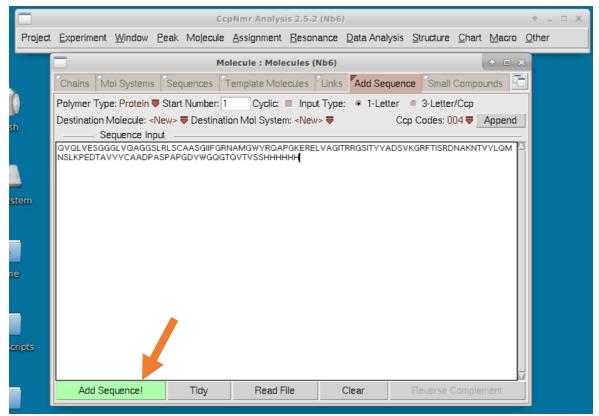
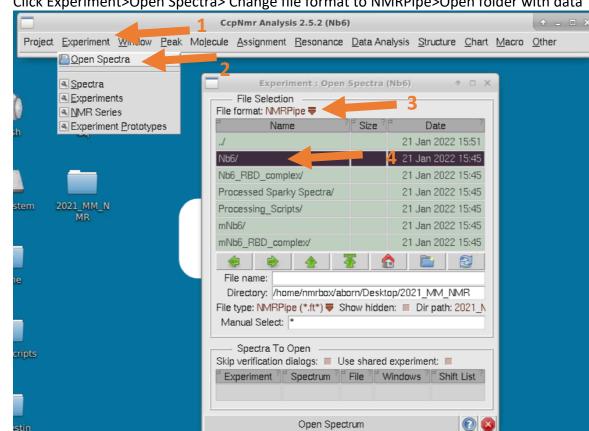

ccpNMR Tutorial


- 1. In the NMRbox terminal, type "analysis" to open ccpNMR analysis
- 2. Create new Project

- b. Project>New>Name:Nb6_MM
- 3. To add Nb6 amino acid sequence:
 - a. In ccpNMR, go to Molecule>Molecules>Add Sequence

		_	CcpNn	nr Analysis 2.5.	2 (Nb6)			x
Project	<u>E</u> xperiment	Window Peak	Molecule As	signment <u>R</u> esor	nance <u>D</u> ata Analy	rsis <u>S</u> tructure <u>(</u>	<u>C</u> hart <u>M</u> acro <u>O</u> t	her
			Molecu	ile : Mongiles ((Nb6)		+ = ×	
	Chains Mo	ol Systems	quences Temp	plate Molecules	Links Add Seq	uence Small Co	ompounds 🛅	
h	Mol System	? [≓] Chain ^{? =} Code	Molecule Template	Residues	Chain ? Fragments	Molecular Types	?⊫? Details	
e tem								
	Show Seq		lete nain	Copy Chain	Add Sequence		volecule nplates	
		or new chain: <n ain Fragments</n 	lew> ♥ Templat	e for new chain:	<none> 🛡 🛛 🕅</none>	ake Changer m	Template	
	3 ?3 #	Mol Type	Residue			near ? ⁼ ymer?	? Sequence	
ripts								


- b. Open "Nb6_sequence_ILVMA_resonances.docx" just by double clicking the file in the folder on NMRbox (not in ccpNMR). Copy Nb6 amino acid sequence (CTRL C for everyone, regardless if your computer is Mac/Windows)
- c. Paste sequence into ccpNMR (CTRL V)

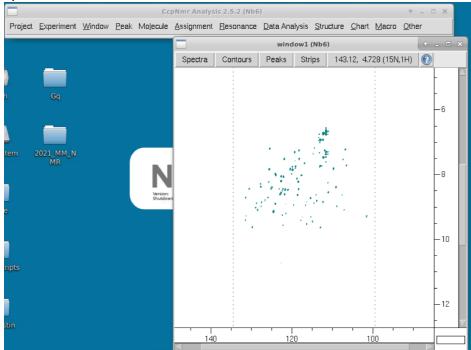
d. Add Sequence> hit OK 3 times when prompted

]						Ccp	oNmr Ana	lysis 2	.5.2 (N	b6)							ф _	0
roject	<u>E</u> xper	iment	<u>₩</u> indo	w <u>P</u> e	eak Mo <u>l</u> e	cule	Assignme	ent <u>R</u> e	esonand	e <u>D</u> ata	Analysis	<u>S</u> tru	cture	<u>C</u> hart	Maa	cro <u>(</u>	<u>O</u> ther	
						Мо	lecule : M	olecul	es (Nbe	5)					• [×		
	Chain	s M	ol Syste	ms	Sequence	es 🏹	emplate N	1olecul	es ⁽⁷ Lir	iks 🖓 Ad	d Seque	nce 🗄	Small	Compo	unds			
	[≓] Mi Syst		[≓] Cha Cod		Molecu Templa		Residu	es ?=	Cha Fragn		Molec Type		3	Deta	ils	ŝ		
	M	S1	A		Molecu	e 1	125		1		prote	ein	_E Q∖	QLVES	SGGG	ì		
2																		
		Show Seq			Delete Chain		Cop Cha			Ado Seque				t Molec emplate				
	Mol Sy	/stem f	or new	chain	: <new> 🖷</new>	Tem	plate for n	ew cha	ain: Mol	ecule 1 🖣	Ma	ike Ch	ain Fr	om Ten	nplate	:		
	8000	_ Ch	ain "A"	Fragr	nents		216	1	2	8					_			
	#	Mol	Туре	R	esidues		art Seq umber		ear mer?			Sequ	ence			r.		
	1	pr	otein		125	E	1	Ŷ	es	GIn V	'al GIn Le	eu ∀al	Glu Se	er Gly G	Gly Gl	y		
5																		

4. Load Nb6 ¹⁵N-HSQC

b. Open spectra: Find file to upload>Give name>Open experiment

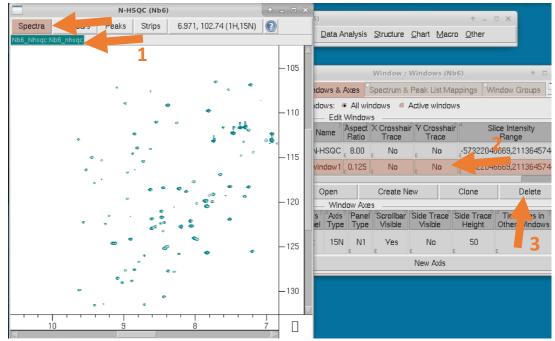
Mama	C ▼ ? ₽	Size	? =	Det	
Name		Size		Dat	
					an 2022 15:45
pdata/			_		an 2022 15:45
Nb6_nhsqc.ft2		209920	00	21 Ja	an 2022 15:45
a (
File name: Nb8					
	me/nmrbox/abor				
File type: NMRPip		ow hidden:	Dir pat	h: Nb6_nhs	ela 📤
Manual Select:	*				
Spectra To	0.2				
Skip verification		shared evne	eriment:		
Experiment ?	Spectrum ?	File		Windows ?	[≅] Shift List [?]
	opeoram			********	Shine Else
Nb6_Nhsqc	Nb6_nhsqc	Nb6_nhsq	c.ft2	First	ShiftList 1


c. Referencing box will appear> click commit in top right hand corner

a. Click Experiment>Open Spectra> Change file format to NMRPipe>Open folder with data

# ?	Experiment Name	t ? [#] External ? Source	External ? ^a Name	Category	5 H		Type Synonym		Full ? Type	Alt Types
1	Nb6_Nhsq	C E	E	through-bo	nd	15N	HSQC/H	MQC	_E H[N]	<none></none>
	Propa	agate Experimen	nt Type			Ed	it Experin	nent Pr	ototypes	
_	Experiment D)im-Dim Transfer	rs				Dimensio	on Map	ping —	
Ē		Transfer Type Between Dims	Second Dim		p Ref n Dim		Isotope	Re	ef Measure	ment
E	1 (15N)	onebond	_E 2 (1H)	1	E	2	15N	2 Shi	ft(N) ∨ariab	de timing
				2	E	1	1H	3,1 Sh	ift(H) varia	ble timing

d. Choose "Type Synonym" (should auto-pick 15N-HSQC/HMQC> Close-All done

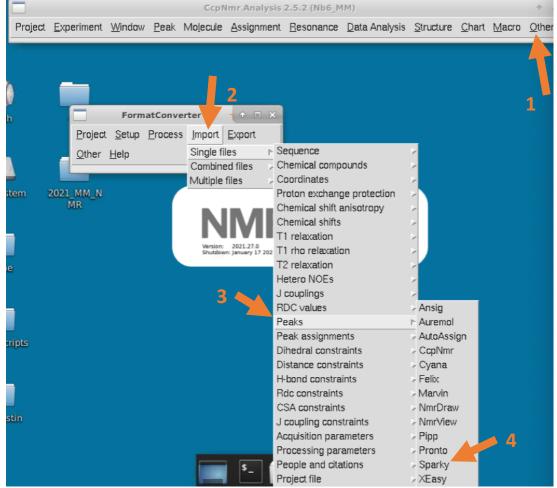

e. Spectra loaded

- 5. <u>Change Spectra Window</u>: Unfortunately, the spectra's dimensions are flipped from what we typically want, so we just need to switch the 1H and 15N Dimensions
 - a. Window>Windows>Create New

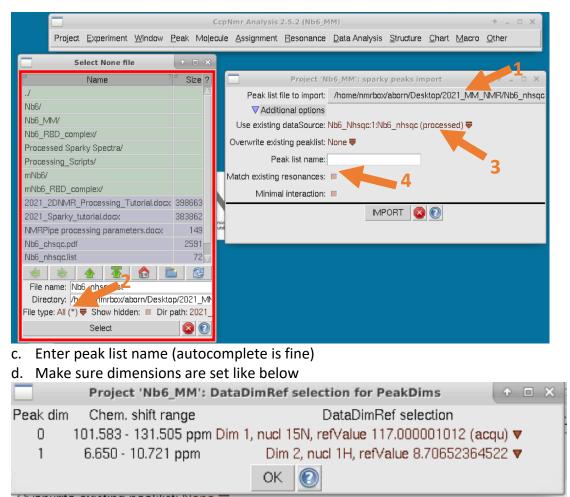
	-	ilecule <u>A</u> ssig	nment l	Resonance	Data Analys	is <u>S</u> tructure	<u>C</u> hart <u>M</u> acro			
	Mindows Axes									
		En d	•		Vindows (Nb		* 0 *			
	New Window Print Window	Vindows &			ctive window:		dow Groups			
h Gg	Marks and Rulers	Edi	t Window	s						
	NH: window 1	- Name	Aspect Ratio	Crosshair X Crosshair	Y Crosshair Trace	Slic	e Intensity Range			
	NITLOW T	window1	_E 0.125	_e No	_e No	_e -57322046	669,2113645744			
tem 2021_MM_N										
MR										
						2	_			
		Open		Create Ne	w	Clone	Delete			
e		Axis [?] Axi	ndow Axe s Pane	<u> </u>	Side Trace	Side Trace	Tied Axes in			
		Label Typ	е Туре	Visible	Visible	Height	Other Windows			
			N _E N1 H H1	_E Yes	_E No _ No	50 50	E			
mpts			. _Е	E	E	E 00	E			
					New Axis					
– Fill in all parar	meters as wri	tten bel	ow>C	reate W	/indow					
		v : New W					↑ □ X			
	ow: window1	=		Strips						
Template winde	OW. WILLOWIN	Columns: 1								
Template window			C	olumns:	I 🕈 ROW	•••••				
New window na		-	C	olumns:	I 🕈 KOW					
New window na Axes		z2 None								
New window na —— Axes x 1H ♥ y 15N —— Vieve	ame: N-HSQC ▼ z1 None ▼ d Spectra		₹ z3	None 🛡	z4 None					
New window na —— Axes x 1H ♥ y 15N —— Viev 9 Space	ame: N-HSQC ■ z1 None ■ d Spectra trum	[⊨] Visibl	₹ z3	None 🗮	z4 None olbar?		k Lists			
New window na —— Axes x 1H ♥ y 15N —— Viev 9 Space	ame: N-HSQC ▼ z1 None ▼ d Spectra		₹ z3	None 🗮	z4 None		k Lists ?			
New window na —— Axes x 1H ♥ y 15N —— Viev 9 Space	ame: N-HSQC ■ z1 None ■ d Spectra trum	[⊨] Visibl	₹ z3	None 🗮	z4 None olbar?					
New window na —— Axes x 1H ♥ y 15N —— Viev 9 Space	ame: N-HSQC ■ z1 None ■ d Spectra trum	[⊨] Visibl	₹ z3	None 🗮	z4 None olbar?					
New window na —— Axes x 1H ♥ y 15N —— Viev 9 St at	ame: N-HSQC ■ z1 None ■ d Spectra trum	[⊨] Visibl	₹ z3	None 🗮	z4 None olbar?					
New window na —— Axes x 1H ♥ y 15N —— Viev 9 Space	ame: N-HSQC ■ z1 None ■ d Spectra trum	[⊨] Visibl	₹ z3	None 🗮	z4 None olbar?					
New window na —— Axes x 1H ♥ y 15N —— Viev 9 Space	ame: N-HSQC ■ z1 None ■ d Spectra trum	[⊨] Visibl	₹ z3	None 🗮	z4 None olbar?					

- d. New window will appear with the spectra with correct axes (may need choose spectra in window.
 - i. You may also want to delete the old "window 1" to help declutter

6. Adjust spectra contour levels: Contours>More>Choose 20 levels and multiplier of 1.2

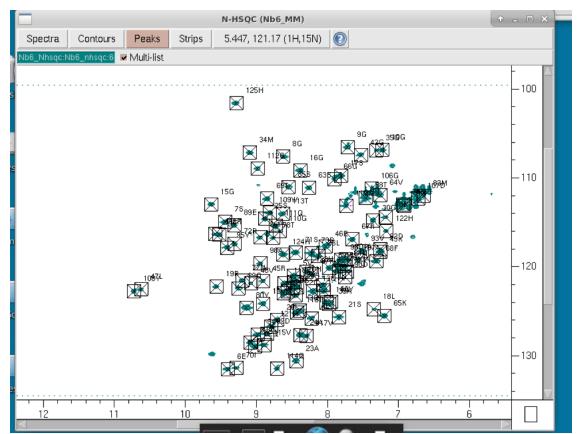

	N-	H5QC (Nb6)		↑ _ □ X				\uparrow	_ 0	×	
Spectra Co	ntours eaks	Strips	8.609, 103.70 (1H	,15N)	sis <u>S</u> tructur	e <u>C</u> hart	t <u>M</u> ac	ro <u>O</u> th	er		
👍 🐓 +1	-1 Pos/Neg	More.	2							2	
					Spectrum C	ontour L	evels	(Nb6)			• • >
				Spectrum		Glo	bal sca	ale —			
				Nb6_Nhsqc:Nb6_i	nhsqc 🛡	10000				/2	*2
			۰.	Spectrum Prop	erties	10^5	1				+ + +
	_					-10-0					
		•	٠	Auto contou	r levels - Nb6	Nhsqc:N	lb6_nh	sqc —			
		e	*	Base level:	14834922	/2	*2		- •	+ + +	
	۵	•	<u>ن</u> ا	Number of levels:	20	-1	+1	5	10	15	20
	۰.	۰ ۰		Level multiplier:	1.2000	1.2	1.3	1.4	1.5	1.6	1.7
	•	- ⁻		Positive Ve	egative 🔹 N	lultiph	els (Add le	evels	2	
	-	• •	• 。 .	Positive leve							
		•		14834922, 17801	906, 2136228	37, 2563	4 45, 3	076169	4, 3691	4033, 4	429683
	- e - 1	`	• •	Negative lev	/els						
	-	• • •	•	-14834922, -1780	1906, -21362	287, -25	634745	5, -30761	694, -3	691403	3, -442
			• •	Apply Auto L	evels	,	Apply N	/lanual E	dits	-	- 🕐 🧕
	-		•								

- 7. <u>Save experiment:</u> can do anytime and should be saved frequently afterwards. Project>Save As.
- 8. Adjust spectra parameters like color, font size, etc...
 - a. (This is optional now, but will definitely be useful to know how to do once you add other spectra) Experiment> Spectra> Display Options

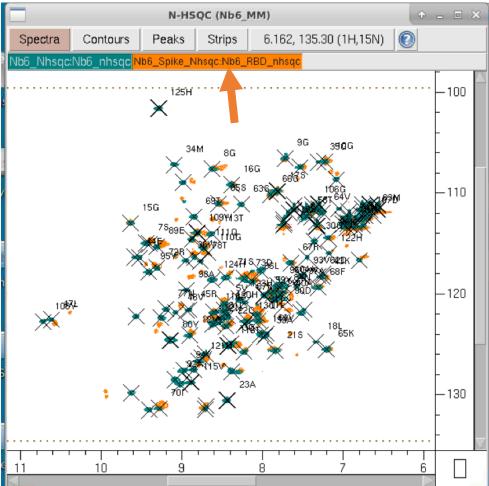

		CcpNmr Analysis 2	.5.2 (Nb6_MM)	 . 	×
Project Experim		ec le Assignment	<u>R</u> esonance <u>D</u> ata Analysis	<u>S</u> tructure <u>C</u> hart <u>M</u> acro <u>O</u> ther	
E <u>O</u> pen	Spectra		N-HSQC (Nb6_MM)	↑ _ □ X	
Spect		Spectra Contours	Peaks Strips 6.8	673, 116.56 (1H,15N)	
S NMB		🏤 😽 +1 -1	Pos/Neg More		
	iment <u>P</u> rototypes			- 🛛	6
		Experiment : S	pectra (Nb6_MM)		1
Spectra Display Option	s he encing	Tolerances File Details	Data Locations	Delete Spectrun	n 🛅 💽
₽ ₽ Spectrum	Positive Negativ Colours Colour		Rank Positive Contours	? [⊨] Negative Contours	Use Contou Files
1 Nb6_Nhsqc:Nb6_nhsqc	c _e teal _e magen	ta <mark>E navy</mark> E Yes	e 0 e14834922,[18],473	946081 -14834922,[18],-473946081	_E No
Contour Levels		Contour Files	Propagate Contours	Set Ranks From Orde	
			_	-120 L	

9. Load assignment file

a. Other> Format Converter> Import > Single Files> Peaks> Sparky


b. Fill in info like below. To find your peak list, click "All" in File Type> Nb6_nhsqc.list> select> Use existing data source> Unclick match existing resonance> Import

- e. Popup says you were successful in importing file, hit next/ok
- f. Run linkResonances- since we previously defined the molecular system by loading the amino acid sequence, we will now link the amino acid sequence to the important peak list/resonances. Just hit "yes". Link with default settings.
- g. Link chains as below: most important to select "link to code ' ' "" in middle column> Ok


- h. Should get popup that linkResonances ran successfully> Ok
- i. SAVE PROJECT!!!
- 10. Center peaks
 - a. When you look at your spectra, you will notice that the markers do not line up precisely with the top of the peak. We want these markers to line up perfectly to accurately determine peak position and height/intensity. Left click anywhere on the spectra while holding down and span over all the peaks so all peaks are selected (shown as boxes)

- b. Then click "shift p" (holding down shift when push p). The markers should have moved to the max of each peak. Scan the spectra to make sure this occurred. You can zoom into the spectra using the wheel of your mouse (if have 3 button mouse). Move around spectra using the vertical and horizontal scroll bars
- c. Delete old peak list. Peak> Peak list> Select old Nb6 NHSQC peak list (should have 0 peaks)> Delete
- 11. <u>Load ¹³C-HSQC of Nb6</u> exactly as we previously loaded the ¹⁵N-HSQC. When you choose the experiment, pick "13C HSQC/HMQC". Adjust contour levels as well.
 - a. You will need to flip the H and C dimensions as done previously: Window> Windows> Create New. After new H-C window created, delete C-H window for less clutter!

Win	dow : New Wind	low (Nb6_MM)	+ = ×
Template window: window:	dow2 🗮	Columns: 1 ₹ I	20us: 1 =
New window name: C-H	ISQC		10w3. 1 🗸
Axes			
/x1H♥ y13C♥ z1 No		🔻 z3 None 🗮 z4 N	one 🗮
Viewed Spectra	a		
Spectrum	Visible	? 🥤 In Toolbar	? 🌱 Peak Lists 🖕
Nb6_Chsqc:Nb6_chs	sqc _F No	F Yes	1
C			
		(<u> </u>	
Create Window!	Selected Visible	Selected Not Visible	Selected Not In Toolbar

- 12. <u>Load ¹⁵N-HSQC of Nb6+Spike</u> as previous. You should not need to make a new window this time. Change the color of the spectra if you'd like
- 13. Overlay the spectra
 - a. In the spectra tab, toggled between which spectra are shown so both apo Nb6 and Nb6+Spike are overlaid.

b. Adjust referencing values in Nb6_Spike: Experiment> Spectra> Referencing> Choose correct Nb6_spike spectrum> Adjust reference ppm as listed

			Exp	eriment : Sp	ectra (Nb6_M	M)			• • • •				
Spectr	a Display	Options Reference	ing Tolerance	es File Deta	ils Data Loc	ations		Delete Sp	ectrum 📑 💽 🄇				
pectru	ectrum: Nb6_Spike_Nhsqc:Nb6_RBD_nhsqc = Use reduced dimensionality options: Reference changes keep constant peak: point ppm												
Dim sotupe Spectrometer Spectral Width (ppm) width (Hz) Spectral ppm Point Orig. number Point Offset Frequency (product of point Spectral frequency (product of point) frequency (product of p													
1	15N	_E 81.086	35.000	_E 2838.008	_e 117.000	_E 257.000	_E 512	_E O	E				
2	1H	_E 800.134	7.811	e 6250.000	_e 8.611	_E 513.000	_e 1024	_E O					
		Add Sub-dimens	ion Copy			F	Remove Sub-dir	mension					
_													

- 14. Transfer peak assignments from Nb6 (apo) to Nb6+Spike
 - a. Peak>Peak Lists> Select Nb6_Nhsqc> Copy Peaks> Choose destination list of Nb6_Spike_NHSQC

Experiment ?	Spectrum	? T ist	Active?	Color	Symbol	No. Peaks	% Assigned	Synthetic?	3
Nb6_Nhsqc	Nb6_nhsqc		Yes	_E black	- X	123	69.1	No	_e sparky format,
Nb6_Chsqc	Nb6_chs	1	Yes	_E black	E X	0	0.0	No	E-1
Nb6_Spike_Nhsqc		qc 1	Yes	_e black	E X	123	69.1	No	E
	1. Sour	ce							
							3. De	stinati	on
					2.				

b. As there are many peaks that are unassigned, I would delete the unassigned peaks from the list. Peak> Peak lists> Peak table> Select Peak list "Nb6_Spike"> Sort list by clicking "assign F1"> Select with cursor and holding shift key to select all unassigned peaks> Delete

					Peak : Pe	ak Lists (Nb	6_MM)			•	
Pe	eak Lists	Peak -	Table	Synthet	ic Lists					(0
Pea	ak List: Nb	6_Spike	_Nhsqc:I	Nb6_RBD	_nhsqc:1 🛡	Position Uni	t: ppm 🗮 🛛 S	Strip Selected	📕 🔲 Find	Peak Wir	ndow: I
Sta	atus: Any 🖣	🔻 Structi	ure: <no< td=""><td>ne> 🗮</td><td></td><td>1</td><td>St</td><td>trip Locations</td><td>📕 🔲 Go To</td><td>Position <no< td=""><td>ne> 🗮</td></no<></td></no<>	ne> 🗮		1	St	trip Locations	📕 🔲 Go To	Position <no< td=""><td>ne> 🗮</td></no<>	ne> 🗮
# ₽?	Position F1	Position F2	Assign F1	Assign F2	Height	Volume ?	Line Width F1 (Hz)	Line Width F2 (Hz)	Merit	Details	? [⊨] Fi?
52	_E 113.240	_e 6.752	E		-6.165e+10	_E 6.004e+11	_e 167.086	_E 236.532	1.000 _E No (original numbe	er _e 🛆
53	_E 111.649	_e 7.607	E	E	_E 330 e +10	_E 2.305 e +11	_e 72.554	_E 27.901 _E	1.000 _E No (original numbe	er _E
54	_E 113.240	_e 7.319	E	E	_e 4.799e+10	_e 4.152 <mark>e+</mark> 11	_e 70.112	_e 47.527 _e	1.000 _e No (original numbe	er _E
56	_E 113.428	_e 6.852	E	E	_e 8.122 e +10	_e 7.706 e +11	_e 61.374	_E 217.301 _E	1.000 _e No (original numbe	er _E
59	_E 112.660	_e 7.738	E		_e 4.139e+10	_e 3.344e+11	_e 86.434	_e 32.632 _e	1.000 _e No (original numbe	er _E
65	_E 113.071	_e 7.002	E	E	_e 4.734 e +10	_e 3.564 e +11	_e 50.683	_E 104.622	1.000 _e No (original numbe	er _e
74	_E 111.618	_e 7.460	E	E	_€ 1.097e+10	_€ 7.575 e +10	_e 29.696			original numbe	
77	_E 113.428	_e 6.949	E	E	L	_E 1.217e+12	_E 53.885			original numbe	
79	_E 111.786		E	E		_€ 1.007e+11	_E 11.035			original numbe	
80	_E 116.368	_E 8.842	E	E		_E 1.529e+11	_e 244.426			original numbe	
82	<u>_</u>		E		-	E1.006e+11	_E 30.414		·	priginal numbe	
84		E 7.083	E	E	_E 8.5⊿1e+09	€4.766e+10	E 17.042			priginal numbe	
89	_E 111.837	_E 6.923	E	E	362e+09	_E 6.637e+10	_E 9.637	_E 345.989 _E	1.000 ENO (original numbe	er _E
Δ	dd Ec	lit [] In	nalias	Delete	Assign	Deassign	n Set De	etails Set	As Current	Resonar	ices
_								Assign Propa			

15. <u>Adjust peak assignments on Nb6+Spike spectra</u>: this will be difficult as many peaks move/disappear. Do your best to assign shift perturbations typically by assigning peaks to nearest shift. Consider changing the contour levels to aid in the assignment. If a peak has completely disappeared and/or hard to

assign, DON'T move or delete it. A peak that moves so much it can't be assigned is also useful information.

- a. To adjust peaks, just click on the assignment you want to move with left cursor, then move your cursor to where the peak has moved, and click "p". Then, select your peak again, and click "shift+p" for the program to center it at the maximum intensity.
- b. Disclaimer: this will be difficult, as most peaks move/disappear. Typically, the binding partner would be added in smaller amounts too so we can see smaller shifts making the spectra easier to assign.
- 16. Plot chemical shift perturbations vs amino acid number
 - a. Data Analysis> Shift Differences> Peak list A "Nb6_Nhsqc"> Peal list B "Nb6_Spike"
 - b. Sort by residue (click)

	,		· · ·		CcpNm	⁻ Analysi	s 2.5.2 (I	Npe_WW)				
Proje	ct <u>E</u> xperimer	nt <u>W</u> ind	low <u>P</u>	eak N	1o <u>l</u> ecule <u>A</u> s	ssignmer	nt <u>R</u> esor	nance <u>D</u>	ata Analysis	<u>S</u> tructur	re <u>C</u> hart	Macro	<u>0</u>
		_	_	_	N-HSC	C (Nb6	MM)		Measuremen				
	s	pectra	Cont	tours	Peaks	Strips	7.404,	, 114.4	<u>N</u> MR Series			_	
1									Shift Differe				
9									<u>H</u> eteronucle 3J H-Hα <u>C</u> ou				
י ו	<u> </u>		Dat	a Anal	ysis : Shift	Differe	nces (Nbi	SIMMO				_	
	Peak List C	omnoria							Follow <u>Inten</u> Follow <u>S</u> hift	-	-		
		ompans otions -		niit Lisi	. Companso	in j seqi	uence Allų		PALES: Aligi				
	Peak List		b6_Nh:	sqc:Nb6	6_nhsqc:4 🖣	Peak L	ist B:		MODULE: A			3	
tem	Atom Nar	mes 1: H	I,H1			Atom N	lames 2: [N					
	Scale fac	tor 1: 1	.0000			Scale fa	actor 2: 🛛	0.15000					
	Residue(s)	Reson.	[≡] Shift [?]	=Shift?	[⊨] _∆1 [?]	Reson?	[≓] Shift ?	[≓] Shift ?	[⊨] _∆2 ?		hift [?] 2		
e	2Val	1 H	1A	1B	(ppm) 7.878e-03	2 N	2A	2B 120.276	(ppm) -0.195	Sum [0.037 0	Dist '		
e	3Gln	H		7.842 8.359	-0.025	N		124.899		0.037 0			
	5Val	Н		8.475		N		120.780		0.034 0			
	7Ser	Н		9.411	-0.031	N		114.755		0.065 0			
rinte	8Gly	Н	8.622	8.608	-0.014	N	107.589	107.384	-0.205	0.045 0	.034		
ripts	9Gly	Н	7.711	7.726	0.015	N	106.545	106.540	-5.246 e -03	0.016 0	.015		
	10Gly	Н	7.223	7.222	-8.355 e -04	N	106.871	106.737	-0.134	0.021 0	.020		
	11Leu	Н	8.054	8.058	3.876 e -03	N	122.672	122.600	-0.072	0.015 0	.011 🗸		
	Show Pe	eaks	U U	pdate	Ma	ak e Shift	Difference	e List	Show (On Struct	ure		
stin		_		_		_							

c. Anywhere in the graph: right click> Graph> Seq Num> Shift Dist

Peak List O Peak List Atom Na Scale fac	otions – t A: N mes 1: H	b6_Nh: I,H1		t Compariso 6_nhsqc:4₹	P	eak L tom N	ist B: lames 2: 1 actor 2: [Vb6_ V	Spike	_Nhsqc:Nbf	6_RBD	_nhsqc	×1
∃ Residue(s)	Reson: 1	[≓] Shift [?] 1A	[≓] Shift [?] 1B	[⊨] Δ1 ? (ppm)	R	eson? 2	[≓] Shift ? 2A	[∃] Sh 2l	nift ? B	[≝] ∆2 ? (ppm)	[≓] Shift? Sum	Shift? Dist	?
2Val	Н	7.834	7.842	7.878 e -03		Ν	120.471	120	120.276	-0.195	0.037	0.030	Δ
3Gln	Н	8.384	8.359	Filter		N	124.958	124	.899	-0.059	0.034	0.027	\square
5∀al	Н	8.468	8,475	Export		N	121.009	120		-0.229	0.041	0.035	
7Ser	Н	9.442	9-411-	Graph	1		w Number			-0.226	0.065	0.046	
8Gly	Н	8.622	8.608	Print Table info			sidue(s)		384	-0.205	0.045	0.034	
9Gly	Н		7.728			X:Shi X:Shi	ft 1A ft 1P		540	-5.246 e -03 w Number	0.016	0.015	
10Gly	Н			-8.355 e -04			(ppm)				0.021	0.020	
11Leu	Н			3.876e-03			ft 2A			sidue(s) ift 1A	0.015	0.011	
Show Peaks		Update Ma			ke	X:Shi	ft 2B ! (ppm) ft Sum ft Dist		Y:Sh Y:∆ Y:Sh Y:Sh	ift1B I(ppm) ift2B	On Structure		
					\$	X:Sec	q Num	r N	Y:Sh	2 (ppm) ift Sum ift Dist			

d. Can adjust the type of graph (line/bar)