.

Competing interests EMBL has filed a patent application on using drug 
combinations identified in this study for prevention and/or treatment of 
infections and antibacterial-induced dysfunctions (European patent application 
number EP18169989.3). A.B., S.G. and A.Ty. are listed as inventors.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0278-9.
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-018-0278-9.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to A.Ty.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

1 2  J U L Y  2 0 1 8  |  V O L  5 5 9  |  N A T U RE   |  2 6 3
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

https://doi.org/10.1038/s41586-018-0278-9
https://doi.org/10.1038/s41586-018-0278-9
http://www.un.org/pga/71/2016/09/21/press-release-hl-meeting-on-antimicrobial-resistance/
http://www.un.org/pga/71/2016/09/21/press-release-hl-meeting-on-antimicrobial-resistance/
https://doi.org/10.1016/j.resmic.2017.09.004
https://doi.org/10.1038/s41586-018-0278-9
https://doi.org/10.1038/s41586-018-0278-9
https://doi.org/10.1038/s41586-018-0278-9
https://doi.org/10.1038/s41586-018-0278-9
http://www.nature.com/reprints
http://www.nature.com/reprints


LetterRESEARCH

Methods
No statistical methods were used to predetermine sample size.
Strains, plasmids and drugs. For each of the three Gram-negative species pro-
filed in this study, we used two common sequenced laboratory strains: E. coli 
K-12 BW25113 and O8 IAI1 (hereafter IAI1), S. Typhimurium LT2 and 14028s, 
and P. aeruginosa PAO1 and PA14. To validate selected synergies, we profiled 6 
MDR clinical Enterobacteriaceae isolates recovered from specimens from human 
patients: E. coli 124, 1027 and 1334, and K. pneumoniae 718, 929 and 980 (see 
Supplementary Table 4 for details of antibiotic resistance determinants). For 
follow-up experiments, we used two closely related E. coli K-12 model strains, 
BW25113 and MG1655.

All mutants used in this study were made using the E. coli Keio knockout col-
lection26, after confirming with PCR and retransducing the mutation to wild-type 
BW25113 with the P1 phage (Supplementary Table 5). The kanamycin resistance 
cassette was excised when necessary using the plasmid pCP2033. The plasmid used 
for mdfA overexpression was obtained from the mobile E. coli ORF library34.

Drugs used in this study were purchased from Sigma Aldrich, except for met-
formin hydrochloride (TCI Chemicals), clindamycin and bleomycin (Applichem), 
CHIR-090 (MedChemtronica) and vanillin (Roth). Stocks were prepared according 
to the supplier’s recommendations (preferably dissolved in water).
Minimal inhibitory concentration calculation. We defined minimal inhibitory 
concentration (MIC) as the lowest concentration required to inhibit growth of a 
microorganism after 8 h of incubation in lysogeny broth (LB) at 37 °C with shaking 
(384-well plates, starting with an optical density at 595 nm (OD595 nm) of 0.01). 
MICs of all drugs were computed using a logistic fit of growth (OD595 nm for 8 h) 
over twofold serial dilutions of the antibiotic concentrations for all strains used for 
the high-throughput screening and follow-up experiments.
High-throughput screening of pairwise drug interactions. For all drug combi-
nation experiments, drugs were diluted in LB to the appropriate working concen-
trations in transparent 384-well plates (Greiner BioOne GmbH), with each well 
containing 30 μl in total. After the addition of drugs, cells were inoculated at initial 
OD595 nm of about 0.01 from an overnight culture. The same inoculum was used 
for all strains. All liquid handling (drug addition and cell mixing) was done with a 
Biomek FX liquid handler (Beckman Coulter). Plates were sealed with breathable 
membranes (Breathe-Easy) and incubated at 37 °C in a humidity-saturated incu-
bator (Cytomat 2, Thermo Scientific) with continuous shaking and without lids to 
avoid condensation. OD595 nm was measured every 40 min for 12 h in a Filtermax 
F5 multimode plate reader (Molecular Devices).

A flowchart of the experimental and analytical pipeline is shown in Extended 
Data Fig. 2a. Data analysis was implemented with R and networks were created 
with Cytoscape35.
Experimental pipeline. The drug–drug interaction screen was performed using 
4 × 4 checkerboards. Sixty-two drugs were arrayed in 384-well plates with the 
different concentrations in duplicates (array drugs). Each plate contained 12 ran-
domly distributed wells without arrayed drug: 9 wells containing only the query 
drug, and 3 wells without any drug. One query drug at a single concentration 
was added to all wells of the 384-well plate, except for the 3 control wells. All 
drugs were queried once—or occasionally twice—per concentration. We used 78 
drugs as query in E. coli and S. Typhimurium, and 76 in P. aeruginosa. In total, 
79 query drugs were screened, out of which 75 were common to all three spe-
cies (Supplementary Table 1). The 62 array drugs were a subset of the 79 query 
drugs. The same drug concentrations were used in both query and array drugs 
(Supplementary Table 1). Three drug concentrations (twofold dilution series) were 
selected based on the MIC curves, tailored to the strain and drug. We targeted for 
nearly full, moderate and mild or no growth inhibition, which on average corre-
sponded to 50–100%, 25–50% and 0–25% of the MIC, respectively. The highest 
drug concentration and the lowest fitness obtained per single drug are listed in 
Supplementary Table 1. For drugs that do not inhibit growth on their own, we 
selected concentrations according to sensitivity of other strains or species, or to 
their use in clinics or for research. E. coli and S. Typhimurium exhibited largely sim-
ilar single-drug dose responses within species, thus the same drug concentrations 
were used for both strains of each species. For P. aeruginosa, MICs often differed 
by several fold and drug concentrations were therefore adjusted between the two 
strains (Supplementary Table 1).
Growth curve analysis. The Gompertz model was fitted to all growth curves 
(when growth was observed) by using the R package grofit version 1.1.1-1 for 
noise reduction. Quality of fit was assessed by Pearson correlation (r), which was 
>0.95 for approximately 95% of all growth curves. r < 0.95 was indicative of either 
non-sigmoidal-shaped growth curves—typical of some drugs such as fosfomycin—
or noisy data. Noisy data were removed from further analysis. Plate effects were 
corrected by fitting a polynomial to the median growth of each row and column. 
The background signal from LB was removed by subtracting the median curve of 
the non-growing wells from the same plate. These were wells in which either the 
single- or the double-drug treatments fully inhibited growth; each plate contained 

at least three such wells. Data were processed per strain and per batch to correct 
for systematic effects.
Fitness estimation. We used a single time-point OD595 nm measurement (growth) for 
assessing fitness. This corresponded to the transition to stationary phase for cells 
grown without perturbation, as this enables us to capture the effect of drugs on lag-
phase, growth rate or maximum growth. Thus, we used OD595 nm at 8 h for E. coli 
BW25113 and both P. aeruginosa strains, at 7 h for the fast-growing E. coli IAI1 and 
S. Typhimurium 14028s, and at 9 h for the slower-growing S. Typhimurium LT2.

We used the Bliss model to assess interactions as it can accommodate drugs that 
have no effect alone, but which potentiate the activity of others (adjuvants)36. This 
feature is especially relevant here, because we probed intrinsically antibiotic-resistant  
microbes (P. aeruginosa and MDR clinical isolates), and human-targeted drugs or 
food additives that lack antibacterial activity. According to the Bliss independence 
model37 and assuming that drug–drug interactions are rare, for most drug com-
binations the fitness of arrayed drugs (fa) equals the fitness in the presence of both 
drugs (faq) divided by the fitness of the query drug alone (fq):

ε = − ×f f f (1)aq a q
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in which ε denotes the Bliss score, f denotes fitness, g denotes growth, subscript a 
denotes that the variable pertains to an arrayed drug, subscript q denotes that the 
variable pertains to a query drug and 0 denotes no drug. The fitness in the presence 
of both drugs (faq) was calculated by dividing the growth in the presence of both 
drugs (gaq) by the median of the growth of drug-free wells from the same plate (g0). 
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ing wells across each batch by the median of the growth of drug-free wells of each 
plate (g0). This metric is more robust to experimental errors than using only the 
9 wells containing the query drug alone. Nevertheless, both estimators for fq yield 
very similar results (Pearson correlation, r = 0.98). Consistent with equation (2),  
the fitness of arrayed drugs (fa) was estimated by the slope of the line of best fit 
between gaq and gq across all plates (query drugs) within a batch.
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for a given array drug m (am) across n query drugs (qn) within a batch (Extended 
Data Fig. 2b).

For array drugs with a Pearson correlation (r) between gaq and gq below 0.7, fa 
was estimated using only the query drugs that corresponded to the interquartile 
range of gaq/gq (minimum n = 18 query drugs, Extended Data Fig. 2b). Wells for 
which r was still below 0.7, even after restricting the number of plates were removed 
from further analysis owing to high noise (~2%). For wells exhibiting no growth 
for >75% of the plates within a batch, fa was deemed to be zero.
Bliss independence interaction scores. Bliss scores (ε) were calculated for each 
well, as described in equation (1). At least 3 × 3 drug concentrations × 2 (dupli-
cates) × 2 (query and array drugs) = 36, or 18 (drugs used only as query) scores 
were obtained per drug pair. Drug–drug interactions were inferred based on the 
Bliss independence model in three steps: (i) strong interactions based on complete 
ε distributions, (ii) strong interactions based on ε distributions restricted to rele-
vant drug concentrations and (iii) weak and conserved interactions within species. 
Cross-species comparisons, drug–drug interaction networks and monochromaticity 
analyses shown in this study include all drug–drug interactions.
Strong drug–drug interactions based on complete ε distributions. Strong drug–drug 
interactions were statistically assigned using a re-sampling approach. Ten thou-
sand repetitions of a two-sided Wilcoxon rank-sum test (per drug pair and per 
strain) were performed, to sample a representative set of ε for a given strain. For 
every repetition, the ε distribution of a given combination was compared to an ε 
distribution of the same size randomly sampled from the complete ε set for a given 
strain. P values were calculated as follows:
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in which N is the total number of repetitions (10,000) and Pn is the P value of the 
Wilcoxon rank-sum test obtained for the nth repetition. Strong drug–drug inter-
actions were assigned to drug pairs that simultaneously satisfied two criteria: (i) 
first or third quartile of the ε distribution below −0.1 or higher than 0.1 for syn-
ergies or antagonisms, respectively, and (ii) P < 0.05 (after correcting for multiple 
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testing, Benjamini–Hochberg). Only one-sided drug interactions were taken into 
account, thus the very few interactions that satisfied the criteria concurrently for 
synergy and antagonism were re-assigned as neutral (only n = 1 for ε� > |0.1|). The 
highest absolute ε value between the first and third quartiles was used as single 
interaction score (ε�) to reflect the strength of the drug–drug interactions.
Strong drug–drug interactions based on ε distributions restricted to relevant drug 
concentrations. Because drug interactions are dependent on concentration, the 
same statistical procedure was repeated after restricting the drug concentration 
ratios to those relevant for either synergy or antagonism. This constraint was added 
by excluding ε values that corresponded to concentration ratios in which the 
expected fitness (product of the fitness on single drugs, fx × fy) was below 0.2 for 
synergy and above 0.8 for antagonism, which represent blind spots for the given 
interaction type (Extended Data Fig. 3d). These interactions are described by their 
P value and ε� obtained with restricted drug concentration ratios. Although most 
interactions were detected based on both full and restricted ε distributions, each 
of the different methods uniquely identified interactions (Extended Data Fig. 4c). 
With the expected fitness cutoff of 0.2, we identified the highest number of strong 
interactions (1,950) with 90 uniquely identified interactions from full ε distribu-
tions and 379 from restricted ε distributions (see also ‘Sensitivity analysis’).

Restricting ε values based on expected fitness also enables defining whether 
synergy or antagonism is detectable for any given drug pair. No significant P value 
was found for drug pairs with less than five ε scores within the relevant expected 
fitness space, as their sample size is insufficient. Synergy and antagonism could not 
be detected for 1% and 25% of all drug combinations, respectively.
Weak and conserved drug–drug interactions within species. For drug pairs with a 
strong drug–drug interaction in only one of the two strains per species, the criteria 
for assigning interactions for the second strain was relaxed to |ε�second strain| > 0.06, 
provided that the interaction sign was the same. Interactions assigned with this 
approach are termed weak and conserved.
Loewe additivity interaction scores. For combinations between β-lactams for 
which high-resolution 8 × 8 checkerboards with sufficient growth inhibition were 
available in the validation dataset, Loewe additivity38 was used to confirm the inter-
actions. Drug–drug interactions were inferred by the shape of the isoboles (lines 
of equal growth) in two-dimensional drug-concentration plots. Unless stated oth-
erwise, all isoboles correspond to 50% growth inhibition (IC50) and were obtained 
by fitting a logistic model, with lines representing isoboles and dots representing 
IC50 interpolated concentrations. To interpolate IC50 concentrations (or other per-
centages of growth inhibition), a logistic model was used to fit the growth for each 
concentration of the first drug across different concentrations of the second drug. 
The null hypothesis of this model is represented by the additivity line: a linear 
isobole connecting equal individual growth inhibition values for the two drugs.
Sensitivity analysis. We confirmed the adequacy of the main statistical parameters 
used to assign interactions by performing a sensitivity analysis. Several expected 
fitness (fx × fy) cutoffs were tested, while keeping the other parameters constant 
(Extended Data Fig. 4c). The added value of restricting the ε distributions to rel-
evant drug concentrations (based on expected fitness) was strongly supported by 
the proportion of strong drug–drug interactions that was found exclusively using 
this criterion (~19% with our selected cutoff). The selected cutoff (0.2; disregard-
ing wells with fx × fy < 0.2 for synergies and with fx × fy > 0.8 for antagonisms) 
resulted in the largest number of total interactions assigned, and the highest pre-
cision (91%) and recall (74%) after benchmarking against the validation dataset 
(Extended Data Fig. 4c).

The suitability of the thresholds applied to define strong (|ε�| > 0.1) and weak 
(|ε�| > 0.06) interactions was assessed by their effect on the true- and false-positive 
rates (Extended Data Fig. 4d). A threshold of | ε�| > 0.1 is beneficial, as it imposes 
a minimum strength to assign interactions. A value of 0.1 corresponds to ~3 times 
the median of the first and third quartiles across all ε distributions (Extended Data 
Fig. 2c). Lowering this threshold results in lower true-positive rate, because several 
drug pairs are reassigned as neutral owing to ambiguity in calling interactions (we 
do not allow interactions to be both a synergy and an antagonism). Increasing this 
threshold lowers the true-positive rate, because only very strong interactions will 
be assigned (Extended Data Fig. 4d). Drug–drug interactions are highly conserved 
within species, which is evident from the high correlation for ε� that is observed  
for all species (Fig. 2a, Extended Data Fig. 9a, b). This motivated us to relax the  
interaction-strength threshold for the second strain if the interaction score |ε�| was 
above 0.1 in the first strain, dubbing these interactions weak and conserved. By 
including weak and conserved interactions in our analysis, the true-positive rate 
was increased by 15%. Adding a threshold for weak interactions of |ε�| > 0.06 (about 
two times the median of the first and third quartiles of all ε� distributions) is key 
for maintaining a low false-positive rate (Extended Data Fig. 4d).
Benchmarking and clinical isolates checkerboard assays. Eight-by-eight check-
erboard assays were performed to validate our screen (242 drug combinations in 
the benchmarking dataset, Supplementary Table 3), and to test 7 selected synergies 
against 6 MDR clinical isolates (Fig. 4, Extended Data Fig. 11). As in the screen, 

growth was assessed on the basis of OD595 nm at the transition to stationary phase 
for the no-drug controls. The time points used in the screen were used again for 
the validation set, and 8 h was used for all E. coli and K. pneumoniae MDR isolates. 
Fitness was calculated by dividing OD595 nm after single- or double-drug treatment 
by no-drug treatment for each individual checkerboard. Bliss scores (ε) were cal-
culated as before, resulting in 49 ε values per drug pair. Drug combinations were 
analysed on the basis of ε distributions, after removing wells in which one of the 
drugs alone—and its subsequent combinations with the second drug—completely 
inhibited growth. Antagonism was assigned when the median of the ε distribu-
tion was above 0.1, or the third quartile was above 0.15. Similarly, synergies were 
assigned when the median of the ε distribution was below −0.1 or the first quartile 
was below −0.15. All experiments were done in biological duplicates, and interac-
tions were considered effective when duplicates were consistent (as was the case 
for the vast majority of interactions).
Assessing conservation of drug–drug interactions. Conservation of drug–drug 
interactions between strains of the same species was assessed by Pearson correla-
tion of the interactions scores, ε�. For potentially non-conserved drug–drug inter-
actions, the expected fitness distributions of the two strains were taken into 
account. When the two distributions were significantly different according to a 
two-sided Wilcoxon rank-sum test (P < 0.05 after Benjamini–Hochberg correction 
for multiple testing), the drug pairs were deemed as non-comparable between the 
two strains.

To assess the cross-species conservation of drug–drug interactions, we took 
into account only drug pairs that were probed in all three species. Drug–drug 
interactions were defined as being detected within a species when detected in at 
least one of the two strains and when no change of interaction sign was observed 
for the other strain. Interactions were then compared across the three species. 
Cases in which an interaction between drugs changed from synergy to antago-
nism or vice versa across species (conflicting interactions; ~7% of all interactions, 
Supplementary Table 2) were excluded from the comparative ‘across-species’ Venn 
diagram (Fig. 2c). In current analysis, a given drug–drug interaction may be con-
served across species but not conserved within the species.

Conservation at the single-drug level was defined on the basis of shared resist-
ance and sensitivity (Supplementary Table 1). A strain was considered sensitive 
to a given drug if one of the drug concentrations resulted in at least 30% growth 
inhibition. Consistent with conservation of drug–drug interactions across species, 
single-drug responses are conserved across species when at least one strain of both 
species has the same sign (sensitive or resistant).
Monochromaticity index. The monochromaticity index (MI) between drug pairs 
has previously been defined39 as: if rij > b, then

=
−

−

r b
b

MI
( )
1ij
ij

if rij = b, then MIij = 0
and if rij < b, then

=
−r b
b

MI
( )

ij
ij

in which rij denotes the ratio of antagonism to all interactions between drugs from 
classes i and j, and b denotes the ratio of antagonism to all interactions. We set a 
minimum of two interactions between drugs from classes i and j to calculate the 
monochromaticity index. The monochromaticity index equals 1 if only antago-
nisms occur between drugs from classes i and j, and –1 if only synergies occur 
between the classes. The monochromaticity index equals zero if the fraction of 
antagonism between the two classes reflects the background ratio b. Both strong 
and weak drug interactions were taken into account across all species, to obtain 
one monochromaticity index per drug category pair.
Assessment of drug combinations in the G. mellonella infection model. Larvae 
of the greater wax moth (G. mellonella) at their final instar larval stage were used 
as an in vivo model to assess efficacy of drug combinations. Larvae were pur-
chased from UK Waxworms and TZ-Terraristik. Stock solutions of vanillin (in 
20% DMSO), spectinomycin, colistin and clarithromycin (in 20% DMSO and 
0.01% glacial acetic acid) were freshly prepared and diluted in PBS to the required 
concentration. Drugs and bacterial suspensions were administered by injection of 
10-μl aliquots into the haemocoel through the final pair of prolegs (bacteria into 
the left proleg, and antibiotics into the right), using Hamilton precision syringes. 
Controls included both uninfected larvae, and infected and uninfected larvae that 
were injected with the solvent used for the drugs. Drug toxicity was pre-evaluated 
by injection of serial dilutions of either single drugs or drug combinations, and 
drugs were used at amounts that caused little or no toxicity. To identify an optimal 
inoculum, time–kill curves were generated by inoculating larvae with 10 μl of 
serially diluted bacterial suspensions (1 × 102–1 × 107 CFUs). For final experi-
ments, groups of ten larvae were injected per strain–drug combination, placed into 
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Petri dishes and incubated at 37 °C. Larvae were infected with a sublethal dose of 
1 × 106 and 1 × 104 CFUs for E. coli and K. pneumoniae isolates, respectively, and 
subsequently injected with indicated drugs, 1-h after infection. Survival of the 
larvae was monitored at the indicated time points by two observers independently. 
Each strain–drug combination was evaluated in four independent experiments.
Cell viability assays and intracellular antibiotic concentration. Ciprofloxacin. 
Overnight cultures of E. coli BW25113 were diluted 1:1,000 into 50 ml LB and 
grown at 37 °C to OD595 nm ~0.5. Paraquat (50 μg/ml), vanillin (150 μg/ml),  
benzalkonium (5 μg/ml), caffeine (200 μg/ml), doxycycline (0.5 μg/ml), rifampicin 
(5 μg/ml), trimethoprim (5 μg/ml) or curcumin (100 μg/ml) were added to the 
cultures and incubated at 37 °C for 30 min. Ciprofloxacin (2.5 μg/ml final con-
centration) was then added to the cultures and cultures were incubated at 37 °C 
for 1 h in the presence of both drugs. Cell viability was determined by counting 
CFUs after plating washed cell pellets onto LB agar Petri dishes and incubating 
for 16 h. Intracellular ciprofloxacin was quantified using liquid chromatography 
coupled to tandem mass spectrometry (LC–MS/MS), as previously described40,41. 
Non-washed cell pellets42 were directly frozen and lysed with 350 μl of acetonitrile, 
followed by three freeze–thaw cycles (thawing was performed in an ultrasonic bath 
for 5 min). Cell debris was pelleted at 16,000g and the supernatant was filtered 
through a 0.22-μm syringe filter before injection. Chromatographic separation was 
performed on a Waters BEH C18 column (2.1 × 50 mm; 1.7 μm) at 40 °C, with a 
2-min gradient with flow rate of 0.5 ml/min: (i) 0–0.5 min, 1% mobile phase B; (ii) 
0.5–1.2 min, linear gradient from 1 to 95% mobile phase B; (iii) 1.2–1.6 min, 95% 
mobile phase B; and (iv) 1.6–1.7 min, return to initial conditions. Mobile phase A 
consisted of 0.1% formic acid in water, and mobile phase B consisted of 0.1% formic 
acid in acetonitrile. Samples were kept at 4 °C until analysis. Sample injection vol-
ume was 5 μl. Detection of ciprofloxacin was performed on a Waters Q-Tof premier 
instrument with electrospray ionization in positive mode. The transition 332 > 314 
was monitored, with cone voltage set at 8 and collision energy set at 20. Intracellular 
ciprofloxacin was normalized to CFUs at the time of ciprofloxacin addition.
Gentamicin. Intracellular gentamicin was quantified by measuring [3H]-gentamicin 
(1 mCi/ml; Hartmann Analytic), as previously described7. Overnight cultures of 
E. coli MG1655 (the parental strain of BW25113) were diluted 1:100 into 5 ml LB 
and grown to OD595 nm ~ 0.1. [3H]-Gentamicin was diluted in cold gentamicin 
to obtain a 5 mg/ml (0.1 mCi/ml) stock solution, which was then added to the 
culture at a final concentration of 5 μg/ml (0.1 μCi/ml) together with the second 
drug: berberine (200 μg/ml), erythromycin (15 μg/ml), metformin (13,000 μg/ml),  
procaine (6,000 μg/ml), loperamide (400 μg/ml), benzalkonium (5 μg/ml), 
rifampicin (5 μg/ml) or clindamycin (200 μg/ml). Cultures were then incubated at 
37 °C on a rotary shaker. At 0, 0.5, 1, 1.5 and 2-h time-points, 500-μl aliquots were 
removed and applied to a 0.45-μm-pore-size HAWP membrane filter (Millipore) 
pretreated with 1 ml of unlabelled gentamicin (250 μg/ml). Filters were washed 
with 10 ml of 1.5% NaCl, placed into counting vials and dried for 30 min at 52 °C. 
Subsequently, 8 ml of liquid scintillation was then added to the dried filters and 
vials were incubated overnight at room temperature before being counted for  
5 min. Gentamicin uptake efficiency is expressed as total accumulation of  
gentamicin (in ng) per 108 cells. Cell viability was determined by CFUs.
Spectinomycin. Intracellular spectinomycin was quantified by measuring 
[3H]-spectinomycin (1 μCi/mg; Hartmann Analytic). Overnight cultures of E. coli 
BW25113 were diluted 1:1,000 into 1 ml LB with and without vanillin (150 μg/ml) 
and grown to OD595 nm ~ 0.5. Then, 50 μg/ml [3H]-spectinomycin:spectinomycin 
1:100 was added and the cultures were incubated for 1 h. Cultures were pelleted, 
washed twice with PBS with 50 μg/ml non-labelled spectinomycin, re-suspended 
in 1% SDS and incubated for 20 min at 85 °C. The lysate was mixed with 8 ml liquid 
scintillation (Perkin Elmer ULTIMA Gold) and counted for 1 min using a Perkin 
Elmer Tri-Carb 2800TR. Measured radioactivity was normalized to cell number 
as measured by OD595 nm.
RNA isolation, cDNA preparation and quantitative RT–PCR. Overnight cultures 
of E. coli BW25113 and the marR deletion mutant (ΔmarR) were diluted 1:2,000 
into 20 ml LB and grown at 37 °C to OD595 nm ~ 0.2. Aspirin or vanillin were added 
to the cultures to a final concentration of 500 and 150 μg/ml, respectively (DMSO 
was added in the control), followed by a 30-min incubation period at 37 °C with 
agitation. Cells were collected and RNA was extracted using the RNeasy Protect 
Bacteria Mini Kit (Qiagen). cDNA was prepared for RT–qPCR using SuperScript 
III Reverse Transcriptase (Thermo Fisher Scientific). Levels of marA expression 
were estimated by RT–qPCR using SYBR Green PCR master mix following the 
manufacturer’s instructions (Thermo Fisher Scientific). Primer sequences for marA 
and recA were as previously described29. All experiments were conducted in at 
least three biological replicates, and relative expression levels were estimated as 
previously described43, using recA expression as reference.
Immunoblot analysis for protein quantification. Overnight cultures of E. coli 
BW25113 and the marA deletion mutant (ΔmarA) were diluted 1:1,000 into 50 ml 
LB containing 500 μg/ml aspirin, 150 μg/ml vanillin or DMSO (solvent control), 
followed by growth with agitation at 37 °C to OD595 nm ~ 0.5. Cells were washed 

in PBS containing corresponding drugs or DMSO, then resuspended to match 
OD595 nm = 1. Cell pellets were resuspended in Laemmli buffer and heated to 95 °C 
for 3 min followed by immunoblot analysis with anti-AcrA polyclonal antiserum 
(gift from K. M. Pos) at 1:200,000 dilution. Primary antiserum was detected using 
anti-rabbit HRP (A0545 Sigma) at 1:5,000 dilution. Cell loading was controlled 
with the anti-RecA antibody (rabbit, ab63797 Abcam). For densitometry analysis, 
the pixel intensity of AcrA bands from cell-density-normalized samples was quan-
tified using ImageJ. At least four different biological replicates were blotted. Each 
biological replicate was run and blotted twice (technical replicates). Relative AcrA 
levels per biological replicate correspond to the average intensities of the technical 
replicates. All blots can be found in Supplementary Fig. 1.
Screening the E. coli Keio knockout collection for identifying the mode of 
action of drug interactions. The E. coli Keio knockout collection26 (two independ-
ent clones per mutant) was arrayed in 1,536-format on LB agar plates using a Rotor 
HDA (Singer Instruments) as previously described29. The growth of each mutant 
was estimated by colony opacity44 after a 13-h incubation at 37 °C in the absence 
and presence of vanillin (200 μg/ml), spectinomycin (4 μg/ml) and their combi-
nation. All plates were imaged under controlled lighting conditions (spImager,  
S&P Robotics) using an 18-megapixel Canon Rebel T3i (Canon). Experiments 
were done in biological triplicates. The fitness of each mutant was calculated by 
dividing the growth in condition (vanillin, spectinomycin or both) by the growth 
in LB, after correcting for outer-frame plate effects44. Bliss scores were calculated 
according to equation (1) per replicate and then averaged (Supplementary Table 7).
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. The code used for data analysis is available from https://github.
com/AnaRitaBrochado/DrugInteractionsPipeline.
Data availability. All data supporting the findings of this study are included in 
this paper as Supplementary Information.
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Extended Data Fig. 1 | High-throughput profiling of pairwise drug 
combinations in Gram-negative bacteria. a, Drug and species selection 
for screen. The 79 drugs used in the combinatorial screen are grouped 
according to categories (Supplementary Table 1). Antibacterial agents 
are grouped by target, with the exception of antibiotic classes for 
which enough representatives were screened (>2) to form a separate 
category (β-lactams, macrolides, tetracyclines, fluoroquinolones and 
aminoglycosides). Classification of human-targeted drugs and food 
additives is not further refined, because for most of these the mode 
of action is unclear. A subset of 62 arrayed drugs was profiled against 

79 drugs in all 6 strains (75 drugs were common to all strains and are 
depicted in the heat map). Strains are colour-coded according to species: 
yellow, E. coli; red, S. Typhimurium; green, P. aeruginosa. b, Quantification 
of drug–drug interactions. Growth was profiled by measuring optical 
density (OD595 nm) over time in the presence of no, one and both drugs. 
x and y correspond to particular concentrations of drugs X and Y. 
Interactions were defined according to Bliss independence. Significantly 
lower or higher fitness than the expectation (fx × fy) indicates synergy 
or antagonism, respectively. Synergy and antagonism were assessed by 
growth in 4 × 4 checkerboards (Methods).
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gaq (growth with double drug) and gq (growth with query drug alone, 
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batch, corresponds to a proxy of the fitness of the arrayed drug alone, fa 
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spectinomycin, is shown as an example of arrayed drugs with several 
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Extended Data Fig. 3 | Data quality control. a, High replicate correlation 
for single- and double-drug treatments. Transparent box plots contain 
Pearson correlation coefficients between plates of the same batch that 
contain only arrayed drugs (for which LB was used instead of the second 
drug). n represents the total number of correlations. Full box plots contain 
Pearson correlation coefficients between double-drug replicate wells 
within the same plate, across all plates. n represents the number of wells 
used for correlation, nmax = (62 drugs + 1 LB) × 3 concentrations = 189. 
Only wells with median growth above 0.1 were taken into account for 
this correlation analysis (see b). For all box plots the centre line, limits, 
whiskers and points correspond to the median, upper and lower quartiles, 
1.5 × interquartile range and outliers, respectively. b, Wells with lower 
median growth have lower replicate correlation. The double-drug 
correlation coefficients used to generate the box plot from a are plotted 
as a function of the median growth of all wells across all plates for E. coli 
IAI1. Wells with overall lower growth (due to the strong inhibition of 
the arrayed drug) are less reproducible owing to a combination of the 
lower spread of growth values and the sigmoidal nature of the drug–dose 
response curves. c, Drug–drug interactions are rare. Density distributions 

of all Bliss scores (ε) obtained per strain. d, The ability to detect synergies 
and antagonisms depends on the effects of single-drug treatments. Bliss 
scores (ε) are plotted as function of expected fitness (fx × fy) for all drug 
concentration ratios for all combinations in E. coli BW25113 (as an 
example). Box plots summarizing both variables are shown besides the 
axes (n = 99,907 Bliss scores; centre line, limits, whiskers and points 
correspond to the median, upper and lower quartiles, 1.5 × interquartile 
range and outliers, respectively). Blind spots for detecting antagonism and 
synergy are indicated; both of these are based on the expected fitness (see 
also Extended Data Fig. 4c, d), and are therefore dependent on the growth 
of the strain with the single drugs. The number of drug combinations 
falling in the blind spot for antagonism is larger, owing to the number of 
drugs used in the screen that do not inhibit E. coli on their own. e, Scatter 
plot of the number of interactions per drug versus the minimum fitness of 
the drug alone (as obtained in the screen, Supplementary Table 1). Strong 
and weak interactions are represented. n denotes the total number of 
interactions and r is the Pearson correlation coefficient. Strains are colour-
coded as above. f, Density distributions of the number of interactions per 
drug for all strains.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterRESEARCH

EC B
W

EC iA
i1

PA
O1

PA
14

ST
 LT

2

ST14
02

8s
0

10

20

30

40

50

60

nr
 b

en
ch

m
ar

ke
d

co
m

bi
na

tio
ns

ba Screen

n=17050
combinations

BenchmarkingA
N

S

8%

7% n=242 combinations

c

d

n=242 combinations

Recall=0.74
Precision=0.91

FN

FP

TN

TP

a + b + c +
weak interaction cutoff 0.06

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positve rate

Tr
ue

 p
os

iti
ve

 ra
te

EC BW EC iAi1 ST LT2 ST14028s

Amoxicillin (µg/ml)

C
ef

ot
ax

im
e 

(µ
g/

m
l)

0.0 0.5 1.0 1.5 2.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.0 0.5 1.0 1.5 2.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.0 0.1 0.2 0.3 0.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.4 0.0 0.1 0.2 0.3 0.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.4

Piperacillin (µg/ml)

A
m

ox
ic

ill
in

 (µ
g/

m
l)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0 1.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
5

0.
4

2.52.0 0.0 0.5 1.0 1.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
5

0.
4

2.52.0

Penicillin G (µg/ml)
0 10 20 30 50

0
10

20
30

40

40 0 10 20 30 50

0
10

20
30

40

40 0.0 0.5 1.0 1.5 2.0

0
10

20
30

40

0.0 0.5 1.0 1.5 2.0

0
10

20
30

40

C
ef

su
lo

di
n 

(µ
g/

m
l)

0

0.4

0.8

1

0.2

0.6

fitness

Interactions found with:
    Both criteria
    only all expected fitness wells
    only relevant expected fitness wells

0 0.1 0.2 0.3 0.4 0.5
Expected fitness cutoff

nr
 in

te
ra

ct
io

ns
0

10
00

20
00

Recall (%)
Precision (%)

70 72 74 73 73 72
91 90 90 9091 89

n=242 combinations

p−value < 0.05 (a)
a + 1-sided interactions (b)
a + b + strong interaction threshold 0.1 (c)
a + b + strong interaction threshold 0.2
a + b + c + weak interaction cutoff 0
a + b + c + weak interaction cutoff 0.06

Legend

e

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Benchmarking and sensitivity analysis. a, The 
validation set is enriched in synergies and antagonisms to better assess true 
and false positives. Comparison of percentages of synergy and antagonism 
between the screen and validation set. Both strong and weak interactions 
(Fig. 2b) are accounted for in the screen tally. b, Number of benchmarked 
interactions per strain. c, d, Sensitivity analysis of the statistical thresholds 
for calling interactions. c, The total number of interactions as a function of 
the expected fitness (fx × fy) cutoff was used to restrict the ε distributions 
to relevant drug concentrations. Strong drug–drug interactions are 
classified according to the ε distribution in which they were significant: 
complete distribution only (that is, all expected fitness wells), relevant 
wells only (that is, all wells with fx × fy > cutoff for synergies and all wells 
with fx × fy < (1 − cutoff) for antagonisms), or in both. Weak drug–drug 
interactions are independently assigned and represented in white. We 
selected an expected fitness cutoff of 0.2, as this cutoff resulted in the 
largest number of total interactions detected, with the highest precision 
and recall (91 and 74%, respectively) after benchmarking against the 
validation dataset. d, Receiver operating characteristic curve for the screen 
across different P value thresholds (10,000 repetitions of a two-sided 
permutation test of Wilcoxon rank-sum test after correction for multiple 

testing, see Methods) as a unique criterion for assigning interactions. The 
selected P value (0.05) for the screen threshold is indicated by a grey cross. 
Sensitivity to additional parameters for calling hits is shown: allowing 
interactions to be either antagonisms or synergies but not both (one-
sided); as well as strong and weak interaction thresholds. True- and false-
positive rates were estimated based on the validation dataset. Precision and 
recall for the final and best-performing set of parameters are shown:  
one-sided interactions, P < 0.05, fx × fy cutoff = 0.2 and |ε| > 0.1 for 
strong interactions, |ε| > 0.06 for weak interactions. TP, true positive; TN, 
true negative; FP, false positive; FN, false negative. n indicates the total 
number of benchmarked drug combinations (Supplementary Table 3).  
e, Synergies between β-lactams according to the Loewe additivity 
interaction model. The results of 8 × 8 checkerboards for 3 combinations 
between β-lactams in 4 strains are shown. The grey line in each plot 
represents the null hypothesis in the Loewe additivity model and the 
black line corresponds to the IC50 isobole, which was estimated by fitting 
a logistic curve to the interpolated drug concentrations (coloured dots, 
Methods). Piperacillin did not reach 50% growth inhibition in E. coli, 
thus IC20 and IC40 isoboles were used for the amoxicillin + piperacillin 
combination in E. coli BW25113 and E. coli IAI1, respectively.
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Extended Data Fig. 5 | Benchmarking of non-comparable drug–drug 
interactions. a, The bar plot illustrates the division of benchmarked 
drug combinations according to their degree of conservation within 
species. The pie chart shows the proportion of false positives (FP), true 
positives (TP), false negatives (FN) and true negatives (TN) within non-
comparable drug–drug interactions. b, Combination of amoxicillin with 
cefotaxime in P. aeruginosa as an example of a non-comparable drug–
drug interaction. Top box, the results of the screen. Left, Bliss scores as 
function of expected fitness for both strains. Right, a density distribution 

of the Bliss scores. n denotes the total number of Bliss scores, Q1 and 
Q3 indicate the Bliss score for the first and third quartiles, respectively. 
Antagonism was detected only for PAO1 (Q3 > 0.1). PA14 was resistant 
to both drugs at concentrations screened (top left panel), rendering the 
detection of antagonism impossible. Bottom box, benchmarking results 
indicate that the interaction is antagonistic in both strains, albeit weaker in 
PA14 and visible mostly at higher concentrations. The colour intensity on 
checkerboard reflects fitness and black dots correspond to drug ratios in 
which the Bliss score is above 0.1.
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Extended Data Fig. 6 | Benchmarking of weak conserved drug–drug 
interactions. a, The bar plot illustrates the division of benchmarked 
drug combinations as in Extended Data Fig. 5a. The pie chart shows 
the proportion false positives and true positives within weak conserved 
interactions. b, Combination of doxycycline with amikacin in S. 
Typhimurium as an example of a weak conserved drug–drug interaction. 
Top box, the results of the screen. Left, Bliss scores as a function of 
expected fitness for both strains. Right, a density distribution of the Bliss 

scores. n denotes the total number of Bliss scores, Q1 and Q3 indicate 
the Bliss score for quartiles 1 and 3, respectively. A strong synergy was 
detected only for ST14028 (Q1 < −0.1), and a weak conserved synergy 
was assigned afterwards to ST LT2 (Q1 < −0.06). Bottom box, the 
benchmarking results confirm that the interaction is synergistic in both 
strains. The colour intensity on checkerboard reflects fitness and black 
dots correspond to drug ratios in which the Bliss score is below −0.1.
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Extended Data Fig. 7 | Salmonella and Pseudomonas drug–drug 
interaction networks. a, b, Drug category interaction networks. Nodes 
represent drug categories according to Extended Data Fig. 1a, and 
plotted as in Fig. 1b. Conserved interactions, including weak conserved 
interactions, are shown here. One of the most well-known and broadly 
used synergies is that of aminoglycosides and β-lactams45. Consistent 
with its use against P. aeruginosa in clinics, we detected multiple strong 
synergies between specific members of the two antibiotic classes in  
P. aeruginosa but fewer interactions in the other two species.  

c, d, Drug–drug interactions across cellular processes. Representation as 
in a, b but grouping drug categories targeting the same general cellular 
process. e, Quantification of synergy and antagonism in the networks 
from a, b and the corresponding χ2-test P value. As in E. coli (Fig. 1), 
antagonism occurs more frequently than synergy and almost exclusively 
between drugs belonging to different categories in S. Typhimurium and 
P. aeruginosa. In P. aeruginosa, there are very few interactions occurring 
between drugs of the same category (within the group).
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Extended Data Fig. 8 | Drug antagonisms are often due to a decrease 
in intracellular drug concentrations. a, Cartoon of possible modes 
of action for drug–drug interactions that function via modulation of 
the intracellular drug concentration. A given drug (antagonist, blue) 
inhibits the uptake or promotes the efflux of another drug (black), and 
thus decreases its intracellular concentration. b, Different antagonists 
(see Methods for concentrations) of gentamicin (red, 5 μg ml−1) and 
ciprofloxacin (yellow, 2.5 μg ml−1) identified in our screen for E. coli 
BW25113 also rescue the killing effect of the two bactericidal drugs in 
the same strain, or its parental MG1655 (top right and top left panels, 
respectively). With the exception of clindamycin (for gentamicin) 
and curcumin (for ciprofloxacin), all other antagonists decrease the 
intracellular concentration of their interacting drug (bottom panels). 
Gentamicin was detected by using radiolabelled compound, and 
ciprofloxacin with LC–MS/MS (Methods). The degree of rescue (top 
panels) in many cases follows the decrease in intracellular concentration 
(bottom panels), which implies that most of these interactions depend 
at least partially on modulating the intracellular concentration of the 
antagonized drug. c, Antagonisms are resolved in E. coli BW25113 mutants 
that lack key components that control the intracellular concentration of 
the antagonized drug. Aminoglycosides depend on proton motive force-
energized uptake, and thus on respiratory complexes7,46; ciprofloxacin 
is effluxed by AcrAB–TolC29,47. For gentamicin, most interactions 
are resolved when respiration is defected, even the interaction with 
clindamycin (which does not modulate intracellular gentamicin 
concentration, see b); this presumably occurs because the mode of 
action and import of aminoglycosides are linked by a positive feedback 

loop7,48. For ciprofloxacin, antagonisms with paraquat and caffeine are 
resolved in the ΔacrA mutant, which implies that both compounds induce 
the AcrAB–TolC pump (well-established for paraquat49). By contrast, 
interactions with curcumin, benzalkonium and doxycycline remain 
largely intact in the ΔacrA mutant. The first interaction is expected, as 
curcumin does not modulate intracellular ciprofloxacin concentration 
(see b). In the other two cases, other component(s) besides AcrAB–TolC 
may be responsible for the altered ciprofloxacin import and/or export; for 
example, ciprofloxacin uses OmpF to enter the cell50. Ciprofloxacin and 
gentamicin concentrations were adjusted in all strains according to MIC 
(70% and 100% MIC for ciprofloxacin and gentamicin, respectively; all 
drug concentrations are listed in Supplementary Table 6). Bliss  
interaction scores (ε) were calculated as in the screen. Bar plots and 
error bars in b, c represent the average and s.d., respectively, across n 
independent biological replicates. d, Gentamicin and ciprofloxacin 
antagonism networks for E. coli BW. Nodes represent drugs coloured 
according to targeted cellular process (as in Extended Data Fig. 1a). Full 
and dashed edges represent antagonistic drug–drug interactions for  
which intracellular antibiotic concentration was and was not measured,  
respectively. Drug interactions that result in decreased intracellular 
concentration of the antagonized drug are represented by black edges.  
e, Quantification of antagonistic drug–drug interactions from the 
networks in (d). The bars for fluoroquinolones and aminoglycosides 
account for an extrapolation of antagonistic interactions to all other 
members of the two classes, assuming that they behave in the same way as 
ciprofloxacin and gentamicin, respectively.
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Extended Data Fig. 9 | Drug–drug interactions are largely conserved 
within species and only partially driven by mode of action. a, b, Drug–
drug interactions are conserved in S. Typhimurium (a) and P. aeruginosa 
(b). Scatter plot of interaction scores in the two strains of each species; 
only strong interactions for at least one strain are shown. Colours and 
grouping as in Fig. 2a. r denotes the Pearson correlation and n denotes the 
total number interactions plotted. The lower correlation in P. aeruginosa 
is presumably due to fewer and weaker interactions. c, Drug interaction 
profiles are driven by phylogeny. Clustering of strains based on the  
Pearson correlation of their drug interaction profiles (taking into 
account all pairwise drug combinations; n = 2,759–2,883 depending 
on the species). Strains of the same species cluster together; the two 
enterobacterial species—E. coli and S. Typhimurium—behave more 
similarly to one another than either does to the phylogenetically more-
distant P. aeruginosa. d, Conserved drug–drug interaction network. Nodes 
represent individual drugs grouped and coloured by targeted cellular 
process (as in Extended Data Fig. 1a). Drug names are represented by 
three-letter codes (given in Supplementary Table 1). Dashed and full 
edges correspond to conserved interactions between two or three species, 
respectively. Many of the human-targeted drugs, such as loperamide, 

verapamil and procaine, exhibit a general potentiating effect that is 
similar to that of membrane-targeting drugs. This suggests that these 
drugs may also facilitate drug uptake or impair efflux, consistent with 
previous reports on the role of loperamide in E. coli and verapamil 
in Mycobacterium tuberculosis4,51. e, Monochromaticity between all 
drug categories. The monochromaticity index (MI) reflects whether 
interactions between drugs of two categories are more synergistic 
(MI= −1) or antagonistic (MI = 1) than the background proportion of 
synergy and antagonism. The MI equals zero when interactions between 
two drug categories have the same proportion of synergy and antagonism 
as all interactions together (Methods). The MI was calculated using all 
interactions from the six strains for all category pairs that had at least two 
interactions. White cells in the heat map correspond to category pairs 
for which no (or an insufficient number of) interactions were observed. 
f, Human-targeted drugs, and LPS or proton motive force inhibitors, 
are strong and promiscuous adjuvants. Density distributions of the 
monochromaticity indices per drug category from e are shown. n denotes 
the number of drugs in each category and i the number of interactions in 
which they are involved.
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Extended Data Fig. 10 | Hierarchical clustering of drugs according to 
their interaction profiles. Rows depict the 75 drugs common to all strains 
(coloured according to drug category, see Extended Data Fig. 1a), and 

columns depict their interactions with other drugs in all six strains tested. 
Clustering was done using the median of the ε distributions, uncentred 
correlation and average linkage.
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Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Active synergies against Gram-negative MDR 
clinical isolates in vitro and in the G. mellonella infection model. 
Both human-targeted drugs (which have recently been found to have an 
extended effect on bacteria52) and food additives can promote the action 
of antibiotics in MDR strains, indicating that their use as antibacterial 
adjuvants should be explored further. a, Drug combinations active 
against MDR E. coli and K. pneumoniae clinical isolates (see also Fig. 4). 
Interactions are shown as 8 × 8 checkerboards and synergies have a 
black bold border. Drug pairs are the same for each row of panel a, and 
are indicated at the first checkerboard in each row. The species in which 
the interaction was detected in the screen are indicated after the last 

checkerboard in each row. Concentrations increase in equal steps per drug 
(see legend); only minimal and maximal concentrations are shown for the 
first strain of each species. Apart from colistin, the same concentration 
ranges were used for all E. coli and K. pneumoniae MDR strains. One of 
two replicates is shown. b, Drug synergies against the same MDR strains 
in the G. mellonella infection model. Larvae were infected by E. coli and 
K. pneumoniae MDR isolates (106 and 104 CFUs, respectively) and left 
untreated, treated with single drugs or with the drug combination. The 
percentage of surviving larvae was monitored at indicated intervals after 
infection. n = 10 larvae per treatment. The averages of four biological 
replicates are plotted; error bars depict s.d.
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Extended Data Fig. 12 | Mode of action for the vanillin–spectinomycin 
synergy. a, The spectinomycin MIC decreases upon addition of 100 μg ml−1  
vanillin in the wild-type E. coli BW25113, as well as in E. coli single-gene 
knockouts of members of the AcrAB–TolC efflux pump or its MarA 
regulator. Thus, the vanillin–spectinomycin synergy is independent of  
the effect of vanillin on AcrAB–TolC (Fig. 3). b, Synergy is specific to 
vanillin–spectinomycin, as spectinomycin is antagonized by 500 μg ml−1  
of the vanillin-related compound aspirin, thereby increasing the MIC 
by approximately threefold. c, Profiling the vanillin–spectinomycin 
combination in the E. coli BW Keio collection26 to deconvolute its mode of 
action. Violin plots of the drug–drug interaction scores (ε) of all mutants 
(n = 9,216; Methods) are presented for the vanillin–spectinomycin 
combination (synergy) and, as control, for the combination of vanillin 
with another aminoglycoside amikacin (antagonism). The interaction 
scores of the two mdfA deletion clones present in the Keio library are 
indicated by red dots. The vanillin–spectinomycin synergy is lost in 
the absence of mdfA but the vanillin–amikacin antagonism remains 
unaffected, which indicates that the vanillin–spectinomycin synergy 
depends specifically on MdfA. d, Deletion of mdfA leads to an increased 
spectinomycin MIC and abolishes the synergy with vanillin, independent 

of the presence or absence of AcrAB–TolC. Mild overexpression of mdfA 
from a plasmid (pmdfA, Methods) further enhances the synergy with 
vanillin, decreasing the spectinomycin MIC by about twofold (compared 
to the MIC of the combination in the wild type). e, Overexpression of 
mdfA leads to increased spectinomycin sensitivity, even though the MIC 
does not change. The growth of E. coli BW25113 carrying a plasmid 
with mdfA cloned in it (pmdfA; no inducer, mild overexpression) or the 
empty vector (BW) was measured (OD595 nm after 8 h) over twofold serial 
dilutions of spectinomycin and normalized to the no-drug growth of 
the corresponding strain (white and black dots represent the average of 
n = 3 independent biological replicates, error bars represent s.d.). The 
spectinomycin dose response was computed using a logistic fit of the 
averaged data points (MICs are calculated by fitting individual replicates, 
and then averaging). Fitted curves are represented by full and dashed 
lines for pmdfA and E. coli BW25113, respectively. f, Vanillin leads to 
accumulation of spectinomycin in the cell in an mdfA-dependent manner. 
Intracellular spectinomycin is measured with the tritiated compound 
(Methods). Bar plots and error bars in a, b, d, f represent the average and 
s.d., respectively, across n independent biological replicates.
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