
1 
 

Resource misallocation as a mediator of fitness costs 1 

in antibiotic resistance. 2 

Andrej Trauner1,2,*, Amir Banaei-Esfahani3,4, Sebastian M. Gygli1,2, Philipp Warmer3, Julia 3 

Feldmann1,2, Seyedehsara Shafieechashmi1,2, Katja Eschbach5, Mattia Zampieri3, Sonia Borrell1,2, 4 

Ben C. Collins3, Christian Beisel5, Ruedi Aebersold3,6 and Sebastien Gagneux1,2,# 5 

 6 

1 Swiss Tropical and Public Health Institute, Basel, Switzerland 7 

2 University of Basel, Basel, Switzerland 8 

3 Department of Biology, Institute of Molecular and Systems Biology, ETH Zurich, Zurich, 9 

Switzerland 10 

4 PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich 11 

and ETH Zurich, Zurich, Switzerland 12 

5 Genomics Facility Basel, Department of Biosystems Science and Engineering, ETH Zurich, 13 

Basel, Switzerland 14 

6 Faculty of Science, University of Zurich, Zurich, Switzerland 15 

* andrej.trauner@swisstph.ch 16 

# sebastien.gagneux@swisstph.ch 17 

  18 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted November 27, 2018. . https://doi.org/10.1101/456434doi: bioRxiv preprint 

mailto:andrej.trauner@swisstph.ch
https://doi.org/10.1101/456434
http://creativecommons.org/licenses/by/4.0/


2 
 

Summary 19 

Antimicrobial resistance poses a threat to global health and the economy. It is widely accepted 20 

that, in the absence of antibiotics, drug resistance mutations carry a fitness cost. In the case of 21 

rifampicin resistance in fast-growing bacteria, this cost stems from a reduced transcription rate of 22 

the RNA polymerase resulting in slower ribosome biosynthesis. However, this relationship does 23 

not apply in the slow-growing Mycobacterium tuberculosis, where the true mechanism of fitness cost 24 

of rifampicin resistance as well as the impact of compensatory evolution remain unknown. Here 25 

we show, using global transcriptomic and proteomic profiling of selected M. tuberculosis mutants 26 

and clinical strains, that the fitness cost of rifampicin resistance in M. tuberculosis is the result of 27 

the physiological burden caused by aberrant gene expression. We further show that the perceived 28 

burden can be increased, effectively suppressing the emergence of drug resistance. 29 
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Antimicrobials are one of the cornerstones of modern medicine (Laxminarayan et al., 2016). The 34 

global increase of antimicrobial resistance (AMR) poses an existential threat, claiming an 35 

increasing number of lives and resources (O'Neill, 2016). We currently have access to a wide 36 

array of antibiotics, but their efficacy is waning, making safeguarding existing and future drugs a 37 

high priority. Understanding the mechanisms and drivers of AMR (Holmes et al., 2016), 38 

including the underlying biology, will be key to that process. 39 

Antibiotics target essential bacterial processes. Modification of their targets is an important 40 

mechanism through which AMR emerges. It is therefore not surprising that AMR often comes 41 

with a fitness cost (Melnyk et al., 2015). Fitness cost is a broad concept capturing any negative 42 

deviation in the proliferation of a mutant from its ancestor: for example, a decreased growth rate 43 

in vitro, or in the case of pathogens, a decreased ability to transmit or cause disease. The 44 

physiological basis for the cost of drug resistance seems to be dependent on the antibiotic, 45 

bacterial species and environment (Andersson and Hughes, 2008) and is thus often unknown and 46 

likely to be multifaceted. One of the better studied examples is the cost of rifampicin resistance. 47 

Rifampicin targets the bacterial RNA polymerase (RNAP), and resistance to rifampicin is usually 48 

mediated by mutations in the β subunit of RNAP (Campbell et al., 2001). Several studies point to 49 

the rate of transcription, particularly as it pertains to the synthesis of ribosomal RNA and 50 

ribosomal proteins, as an important mediator of growth rate (Gourse et al., 1996; Thiele et al., 51 

2009). A slowing down of transcription is therefore the prime mechanistic candidate for the cost 52 

of rifampicin resistance (Qi et al., 2014; Reynolds, 2000). The mechanism linking RNAP activity 53 

to ribosome biosynthesis provides a compelling explanation for the cost of rifampicin resistance 54 

in rapidly dividing bacteria such as Escherichia coli and Pseudomonas aeruginosa whose growth relies 55 

on the rapid replenishment of biosynthetic machinery lost through cell division (Ehrenberg et al., 56 

2013). Importantly, the fitness cost of rifampicin resistance can be mitigated or even reversed 57 

through the acquisition of secondary, compensatory mutations in the α, β and β’ subunits of 58 

RNAP that seem to restore normal enzyme function (Qi et al., 2014; Song et al., 2014; Stefan et 59 

al., 2018).   60 

Rifampicin-resistant Mtb is one of the major causes of AMR-associated mortality globally, 61 

claiming an estimated 240,000 lives in 2016 (WHO, 2017), and unlike in fast-growing bacteria, 62 

the rate of transcription does not seem to reflect the fitness cost of key rpoB mutations, measured 63 

either as growth rate in vitro or prevalence in the clinic (Gagneux et al., 2006; Gygli et al., 2017; 64 

Stefan et al., 2018). While relative fitness does seem to determine the clinical success of 65 

rifampicin-resistant Mtb (Grandjean et al., 2015), and compensatory mutations are frequently 66 

found in settings with a high burden of drug resistant TB (Casali et al., 2014; Comas et al., 2012; 67 
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de Vos et al., 2013; Farhat et al., 2013), the basis for the fitness cost of rifampicin resistance 68 

remains unknown in Mtb. Understanding the mechanism by which rpoB mutations impair normal 69 

Mtb physiology could help identify new intervention points, through which we could stem the 70 

tide of existing and emergent rifampicin resistance. 71 

We used the known ability of mutations in the beta barrel double ψ (BBDP) domain of the β’ 72 

subunit of RNAP to compensate for the fitness cost of resistance mutations occurring in the β 73 

subunit in Mtb  as a starting point (Molodtsov et al., 2017; Song et al., 2014; Stefan et al., 2018). 74 

Compensatory mutations improve patient to patient transmission of rifampicin-resistant strains 75 

(de Vos et al., 2013), and partially reverse biochemical changes imparted on RNAP by rifampicin-76 

resistance mutations (Song et al., 2014; Stefan et al., 2018). We hypothesise that the same would 77 

be true for gene expression differences. Leveraging the knowledge of the role of RpoC 78 

mutations, we used transcriptomic and proteomic expression profiling to identify the signature of 79 

compensation and therefore infer the likely mediators of fitness cost in a collection of strains 80 

derived from a drug-susceptible clinical isolate (see Figure 1). Our findings point to the 81 

idiosyncratic consequences of expressional dysregulation as a key factor conferring a fitness cost 82 

to rifampicin resistance in Mtb. We expanded on this observation by profiling the expression 83 

signature of rifampicin resistance in a panel of genetically diverse clinical isolates sharing the same 84 

rifampicin resistance-conferring mutation: RpoB Ser450Leu. While we found very little evidence 85 

for a shared expression signature of rifampicin-resistance across the tested strain pairs, we show a 86 

correlation between the fitness cost of the rifampicin-resistance conferring mutation and the 87 

extent to which its presence imparts a deviation from the proteome composition of the wild-type. 88 

Finally, we show that this correlation could be exploited to suppress the emergence of rifampicin 89 

resistance. 90 
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Figure 1: Conceptual workflow. A. Two complementary strain sets used for the experiments. 
Strains comprised in the “Evolutionary trajectory of rifampicin resistance” set were derived from a 
single clinical isolate (DS, N0155) by isolation of a Ser450Leu mutant in the lab and the subsequent 
passage for 200 generations in the absence of rifampicin. These strains were used to identify 
expression changes that are reversed by compensation - signature of compensation. The 
generalizability of our finding was checked using the “Genetic diversity strain set” containing five 
independent clinical isolates and their rifampicin-resistant derivatives. All rifampicin resistant strains 
shared the same resistance mutation – RpoB Ser450Leu. B. Experimental outline for the sampling 
and analyses. 

Results 91 

Compensatory mutations mitigate resistance-imposed expression changes 92 

Physiological changes incurred by a fitness cost are likely to manifest as deviations in gene 93 

expression. Since mutations in the BBDP domain of the β’ subunit of RNAP mitigate the fitness 94 

cost of rifampicin-resistance mutations in Mtb (Molodtsov et al., 2017; Song et al., 2014; Stefan et 95 

al., 2018) they should also impact and therefore highlight expression changes that are relevant to 96 

the understanding of fitness cost of rifampicin resistance. 97 

We previously reported the result of a directed evolution experiment in which we identified a 98 

mutation in the BBDP domain: RpoC Leu516Pro as a putative compensatory mechanism for the 99 

fitness cost of the rifampicin-resistance conferring mutation RpoB Ser450Leu in a clinical 100 

isolate(Comas et al., 2012). The strains generated by that study comprise the original drug-101 
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susceptible isolate (DS), its laboratory-derived rifampicin-resistant mutant (RpoB Ser450Leu, 102 

RifR) and the resulting evolved strains obtained by serial passage in the absence of rifampicin for 103 

200 generations (DSevo and RifRevo, respectively, see Figure 1A). Together these strains offer a 104 

representative snapshot of the evolutionary process that passes through the initial emergence of 105 

(costly) drug resistance and leads to the establishment of a mature drug-resistant strain whose 106 

fitness is indistinguishable from its drug susceptible ancestor. We therefore hypothesised that 107 

comparative transcriptomic and proteomic expression profiling of these strains will allow us to 108 

determine the signature of the fitness cost associated with rifampicin resistance. 109 

First, we determined the relative fitness of RifR. Using a mixed effect linear regression model to 110 

analyse growth assays, we noted a 26.4% decrease (CI95%: 21.5 – 31.0%, p < 0.001) in the growth 111 

rate of RifR when compared to DS. The comparison of their evolved counterparts – DSevo and 112 

RifRevo – showed no significant differences (-1.2%, CI95%: -10.8 – 7.1%, p = 0.814), illustrating the 113 

fact that RpoC Leu516Pro does indeed compensate the fitness cost of rifampicin resistance.  114 

We aimed to identify differences in the baseline, unperturbed, gene expression as a proxy for 115 

describing the biological basis for reduced fitness in RifR. We sampled actively growing bacterial 116 

cultures of each of the four strains, extracting total RNA and protein to be profiled using RNA 117 

sequencing (RNAseq) and sequential window acquisition of all theoretical mass spectra 118 

(SWATH-MS),  respectively (see Figure 1B). In total, we were able to obtain RNA transcript 119 

counts for all present regions of the Mtb genome and reliably quantify 2,886 proteins across our 120 

samples (Figure S1). We used differential expression analysis to test our hypothesis that the 121 

compensatory mutation RpoC Leu516Pro had the net effect of reversing, at least partially, the 122 

expression changes brought about by the rifampicin resistance mutation RpoB Ser450Leu. We 123 

named this trend a “signature of compensation” – see Figure 2A and we derived it by identifying 124 

genes that are uniquely differentially expressed in RifR compared to the other three strains in our 125 

dataset. To maximise the probability of identifying the signature of compensation, we chose an 126 

inclusive definition of differential expression: a p-value of less than 0.05 after adjusting for 127 

multiple testing (see Methods). In keeping with our inclusive approach, we also deliberately did 128 

not use an effect size threshold (e.g. minimum log-fold change).  129 
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Figure 2: Signature of compensation. A. The relative fitness of drug resistant strains (DR) is 
expected to be lower than wild type (DS) at first, but then is expected to increase due to 
compensatory evolution. The phenotypic equivalent of this trend is illustrated as an 
increase/decrease in a measurable trait upon the emergence of resistance that is then returned to its 
previous level through compensation. We refer to this dynamic as the “Signature of Compensation”. 
B. Plot of transcript counts per million bases (TPM) and label free quantifications (LFQ) of cellular 
proteins for genes whose expression is perturbed by the Ser450Leu mutation in RpoB and returned 
to wild type in the presence of the compensating Leu516Pro mutation. All results were standardized 
across measurements for a single gene to allow the comparison between strains. Grey traces show 
genes that are significantly more highly expressed in RifR, yellow traces show genes that were 
significantly less highly expressed in RifR. The red and blue bold lines show the median of the 
sample for more and less highly expressed proteins, respectively. Data of three independent 

biological replicates for each strain are shown. 
 130 

Using these criteria, we identified 536 transcripts that could be involved in the cost of resistance. 131 

289 transcripts were less abundant and 247 were more abundant in RifR compared to the other 132 

samples. Similarly, 536 proteins showed a significant signature of compensation: 260 proteins 133 

were more and 276 were less-abundant in RifR (see Figure 2B). Gene set enrichment analysis of 134 

the transcriptomic and proteomic data pointed to iron homeostasis being significantly affected. 135 

Specifically, it indicated a higher expression, in RifR, of genes that are repressed by the iron-136 

dependent regulator (IdeR, Rv2711) in iron replete conditions. Among them, there was a 137 

significant enrichment of genes involved in polyketide and non-ribosomal peptide synthesis, 138 

which include the biosynthetic machinery for the sole Mtb siderophore: mycobactin (see Figure 139 

S2-4). These changes suggested that RifR faced a shortage of iron in our experimental conditions. 140 
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The availability of iron is an essential requirement for Mtb growth, both in culture and during 141 

infection, and iron acquisition systems are therefore key virulence factors (Jones et al., 2014; 142 

Reddy et al., 2013; Wells et al., 2013). Hence, an increased requirement for iron could manifest 143 

itself as a loss of relative fitness. The fact that RpoB Ser450Leu led to a modification of the 144 

expression of genes involved in iron homeostasis and that RpoC Leu516Pro reversed the effect 145 

provides a compelling alternative mechanism underpinning the apparent fitness cost of 146 

rifampicin resistance. If the disruption of iron homeostasis drives fitness cost, we would expect 147 

that iron supplementation should mitigate the relative cost of RpoB Ser450Leu. Furthermore, 148 

based on the expression profile, we expected that RifR should produce more mycobactin at 149 

baseline than DS, potentially influencing the overall growth rate of the mutant.  150 

We addressed the first hypothesis by comparing growth rates of RifR and DS in the presence or 151 

absence of 10 µM hemin – an additional source of iron that is by itself sufficient to support the 152 

growth of a mutant defective in mycobactin biosynthesis. Importantly, hemin and mycobactin 153 

provide two separate routes of iron uptake, which allows us to side-step issues that might emerge 154 

from deficient iron transport(Jones et al., 2014). The presence of hemin did not change the cost 155 

of RifR, which we calculated to be 18.6% in the absence and 20.9% in the presence of hemin for 156 

this experiment (Mixed effect linear model, p = 0.737).  Similarly, hemin did not impact the 157 

growth rate of DS (- 4.7%, CI95%: -16.3 – 2.3%, p = 0.128). In summary, iron did not appear to 158 

limit the growth of RifR under normal conditions.  159 
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Figure 3: RifR has a higher baseline level of mycobactin biosynthesis than DS. A. Subset of the 
gene regulatory network (Peterson et al., 2014) containing iron responsive genes. Circles represent 
IdeR-regulated genes that are either induced (black inner circle) or repressed (white inner circle) in low 
iron conditions. Hexagons represent IdeR-independent iron responsive genes that are induced (white 
inner hexagons) or repressed (black inner hexagons) in low iron conditions. We used blue and red to 
indicate significantly lower or higher RNA expression in RifR, respectively – (n=12, see Methods for 
further details). Diamonds represent transcriptional modules as defined by Petersen et al, black 
diamonds indicate modules that contain at least 3 IdeR-responsive genes. Edges connect gene nodes 
with the module nodes they belong to. Labels 1-7 refer to Module 502 (1), Module 525 (2), Module 267 
(3), Module 446 (4), Module 231 (5), Module 086 (6) and Module 295 (7) from the original publication. 
B. Relative mycobactin levels expressed as maximum peak heights for DS and RifR in normal medium 
(grey dots) and iron-supplemented medium (10µM hemin, red dots). Each filled circle represents the 
quantification of an independent biological replicate. Unfilled circles represent the mean of the 
observations. 

 160 

Next, we addressed the production of mycobactin. We prepared whole cell extracts from DS and 161 

RifR grown in both, normal medium and medium supplemented with 10 µM hemin. We found 162 

that on average RifR produced more mycobactin than DS, corroborating the physiological 163 

relevance of the increased baseline expression of mycobactin biosynthesis genes. We also 164 

observed a slight decrease in the production of mycobactin in bacteria grown in the hemin-165 

supplemented medium, pointing to a modification of the expression of mycobactin biosynthesis 166 

cluster in response to iron (See Figure 3). Given that the growth rate was not affected by the 167 

presence of hemin, these findings suggest that mycobactin itself does not modulate the growth 168 
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rate of the mutant. It is therefore possible that the higher expression of the biosynthetic cluster 169 

itself might impart a fitness cost. 170 

Interestingly, while significantly enriched, only half of the genes reported to be repressed by IdeR 171 

(Rodriguez et al., 2002) in iron-replete conditions were part of the signature of compensation (22 172 

out of 40 genes). This prompted us to take a closer look at the IdeR regulon and its regulation. 173 

We took advantage of recent studies modelling the global gene regulation in Mtb (Minch et al., 174 

2015; Peterson et al., 2014; Rustad et al., 2014). We reconstructed the genome-wide gene 175 

regulatory network and extracted the immediate neighbours of IdeR- and iron-responsive 176 

genes(Peterson et al., 2014). There were 7 expression modules that contained at least 3 genes that 177 

are part of the IdeR regulon (Figure 3, black diamonds). Together, these modules covered 82.5% 178 

of all the IdeR-repressed genes, and with the exception of Module 4 (Figure 3), none of the 179 

modules included IdeR-independent iron-responsive genes. All the genes that we identified as 180 

candidates for compensation belonged to Modules 1-4, while none of the genes included in the 181 

other modules were found to be differentially expressed in RifR. A key difference among 182 

modules was that IdeR-regulated genes represented more than half of all the genes in modules 183 

affected by compensation but fewer than half in those that were not part of the “signature of 184 

compensation”. Mapping proteomic data onto the same expression network produced similar 185 

results (see Figure S5). Interestingly, few of the IdeR-independent iron-responsive genes were 186 

part of the signature of compensation. This pattern implies a modulation of the canonical 187 

function of IdeR, either through regulatory inputs from other transcription factors, or some 188 

other mechanism.  189 

These results supported our hypothesis that mutations in rpoB impart changes to the baseline 190 

expression profile of Mtb that could be reversed in the presence of a compensatory mutation in 191 

rpoC. Combining the expression data with our findings that iron supplementation and mycobactin 192 

levels did not affect RifR growth rates, we concluded that the transcriptional changes were not 193 

driven by the demand for iron. Instead, these changes might be a reflection of a dysfunction of 194 

RNAP – e.g. differences in promoter specificity or modified interaction with IdeR, whose 195 

downstream consequences may impose a fitness effect. For example, as the mycobactin 196 

biosynthesis cluster comprises several large proteins, their excessive production could represent a 197 

drain on the cell’s resources. If true, we would expect such effects to be universal across all Mtb 198 

strains carrying this rpoB mutation.  199 

The impact of RpoB Ser450Leu is shaped by epistasis 200 

We wanted to test the hypothesis that higher expression of the mycobactin biosynthetic cluster is 201 

a general feature of rifampicin resistance in Mtb and therefore the underlying cause of its fitness 202 
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cost. To do so, we generated RpoB Ser450Leu mutants in five genetically diverse clinical isolates 203 

belonging to two different Mtb lineages and profiled them. Globally, Mtb can be grouped into 204 

seven distinct genetic lineages each with a specific geographic distribution (Gagneux, 2018). Mtb 205 

lineages can differ in their interaction with the human host, the dynamics of disease progression, 206 

and also in their apparent propensity to acquire drug resistance (Coscolla and Gagneux, 2014; 207 

Ford et al., 2013). We chose strains belonging to Lineage 1 and 2, because of their large 208 

phylogenetic separation (see Figure S6) and more importantly, because drug resistance is often 209 

associated with Lineage 2 and relatively rare in Lineage 1 (Borrell and Gagneux, 2009). We 210 

expected that the comparison of the transcriptome and proteome between the Ser450Leu 211 

mutants and their cognate wild type ancestor would allow us to identify general patterns of 212 

fitness cost linked to this mutation. 213 

It is important to note that this comparison did not include any compensated strains, i.e. strains 214 

carrying mutations in the BBDP domain. We were therefore unable to focus our analysis 215 

exclusively on genes whose expression was corrected by the presence of an rpoC mutation. 216 

Nonetheless, direct comparison of RifR and DS is virtually indistinguishable from the signature 217 

of compensation when considering IdeR-regulated genes and therefore serves as a reasonable 218 

proxy for our analyses (see Figure S5). 219 

We started by measuring the growth characteristics of the wild type isolates and the relative cost 220 

of the RpoB Ser450Leu mutation in the different strain backgrounds. The generation time varied 221 

from 22.7 h ( 95%CI: 20.8 – 25.0 h) to 31.0 h ( 95%CI: 29.3 – 35.1 h). The relative fitness cost of the 222 

RpoB Ser450Leu mutation differed as well, from a modest 2 % (mixed effect linear regression, p 223 

= 0.71) to a pronounced 27 % (mixed effect linear regression, p = 5.6 × 10-6). 224 

We obtained the expression profiles for each strain to check whether the pattern we identified for 225 

IdeR-repressed genes was a universal phenotype for RpoB Ser450Leu mutants. Analysing the 226 

transcriptomic data by performing a single comparison across the five strain pairs, we found that 227 

only 17.5% (7/40 genes) of the IdeR-repressed genes were significantly differentially expressed. A 228 

single gene belonging to the mycobactin biosynthesis cluster was included in that number. 229 

Proteomic analysis revealed a similar result – 17.1% (6/35 detected proteins) were found to be 230 

significantly differentially expressed across all strains, none of which belonged to the mycobactin 231 

biosynthesis cluster. None of the iron-homeostasis gene sets highlighted in the “signature of 232 

compensation” were significantly differentially expressed across all strains. Since these findings 233 

were contrary to our expectations, we stratified the analysis and mapped the differential 234 

expression results for each strain onto the IdeR- and iron-responsive gene network we collated 235 

earlier. These results echoed our combined analysis: the signature of compensation was not 236 
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universal across the tested strains. N0155, which corresponds to “DS”, is the only strain to show 237 

a transcriptional profile consistent with the signature of compensation (see Figure 4A). Proteomic 238 

data corroborated this finding (see Figure S7). It is important to note that these data represent an 239 

independent replication of the experiments, from which we derived the signature of 240 

compensation, showing that our original results are robust and reproducible. However, the 241 

absence of a coherent IdeR-responsive phenotype was clear evidence of epistasis and raised a 242 

broader question: are there any commonalities in the phenotypic manifestation of the RpoB 243 

Ser450Leu mutation among our set of strains? 244 

 

Figure 4:  The prominent role of mycobactin biosynthesis in the signature of compensation is 
not universal. A. Iron-responsive subset the of gene regulatory network, as shown in Figure 3, 
coloured based on transcriptional differential expression data from pairwise comparison of genetically 
distinct rifampicin-susceptible clinical isolates and their cognate RpoB Ser450Leu mutants. RifR and 
N0155 refer to an independent sampling of the same strain pairs. See Figure S7 for the proteome 
counterpart of this plot. For RifR, N0072 and N0157 the plot is based on the comparison of three drug 
susceptible and three rifampicin resistant samples. For N0155, N0145 and N0052 we used two 
samples of each. B. Representation of the enrichment of significantly differentially expressed genes 
within individual transcriptional modules, as defined elsewhere (Peterson et al., 2014). The columns 
alternate proteomic (P) and transcriptomic data (R). “ALL” refers to the global differential expression 
analysis of all rifampicin-susceptible against all rifampicin-resistant strains. The remaining column 
annotations refer to individual pair-wise comparisons in different genetic backgrounds. Black squares 
represent no significant enrichment, mauve squares and yellow squares show enrichment at 
0.01<p<0.05 and p<0.01 using a Fisher’s exact test. These p-values are not adjusted for multiple 
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testing. Modules covering the DosR-regulon and IdeR-iron repressed regulon are highlighted 
separately. 

 245 

To address this question we sought to identify expression modules (Peterson et al., 2014) whose 246 

membership was well represented among significantly differentially expressed genes in at least 247 

one pair-wise comparison between a rifampicin-resistant strain and its cognate drug-susceptible 248 

ancestor (see Methods for details). Using transcriptomic and proteomic data, we identified 33 249 

expression modules that fitted our criterion (see Figure 4B). There was virtually no consensus 250 

across the strains in the transcriptional or translational response to the rpoB mutation. The only 251 

case where we observed partial agreement across genetic backgrounds concerned some of the 252 

modules controlled by the hypoxia-responsive regulator DosR(Park et al., 2003). As with 253 

modules containing IdeR iron-repressed genes, we observed only partial regulon induction for 254 

DosR. Specific modules were clearly involved in the expression changes (either protein or 255 

transcript) in each background, but the impact of these was strain-specific. A complementary 256 

manifestation of this phenomenon comes from the global comparison of all rifampicin-resistant 257 

strains against all wild type strains, which highlighted a single module as enriched for significantly 258 

differentially expressed genes. Comparing the distribution of the effect sizes, as measured by the 259 

per-gene fold-changes in expression in the combined analysis and the pairwise comparisons for 260 

each strain, we saw a marked muting of the magnitude of differential expression in the former 261 

(see Figure S8). This was likely due to the averaging effect of the combined analysis suppressing 262 

the contribution of the differential expression from individual strains. The magnitude of the 263 

expression change in pairwise comparisons was comparable across strains. 264 

Overall, we were able to identify a wealth of gene expression changes in our samples: as many as 265 

958 transcripts and 1914 proteins were observed to be differentially expressed in at least one 266 

comparison across our samples. On the level of individual genes, the transcriptome and to lesser 267 

extent the proteome of each strain were perturbed in their own private way (see Supplementary 268 

Figures 9&10), manifesting itself as the drug resistance iteration of the Anna Karenina principle 269 

(Zaneveld et al., 2017). Because the majority of those changes were specific to individual strains 270 

they were largely invisible if the comparison was made across all strain pairs. The fact that the 271 

same mutation can have such profoundly different outcomes depending on the genetic context in 272 

which it occurs, is clear evidence of epistasis, and shows that natural genetic variation can 273 

fundamentally impact the physiological consequences and therefore evolution of drug resistance. 274 

Importantly, the impact of resistance on the expression profile of any two strains was found to 275 

be independent of the genetic distance between them (see Figure S11). 276 
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So far, we showed that the RpoB Ser450Leu causes a considerable re-organization of baseline 277 

gene expression, that this perturbation can be reversed by a compensatory mutation in RpoC and 278 

that the specific phenotypic manifestation was dependent on mutations that occurred more 279 

recently than those defining individual lineages. These findings were consistent with our 280 

observation that the same mutation imposed a different fitness cost to different strains. We 281 

therefore sought to find correlates of the varying fitness costs. 282 

Deviation from baseline expression correlates with the cost of rifampicin resistance 283 

Pleiotropic phenotypes of the kind described above are not normally addressed, however we 284 

wanted to explore whether the extent of the expression perturbations correlated with the varying 285 

fitness costs of Ser450Leu we observed in different genetic backgrounds. We reasoned that the 286 

cumulative impact on expression disruption, rather than the dysregulation of individual genes, 287 

would provide a conduit for a loss of fitness. 288 

In the first instance, we considered the correlation between the fitness cost of the rpoB mutation 289 

and the overall expression distance between the mutant and its cognate wild type strain (See 290 

Figure S12). Through this approach, we were able to detect a relationship between cost and 291 

expression differences for the expressed proteins (R2 = 0.83, p = 0.031, ordinary least squares 292 

linear regression) but not RNA (R2 = 0.39, p = 0.258, ordinary least squares linear regression). 293 

Given that the correlation was stronger in the proteome compartment, and that the proteome 294 

compartment seemed more affected by resistance, we elaborated on our observation by 295 

incorporating a measure of physiological cost for each protein. We used two different metrics for 296 

cost. In the simpler case we used the molecular weight of amino acids as proxy for the resource 297 

investment necessary to generate each protein (Seligmann, 2003). We also used estimates of ATP 298 

cost for each amino acid in E. coli as a way to approximate the level of energy investment a 299 

bacterial cell makes when synthesising its proteome (Akashi and Gojobori, 2002). Both metrics 300 

showed that drug resistance imposes an additional physiological cost to the baseline proteome 301 

(Molecular Weight: Mann-Whitney U-test, p = 8.26 × 10-4, ATP equivalents: Mann-Whitney U-302 

test, p = 4.50 × 10-4, see Figure S13). Furthermore, this cost was negatively correlated with the 303 

relative fitness of the RpoB Ser450Leu mutation in a given strain background (ρs = - 0.90, p = 304 

0.04) – the greater the deviation from the resource investment of the ancestral proteome, the 305 

larger the cost of the mutation (see Figure 5A). Growth rate and gene expression are not 306 

independent from each other. To test the possibility that the observed correlation may be an 307 

artefact of our analysis, we took advantage of the natural variation in growth rates of different 308 

drug-susceptible clinical isolates in our medium and compared them to the relative costs of 309 

expression (See Figure S14). We performed a pairwise comparison across all the tested strains 310 
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and observed no statistically significant correlation between the differences in the investment into 311 

the proteome and the difference in growth rates (ρs = 0.34, p = 0.33). The differences in the 312 

allocation of resources into the protein compartment of different bacterial strains were therefore 313 

not the main determinant of variation in their respective generation times. 314 

Taken together, our results seemed to suggest that the ultimate manifestation of the disruption of 315 

wild type baseline gene expression by RpoB Ser450Leu was a net increase in the biosynthetic 316 

input required to maintain the steady state proteome: the greater the cost of the disruption, the 317 

greater the slowing down of growth in a given strain background. We propose this as the 318 

“Burden of Expression” hypothesis of the fitness cost of rifampicin resistance. 319 

 

Figure 5:  The fitness cost of RpoB Ser450Leu correlates with increased resource 
requirements. A. The relative fitness of Ser450Leu RpoB mutants estimated from growth rate data is 
negatively correlated with the magnitude of the deviation from the resources allocated to the wild type 

proteome. ϱs – Spearman correlation. Error bars indicate the 95% confidence interval for the data. 
Each cost determination was obtained from a minimum of four independent cultures per strain. 
Protein costs were derived from a total of 24 proteomic samples. B. Comparison of minimum 
inhibitory concentrations (MIC) of bedaquiline in clinical isolates and their cognate RpoB mutants. 
Dotted line shows parity, darker shading includes 50% or lower difference in MIC and the lighter 
shading spans up to 2-fold change in MIC. Each dot represents the mean of three independent 
measurements. C. The frequency of rifampicin resistance as measured in the model organism 
Mycobacterium smegmatis with the Luria-Delbrück fluctuation assay in media containing different 
carbon sources. The blue dot corresponds to the Ma-Sandri-Sarkar maximum likelihood estimate for 
the frequency of rifampicin resistance. The shaded area shows the density distribution of the number 
of resistant colonies per scored culture. The dotted line indicates the limit of detection. Each estimate 
is based on 120 independent cultures for glycerol and citrate and 150 independent cultures for 
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acetate. 

 320 

Carbon allocation rather than ATP availability modulates cost of resistance 321 

An implication of the “Burden of expression” hypothesis is the possibility of suppressing the 322 

emergence of rifampicin-resistance in mycobacteria by maximising the additional biosynthetic 323 

cost imposed by the deviation from the baseline expression. We tested two types of conditions 324 

that may impose such a stress: inhibition of ATP synthesis and variation of carbon-source quality. 325 

The first would disrupt the ability to generate energy through catabolic processes, while the 326 

second would place more emphasis on the anabolic aspects of bacterial growth. In the first 327 

instance, we tested the susceptibility to bedaquiline, an ATP synthase inhibitor that leads to a 328 

decrease in intracellular ATP levels in Mtb (Andries et al., 2005). Given the higher baseline cost of 329 

their proteome, we expected that RpoB Ser450Leu mutants should show an increased 330 

susceptibility to bedaquiline commensurate with their relative loss of fitness. We did not observe 331 

any correlation between bedaquiline susceptibility and the cost of the RpoB Ser450Leu mutation 332 

(see Figure 5B).  333 

Next, we explored varying carbon source quality, expecting substrates that force the bacterial cell 334 

to rely more heavily on anabolic processes to serve as amplifiers for the perceived cost of 335 

rifampicin resistance. A related phenotype has been reported before for RpoB Ser450Leu(Song et 336 

al., 2014). We chose the Luria-Delbrück fluctuation assay as an unbiased readout for the overall 337 

increase in the cost of rifampicin-resistance, because its frequency of resistance estimate contains 338 

a signal for the ability of drug resistant bacteria to propagate within the population prior to 339 

antibiotic exposure(Ycart, 2013). The global increase in the cost of RpoB mutations would 340 

therefore manifest itself as an apparent decrease in the frequency of resistance, as the population 341 

size of pre-existing RpoB mutants would be smaller due to limited expansion post-emergence. 342 

We chose glycerol, citrate and acetate to test our hypothesis in the soil organism Mycobacterium 343 

smegmatis, whose patterns of rifampicin resistance mirror those of Mtb (Borrell et al., 2013). As 344 

expected, these three carbon sources supported different growth rates with measured generation 345 

times of the wild type being 3.24 h ( 95%CI: 3.23 – 3.25 h), 6.17 h ( 95%CI: 6.09 – 6.25 h) and 17.62 346 

h ( 95%CI: 17.61 – 17.62 h), respectively. We then determined the frequency of rifampicin 347 

resistance for bacteria grown on each carbon source using the Luria-Delbrück fluctuation assay. 348 

We found a striking correlation between carbon source and the calculated frequency of 349 

resistance, with bacteria grown in glycerol giving rise to rifampicin-resistant bacteria at a rate of 350 

1.3 × 10-8 ( 95%CI: 1.2 × 10-8 – 1.5 × 10-8), those grown in citrate at a rate of 3.4 × 10-9 ( 95%CI: 2.9 351 

× 10-9 – 4.0 × 10-9)  and acetate-cultured bacteria at a rate of 4.5 × 10-10 ( 95%CI: 3.4 × 10-10 – 5.6 352 
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× 10-10) – see  Figure 5C. This trend was remarkable, because it showed that changing only the 353 

carbon source, keeping all other variables constant, could lead to a 28-fold change in the 354 

frequency of resistance. 355 

The disparity in outcomes between the two experimental approaches suggests that the availability 356 

of catabolic energy does not disproportionately influence the ability of RpoB mutants to survive. 357 

However, the impact of carbon source on the frequency of rifampicin-resistant bacteria within a 358 

population clearly suggests that carbon allocation might be an important driver of the fitness cost 359 

of rifampicin resistance.  360 

Discussion 361 

We normally expect that form follows function in bacteria: expression differences should reflect 362 

variations in physiological states. Indeed, we show that RpoB Ser450Leu imparted a measurable 363 

physiological perturbation in addition to conferring rifampicin resistance. Consistent with the 364 

suggested role of compensatory mutation (Comas et al., 2012), we confirmed that in one strain, 365 

RpoC Leu516Pro reduced both, the apparent fitness cost of rifampicin resistance and the 366 

magnitude of the expression changes arising from it. However, we also showed that the nature of 367 

the perturbation was not consistent across different genetic backgrounds. Instead, we observed a 368 

strain-specific response to the RpoB mutation, both in terms of the relative impact on growth 369 

and the rearrangement of gene expression. We further observed that the magnitude of the fitness 370 

cost that RpoB Ser450Leu imposes on a strain was related to the overall increase in the resources 371 

allocated to the proteome. Based on these observations, we proposed the “Burden of expression” 372 

hypothesis, with which we posited that in Mtb, the cost of rifampicin resistance was mediated by 373 

the metabolic burden imposed by the modified baseline protein expression of resistant strains. 374 

Elaborating on this hypothesis we demonstrated that interfering with anabolic processes could 375 

suppress the emergence of rifampicin resistance in the related organism M. smegmatis.  376 

The “Burden of expression” hypothesis stems from experimental data with clear caveats. First, 377 

we started our analyses assuming that ribosomal biosynthesis is unlikely to play a key role in the 378 

cost of rifampicin resistance in Mtb and that therefore expression data were a better window into 379 

the modified physiology. Our data seem to support the validity of this assumption: ribosomal 380 

proteins represented only 5.5%, on average, of the total protein biomass in our experiments. This 381 

proportion was marginally higher in RpoB mutants, and it seemed to increase with increasing 382 

generation time (see Figure S15). These trends were more consistent with a cost imposed by the 383 

metabolic burden of making ribosomes. Second, some of our key conclusions are based on a 384 

relatively small number of strains. Nonetheless, to the best of our knowledge, this sample set 385 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted November 27, 2018. . https://doi.org/10.1101/456434doi: bioRxiv preprint 

https://doi.org/10.1101/456434
http://creativecommons.org/licenses/by/4.0/


18 
 

represents the most comprehensive and best curated account of rifampicin resistance-induced 386 

global expression changes in Mtb to date, covering both: evolutionary dynamics and phylogenetic 387 

diversity. We were also able to show that patterns of expression detected in the DS-RifR 388 

comparison were robust when the same strain pair was sampled again (see Figure 4 and Figure 389 

S7). Importantly, key inferences that led us to propose the hypothesis came from SWATH-MS 390 

proteomic data drawn from the five different strain backgrounds. These data showed a clear 391 

clustering of biological replicates (see Figure S16), with the exception of N0145 for which we 392 

were also unable to detect a significant cost for the Ser450Leu mutation or any significant 393 

changes to the expression. Third, we assumed that label free quantification (LFQ) using the “best 394 

flyer peptide” or TopN approach, which reflects the proportional abundance of individual 395 

proteins within our samples (Schubert et al., 2015), can be used to draw conclusions about the 396 

resource investment of the cell and can be extended to the growth rate of bacteria. It is possible 397 

that the roles are reversed and the growth rate of bacteria in fact determines the protein 398 

complement being expressed (Beste et al., 2007). We addressed this possibility by performing a 399 

comparison of proteome investment and growth rate for wild type strains only. If the growth rate 400 

of Mtb did indeed determine the protein complement of cells across genetic distances on an 401 

evolutionary timescale, we would expect a strong correlation between differences in proteome 402 

and differences in growth rates between any two strains. This was however not the case (see 403 

Figure S13). Finally, we also assumed that the proteome plays a central role in imposing a limit to 404 

the growth rate of an Mtb cell. There are other components that require considerable investment 405 

in carbon: in the case of Mtb both lipids and cell wall may act as a sink for resources limiting 406 

growth as they can account for over half of the dry mass of actively growing cells(Beste et al., 407 

2005). Lipidomic analysis of RpoB mutants in Mtb pointed to differences in mycobactin 408 

biosynthesis as one of the biggest discrepancies between rifampicin-resistant mutants and their 409 

susceptible ancestors (Lahiri et al., 2016). While echoing a key observation from our quest for 410 

determining the cost of resistance, we saw no evidence that mycobactin biosynthesis itself 411 

changes the rate of bacterial growth. The virulence-associated phthiocerol dimycocerosates 412 

(PDIM) have also been implicated in the cost of rifampicin resistance (Bisson et al., 2012), as 413 

have other changes in lipid composition (du Preez and Loots du, 2012). The full exploration of 414 

the role of lipids in the physiology of rifampicin-resistant Mtb is beyond the scope of this study, 415 

but it would provide an interesting new and complementary avenue to pursue.  416 

Keeping these considerations in mind, there are two striking features to emerge from our results. 417 

The first is the pervasive epistasis modulating the impact of RpoB Ser450Leu: the same mutation 418 

has markedly different effects on the physiology of different Mtb strains. The second is the 419 

apparent mechanism through which modulation of gene expression is propagated across the 420 
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levels of bacterial physiology. Modification in RNAP function seems to have pleiotropic effects 421 

that transcend the disruption of any single group of genes, and impart a perturbation that appears 422 

to affect bacterial resource allocation. 423 

One question that remains open is what sits at the heart of the disparity in phenotypes? The 424 

sequence of RNAP is effectively the same in all strains (Borrell and Trauner, 2017); and by 425 

extension so are the biochemical changes that arise from resistance (Stefan et al., 2018). We 426 

envisage that part of the answer lays in differences in underlying robustness: a strain’s capacity to 427 

buffer perturbation. Furthermore, we can consider this a window into the evolutionary 428 

adaptation of each strain and a sign of how different their physiologies really are. The 429 

amalgamation of mutational differences that effectively makes up a strain genetic background 430 

weaves a baseline phenotype that allows different Mtb strains to be successful pathogens despite 431 

differences in their underlying physiology: i.e. there are several successful approaches to solving 432 

the same problem. These differences are unmasked by the presence of a mutation that sits at the 433 

core of gene expression and reveals idiosyncratic transcriptional responses to rifampicin 434 

resistance that are poorly conserved across genetic distances. This observation has the implication 435 

that, beyond the described mutations in BBDP, which seem to alleviate some of the biochemical 436 

and gene expression effects of rifampicin resistance more generally, further investigation of 437 

positive selection of compensation of resistance-related traits should be performed in genetically 438 

related strains as they could vary considerably when comparing phylogenetically distant strains 439 

(Farhat et al., 2013; Zhang et al., 2013).  440 

The strain-specific nature of resistance-related expression perturbations can be used to provide a 441 

credible link to disparate growth rate modulation. Our suggestion that proteome composition 442 

influences growth rate is not without precedent. This connection has been made before (Scott et 443 

al., 2010), and resulted in the formulation of a collection of “growth laws” that linked growth 444 

rates to the partitioning of the limited proteome between ribosomes and other proteins carrying 445 

out the rest of the cellular functions. Growth on different carbon sources impacted this balance, 446 

with “poorer” ones requiring a greater investment into the functional proteome, presumably 447 

because of the need for anabolic reactions increased the reliance on biosynthetic enzymes. A 448 

similar relationship has been observed in a wide range of microbial species (Karpinets et al., 449 

2006). An elaboration of these growth relationships also led to the conclusion that the efficiency 450 

of proteome allocation can impact growth rates and cell physiology (Basan et al., 2015). Our 451 

finding that the increase in the relative cost of the proteome brought about by the gain of a 452 

mutation correlates with the relative fitness of that mutation is consistent with these reports, as is 453 
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our observation that anabolic processes may play a mechanistic role in setting the cost of a 454 

mutation.  455 

The observed differential cost of rifampicin resistance across Mtb strains, provides a lens through 456 

which we can better understand the emergence of drug resistance in clinical TB. However, it also 457 

indicates a new avenue to pursue in the fight against rifampicin resistant Mtb and perhaps 458 

uncover a new paradigm for chemotherapeutic intervention. Agents that impart a considerable 459 

shock to the expression equilibrium of bacteria could exhibit potent activity against rifampicin 460 

resistant strains due to collateral sensitivity. Furthermore, when given in combination with 461 

rifampicin, such agents may act to suppress the emergence of resistance; a valuable attribute for 462 

lengthening the shelf life of rifampicin.  463 

Methods 464 

Strains and culture conditions 465 

We used four strains described by Comas et al.(Comas et al., 2010): namely the wild type, clinical 466 

isolate T85 (N0155, DS), a rifampicin resistant mutant of T85 carrying the Ser450Leu mutation 467 

(N1981, RifR), a derivative of T85 that was evolved by serial passage (200 generations) in the 468 

absence of rifampicin (N1588, DSevo) and an evolved derivative of the rifampicin resistant strains 469 

carrying an additional mutation in RpoC – Leu516Pro (N1589, RifRevo).  470 

In addition to these strains we used four clinical isolates that are part of the recently compiled 471 

Reference set of Mtb clinical strains(Borrell et al., 2018) covering the genetic diversity of Mtb. 472 

Two strains belonging to Lineage 1 (N0072, N0157) and two to Lineage 2 (N0052, N0145). We 473 

plated each of these strains on 7H10 plates containing 5 μg/ml Rifampicin, and picked colonies 474 

of spontaneous mutants. We checked the rifampicin-resistance conferring mutations using Sanger 475 

sequencing of the amplified RRDR region (Forward primer: 476 

TCGGCGAGCTGATCCAAAACCA, Reverse primer: ACGTCCATGTAGTCCACCTCAG, 477 

product size: 601 bp), and kept a Ser450Leu derivative of each clinical strain (N2027, N2030, 478 

N2495 and N1888, respectively). 479 

Bacteria were cultured in 1l bottles containing large glass beads to avoid clumping and 100 ml of 480 

media incubated at 37°C rotated continuously on a roller. Unless otherwise stated we used a 481 

modified 7H9 medium supplemented with 0.5% w/v pyruvate, 0.05% v/v tyloxapol, 0.2% w/v 482 

glucose, 0.5% bovine serum albumin (Fraction V, Roche) and 14.5 mM NaCl. Compared to the 483 

usual composition of 7H9 we omitted glycerol, tween 80, oleic acid and catalase from the 484 
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medium. We added 10 μM Hemin (Sigma) when supplementing growth medium with iron. We 485 

followed growth by measuring optical density at 600 nm (OD600).  486 

Fluctuation assay experiments were performed using Mycobacterium smegmatis, mc2 155. M. 487 

smegmatis was grown either in 10 ml cultures within 50 ml Falcon conical tubes in a shaker 488 

incubator (37°C, 200 rpm), or as 200 μl aliquots within flat-bottomed 96-well plates at 37°C and 489 

shaken at 200 rpm. We followed growth by measuring OD600. We used unmodified 7H9 medium 490 

or medium where glycerol was replaced with citrate or acetate added at concentrations that 491 

matched the molarity of carbon. 492 

Fitness determination 493 

Mtb fitness was determined by comparative growth rate estimation. We grew bacteria as 494 

described and followed their growth by measuring OD600 with a Ultrospec 10 (GE Lifesciences). 495 

We transformed the optical density measurements using logarithm base 2 and trimmed all early 496 

and late data points that deviated from the linear correlation expected for exponential growth. 497 

Next, we fitted a linear mixed effect regression model to the data. Fitness cost was calculated as 498 

the resistance imposed deviation from wild type growth dynamics. 499 

For M. smegmatis, we determined the growth rates by culturing bacteria as described above. We 500 

monitored the increase in OD600 using a Tecan M200 Pro Nanoquant at 20 min intervals. The 501 

data were log2-transformed, trimmed to retain only the portion of data pertinent to exponential 502 

growth and used for fitting a mixed effect linear regression model to estimate growth parameters. 503 

Transcriptional analysis with RNAseq 504 

We transferred a 40 ml aliquot of bacterial culture in mid-log phase (OD600 = 0.5 ± 0.1) into a 505 

50ml Falcon conical tube containing 10 ml ice. We harvested the cells by centrifugation (3,000×g, 506 

7 min, 4°C), re-suspended the pellet in 1 ml of RNApro solution (MP Biomedicals) and 507 

transferred the suspension to a Lysing matrix B tube (MP Biomedicals). We disrupted the 508 

bacterial cells using a FastPrep24 homogeniser (40s, intensity setting 6.0, MP Biomedicals). We 509 

clarified the lysate by centrifugation (12,000×g, 5 min, 4°C), transferred the supernatant to a clean 510 

tube and added chloroform. We separated the phases by centrifugation (12,000×g, 5 min, 4°C) 511 

and precipitated the nucleic acids from the aqueous phase by adding ethanol and incubating at -512 

20C overnight. We performed a second acid phenol extraction to enrich for RNA. We treated 513 

our samples with DNAse I Turbo (Ambion), and removed stable RNAs by using the RiboZero 514 

Gram Positive ribosomal RNA depletion kit (Epicentre). We prepared the sequencing libraries 515 

using the TruSeq stranded Total RNA kit (Illumina) and sequenced on a HiSeq2500 high output 516 

run (50 cycles, single end).  517 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted November 27, 2018. . https://doi.org/10.1101/456434doi: bioRxiv preprint 

https://doi.org/10.1101/456434
http://creativecommons.org/licenses/by/4.0/


22 
 

Illumina short reads were mapped to the Mtb H37Rv reference genome using BWA(Li and 518 

Durbin, 2010) (ver 0.7.13); the resulting mapping files were processed with samtools(Li et al., 519 

2009) (ver 1.3.1). Per-feature read counts were performed using the Python module htseq-520 

count(Anders et al., 2015) (ver 0.6.1p1) and Python (ver 2.7.11). We performed differential 521 

expression analysis using the R package DESeq2(Love et al., 2014) (ver 1.16.1) and R (ver 3.4.0). 522 

In the case of the identification of the signature of compensation we performed a comparison of 523 

RifR vs DS + DSevo + RifRevo. For the follow-up experiments we performed two separate 524 

comparisons: (DRN0072 + DRN0157 + DRN0052 + DRN0145 + DRN0155) vs (DSN0072 + DSN0157 + DSN0052 525 

+ DSN0145 + DSN0155) as well as individual DR vs DS comparisons. 526 

Gene set enrichment analysis was based on functional annotation from the Kyoto Encyclopaedia 527 

of Genes and Genomes and a custom collation of curated gene sets based on published reports. 528 

The overrepresentation analysis was based on Fisher’s exact as the discriminating test. 529 

In addition we transformed per-feature counts into transcript counts per million bases (TPM). 530 

TPM for each feature for each sample were calculated using the following formula:  531 

𝑇𝑃𝑀𝑖 =  

𝑐𝑜𝑢𝑛𝑡𝑠𝑖

𝑠𝑖𝑧𝑒𝑖

∑
𝑐𝑜𝑢𝑛𝑡𝑠𝑗

𝑠𝑖𝑧𝑒𝑗

𝑛
𝑗

 

Where countsi refers to the number of reads that map to a feature i, and sizei refers to the length (in 532 

bp) of feature i. This ratio was normalized by dividing by the sum of all the ratios across all the 533 

features.  534 

Proteomic analysis with SWATH-MS 535 

We harvested 20 OD600 equivalents from mid-log phase (OD600 = 0.5 ± 0.1) bacterial cultures by 536 

centrifugation (3,000×g, 7 min, 4°C). We washed the bacterial pellet twice with phosphate 537 

buffered saline (PBS) to remove residues of tyloxapol. We re-suspended the bacterial pellet in 500 538 

μl of protein lysis buffer (8M Urea, 0.1 M Ammonium bicarbonate, 0.1% RapiGest [Waters]) and 539 

transferred the suspension to a Lysing matrix B tube (MP Biomedicals). We disrupted the 540 

bacterial cells using a FastPrep24 homogeniser (40s, intensity setting 6.0, MP Biomedicals). We 541 

clarified the lysate by centrifugation (12,000×g, 5 min, 4°C), and sterilised the supernatant by 542 

passing it twice through a 0.22 μm syringe filters (Milipore). 543 

Following protein extraction for each sample, we used trypsin to digest proteins into peptides 544 

and then desalted them using C18 columns (The Nest Group). The cleaned up peptides were re-545 

suspended in MS buffer (2% v/v acentonitrile, 0.1% v/v formic acid). Finally, the RT-kit 546 
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(Biognosis) containing 11 iRT retention time normalization peptides was spiked in to every 547 

sample. 548 

We measured every sample in sequential window acquisition of all theoretical mass spectra 549 

(SWATH) mode, a data independent acquisition implementation, on a tripleTOF 5600 mass 550 

spectrometer (AB Sciex) coupled to a nano flow HPLC system with the gradient of one 551 

hour(Banaei-Esfahani et al., 2017). The raw files acquired through a 64 variable width window 552 

precursor isolation scheme were centroid normalized using Proteowizard msconvert. We used 553 

the Mtb spectral library described earlier(Schubert et al., 2013) to extract data using the 554 

OpenSWATH workflow(Reiter et al., 2011; Rost et al., 2014; Rost et al., 2016). The processed 555 

data were filtered by MAYU to 1% protein FDR(Reiter et al., 2009). R packages aLFQ and 556 

MSstats were used for protein quantification (Top3 peptides and top5 fragment ions(Schubert et 557 

al., 2015)) and differential expression analysis respectively(Choi et al., 2014; Rosenberger et al., 558 

2014). 559 

Mycobactin determination 560 

We harvested 5 OD600 equivalents from mid-log phase (OD600 = 0.5 ± 0.1) bacterial cultures by 561 

centrifugation (3,000×g, 7 min, 4°C). We washed the bacterial pellet three times with 15ml of 562 

cold, sterile 7H9 medium base devoid of additives (BD) to remove residues of tyloxapol. After 563 

washing we resuspended the pellets in 80 μl of cold, sterile 7H9 medium base and added 750 μl 564 

of 1:2 Chloroform:Methanol. We vortexed the samples for 5 minutes at top speed and added 750 565 

μl of Chloroform. The samples were shaken for 1.5h at room temperature and clarified by 566 

centrifugation (16,000 × g, 10 min). We transferred the organic phase to a fresh tube, dried the 567 

samples in a speedvac and re-suspended each sample in 120 μl of 44:44:2 568 

Acetonitrile:Methanol:H2O, (v:v:v). 569 

Chromatographic separation and analysis by mass spectrometry was done using a 1200 series 570 

HPLC system with a Phenomenex Kinetex column (1.7 µl × 100 mm × 2.1 mm) with a 571 

SecurityGuard Ultra (Part No: AJ-9000) coupled to an Agilent Technologies 6550 Accurate-Mass 572 

Q-Tof. Solvent A: H2O, 10mM ammonium acetate; Solvent B: acetonitrile, 10mM ammonium 573 

acetate. 10 µl of extract were injected and the column (C18) was eluted at 1.125 ml/min. Initial 574 

conditions were 60% solvent B: 0-2 min, 95% B; 2-4 min, 60% B; 4-5 min at initial conditions. 575 

Spectra were collected in negative ion mode form 50 – 3200mz. Continuous infusion of 576 

calibrants (Agilent compounds HP-321, HP-921, HP-1821) ensured exact masses over the whole 577 

mass range. 578 
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We converted the raw data files to the mzML format using msConvert and processed them in R 579 

using the XCMS(Smith et al., 2006) (ver 3.0.2). We extracted targeted ion chromatograms with 580 

CAMERA(Kuhl et al., 2012) (ver  1.34.0). 581 

Transcriptional module analysis. 582 

The iron-responsive sub-graph of the global gene regulation network published by Peterson et 583 

al.(Peterson et al., 2014),  was generated by using all expression modules and all iron-responsive 584 

genes as nodes, with edges connecting them representing module membership. All other gene 585 

nodes were discarded, keeping only the information pertinent to the number of genes present in 586 

each module (its degree). We focused explicitly on modules with at least 3 IdeR-dependent iron-587 

responsive genes within them. Finally we marked significant differential expression of the gene 588 

nodes in every comparison. 589 

For the purposes of contextualising the expressional profiling of RpoB Ser450Leu we selected a 590 

subset of expression modules as follows: first we collated all the genes that were differentially 591 

expressed in at least one genetic background as determined by pairwise comparisons. We then 592 

scored each expression module for enrichment of membership by differentially expressed genes 593 

using a binomial test. We retained all modules for which the test pointed to an excess of 594 

differentially regulated genes (p < 0.05). We constructed a new sub-graph of the global regulatory 595 

network using all enriched modules and their constituent genes irrespective of whether or not 596 

individual genes were significantly differentially expressed. Edges reflected module membership. 597 

We added expression information in the form of log-fold changes of abundance to each 598 

subgraph based on pairwise analyses. 599 

Calculation of genetic distance between clinical isolates 600 

Genetic distance between strains was defined as the number of single nucleotide variants (SNV) 601 

that separate two strains. The numeric value of this parameter was extracted from the phylogeny 602 

published elsewhere(Borrell et al., 2018). 603 

Quantification of the relative impact of the rpoB mutation on gene expression in 604 

different clinical isolates 605 

We define the dissimilarity in the expressional response to the presence of the rpoB mutation 606 

using three metrics: absolute number of shared significantly differentially expressed genes, the 607 

fraction of both the shared significantly differentially expressed genes and shared non-affected 608 

genes (hamming distance) and the Euclidean distance between ratios of TPM. The first is simply 609 

the number of shared genes that were found to be significantly affected by the presence of the 610 

rpoB mutation in two different genetic backgrounds. For the second we use the same input to 611 
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calculate the hamming distance between the patterns of genes significantly affected by the 612 

mutation in rpoB in two different genetic backgrounds. In the third case we first calculate the 613 

TPM. We then calculate the mean TPM for each gene across the biological replicates as well as 614 

the ratio of mutant to wild type mean TPM for every gene. This gives us a vector containing 4000 615 

ratios for each mutant-wild type pair. Finally we calculate the Euclidean distance between these 616 

vectors for the different genetic backgrounds. We plotted each of these metrics against genetic 617 

distance and calculated the spearman correlation and the coefficient of variance: standard 618 

deviation over mean multiplied by 100 (σ / μ × 100%). 619 

Quantification of the absolute impact of the rpoB mutation on gene expression of a 620 

clinical isolate 621 

We used transcript counts per million bases (TPM) and label free quantification (LFQ) to 622 

generate an RNA vector and a protein vector containing all the available information for each 623 

measured sample. We then calculated all the possible DS – RifR pairwise Euclidean distances for 624 

the RNA and protein vectors within each genetic background. We used the mean and standard 625 

deviation for the dissimilarity estimates. We evaluated the correlation between the fitness cost of 626 

RpoB mutations and the expression distance using the R2-coefficient derived from ordinary least 627 

squares linear regression as well as the Spearman correlation. Arbitrary units expressing the 628 

dissimilarity were obtained by dividing the calculated distances by 500,000 or 10,000,000 for TPM 629 

and LFQ, respectively. 630 

Estimation of the biosynthetic cost of protein production 631 

The calculation of biosynthetic cost was based on the molecular weight of amino acids 632 

(MW)(Seligmann, 2003) or on the estimate of E. coli ATP investment into individual amino acids 633 

derived by Akashi et al.(Akashi and Gojobori, 2002) using the following formulae: 634 

𝑝𝑖 =  𝐿𝐹𝑄𝑖,𝑋 × ∑ 𝛼𝑗
𝑀𝑊

𝑘

𝑗=1

    or    𝑝𝑖 =  𝐿𝐹𝑄𝑖,𝑋 × ∑ 𝛼𝑗
𝐴𝑇𝑃

𝑘

𝑗=1

  

𝑃𝑋 =  ∑ 𝑝𝑖

𝑛

𝑖

 

Where the cost of protein i (pi) was calculated as the sum of the cost for each constituent amino 635 

acid (αj
MW/ATP) based either on its molecular weight (MW) or ATP investment (ATP) and adjusted 636 

by the proportional contribution of protein i to the total proteome of sample X (LFQi,X). The 637 

overall cost of the proteome P for a sample X (PX) is expressed as the sum of the costs of 638 

individual proteins (p). The difference between the biosynthetic investments in the proteome of 639 
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sample X when compared to sample Y was simply: PX – PY. We estimated the biosynthetic 640 

perturbation of RpoB Ser450Leu within a genetic background, by resampling sample-specific 641 

proteome costs for DS and RifR with replacement 100-times, and using the median as well as the 642 

3rd and 98th quantiles to provide the 95% confidence interval. Finally, we quantify the correlation 643 

with the relative fitness of RpoB Ser450Leu by calculating the Spearman coefficient. 644 

Minimum inhibitory concentration determination 645 

We used the microplate alamar blue assay(Franzblau et al., 1998) to determine the minimum 646 

inhibitory concentrations of bedaquiline in all drug susceptible and drug resistant strains used in 647 

our study. We tested bedaquiline using a two-fold dilution series spanning a concentration of 4 648 

ng/ml – 1 µg/ml. 649 

Fluctuation Assay for determining the frequency of rifampicin resistance 650 

We used the Luria-Delbrück fluctuation assay(Luria and Delbruck, 1943) to determine the 651 

frequency of rifampicin resistance in Mycobacterium smegmatis. Briefly, we inoculated 30 parallel 652 

cultures containing 10 ml of modified Middlebrook 7H9 medium containing either glycerol, 653 

citrate or acetate as the main carbon source with 5000 colony forming units of pre-adapted M. 654 

smegmatis. We grew the cultures to mid-log phase (OD600=0.5) at which point we chose three 655 

cultures at random for the determination of overall population size. We harvested the remaining 656 

bacteria by centrifugation 4000×g for 7 minutes, re-suspended the cellular pellet with 500 µl of 657 

fresh Middlebrook 7H9 medium and plated onto Middlebrook 7H10 solid media supplemented 658 

with 200 µg/ml Rifampicin. Plates were incubated at 37°C for 3-4 days and scored by counting 659 

the resulting resistant colonies. We determined the population-wide number of mutants (m) using 660 

an in house implementation of the Ma-Sandri-Sarkar maximum likelihood estimation(Sarkar et 661 

al., 1992), and adjusted it by the estimated population size to determine the frequency of 662 

resistance. 663 

Quantification and statistical analysis 664 

Unless otherwise stated we preformed the analyses using Python 3.5.2 augmented with the 665 

following modules to provide additional functionality: Matplotlib (ver 2.0.0), Numpy (ver 1.12.1), 666 

Scipy (ver 0.19.0), Pandas (ver 0.20.1), statsmodels (ver 0.8.0), sklearn (ver 0.18.1), and netwrokX 667 

(ver 1.11). All the details pertaining to the statistical treatment of data can be found where results 668 

are described: either in the main text, figure legends or methods. 669 

Data and Software availability 670 

All RNAseq data were deposited in the ArrayExpress repository of the European Bioinformatics 671 

Institute under the E-MTAB-7359 accession. The mass spectrometry proteomics data have been 672 
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deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the 673 

dataset identifier PXD011568. These data are pertinent to Figures 2-5 and all Supplementary 674 

Figures with the exception of Figure S6. 675 

A record of data analysis pertinent to this paper will be made available at 676 

http://www.github.com/swissTPH/TBRU_cost_of_resistance/. 677 
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