Using Molecular Docking For Ligand Discovery

Promise: in the next hour you will learn about molecular docking

Context

The Drug Discovery Pipeline

Screening in early drug discovery

10⁶³ molecules with 30 heavy atoms containing N,C,S,O,H (Bohacek, 1996)

Techniques in pre-clinical drug discovery

- Ligand-based pharmacology/med. chem.
- Natural Product-based discovery
- High Throughput Screening
- Structure-Based
 - Structure-based design
 - Virtual screens
- Protein therapeutics
- Cell-based therapeutics

Molecular Docking: Lecture Goals

- What docking is
- How docking works
- Why docking is hard
- Success stories
- Opportunities / frontiers
- What you can expect from a docking campaign
- More stories
- Suggestions on how to get started
- Failures/limitations/caveats
- Summary
- Suggestions on how to get started

What docking is

Docking large libraries for new chemotypes

each in ~10⁶ orientations & conformations

Test high-scoring molecules

How docking works

Calculating orientations in DOCK

hot spots on protein surface

molecular surface of binding site Recluster based on Sphere radius: Single cluster segregated into two smaller ones.

Match ligand atoms onto Hot spots using internal distances

ⁿC_m: thousands of orientations per molecule

Mysinger, JCIM 2010; Fischer, Nature Chem. 2014; Balius, PNAS, 2017

Ionic interactions ("salt bridges") Ionic: $E = q_1 q_2 / 4\pi\epsilon r = 332 \ge q_1 q_2 / \epsilon r \ kcal/mol$

Dielectric Constants of	some media
Water (20°C)	80.3
Water (0°C)	87.7
Methanol	33.6
Liquid H ₂ S (-85.5 °C)	9.3
Beeswax	2.9
Liquid Argon (-191°C)	1.5
Vacuum	1.0

Hydrogen bonds Dipole-Dipole (1/r³, often modeled through partial charges)

directionality important; hydrogen bond in vacuum ~ 7 kcal/mol

non-bonded interactions: dispersion-attraction (van der Waals)

Binding dominated by Non-polar Interactions T4L Core Mutant with Benzene (Kd 400 µM)

Interaction inventory: ~300 A² buried surface 4.8 kcal/mol

Non-bonded 'interactions': Hydrophobicity

Steve Mack

Other interactions: stacking, quadrupolar, chelation.

What do we approximate \checkmark what do we miss? **x**

Types of Interaction	Strength	Effect of Distance	
Ionic	V. Strong	1/r, long range	\checkmark
Ion-Dipole	Strong	1/r ² , short range	\checkmark
Dipole-Dipole	Moderate	1/r ³ , short range	\checkmark
Hydrogen Bond	Moderate	$1/r^{3}$ (?) short range	X
Ion-Induced Dipole	Weak	1/r ⁴ , v. short range	X
Dispersion	V. Weak	1/r ⁶ , ext. short range	\checkmark
Repulsion	Ext. Strong	$1/r^{12}$, ext. short range	X
"Hydrophobic"	Weak	??	

Conformationals states Desolvation: Ligand, Protein Entropy: conformational, configurational, vibrational

 $\Sigma(q_i P_i + v_i P_v) - \Delta H_{solv_charg} + \Delta H_{solv_np}$

= dock score

Why docking is hard

Challenges illustrated in two β-lactamase campaigns: 2-6% hit rates, ~30 uM K_is

Success stories

docking vs GPCRs: 17 to 58% hit rates, nM activities

0.01 to 3 uM Kolb, *PNAS* 2009

A2a: 35%, 0.2 to 3 uM Carlsson, *JMC* 2010

 5%,
 muscarinic: 58%
 D3 model: 23%

 6 uM
 0.4 to 40uM
 0.2 to 3uM; Carlsson,

 7 JMC 2010
 Kruze, Mol Pharm 2013
 Nature CB 2011

CXCR4:17%, 0.3 to 30uM Mysinger, *PNAS* 2012

MRGPRX2 probe

Lansu, Nature CB 2017

GPR68 probe Huang, *Nature* 2015

Mu Opioid: 30%, 4 nM Manglik, *Nature* 2016

And yet (sometimes) it can prioritize likely ligands

buried cavities:

docking	fragmt docking	HTS
	75%	

GPCRs:

docking	fragmt docking	HTS
17-60%	40-75%	~0.1%

Test

AmpC:

docking	fragmt docking	HTS
2-11%	48%	0%

CTX-M:

docking	fragmt docking	HTS
0%	55%	

Opportunities / frontiers

docking libraries have exploded

make-on-demand library: 109 2-component reactions 72,000 building blocks

Example building blocks

functional group coverage improves in "make-ondemand" vs. "in-stock"

Mol. Wt

What you can expect from a docking campaign

28,310 core hours

JK Lyu, Trent Balius, Isha Singh, unpublished

99 million vs <u>β-lactamase</u>: 11% hit rate, x-ray structure confirms a docking prediction

99 million vs β -lactamase: 11% hit rate, unprecedented 1.3 uM phenolate in the oxyanion hole

Isha Singh, JK Lyu, Trent Balius, Nature in press

Success stories: GPCRs DRD4 melatonin

<u>G</u> Protein Coupled Receptors as targets

- 7-Transmembrane Spanners
- Signal across membrane
- Largest class of drug targets (>26% of drugs)
- Over >360 pharmacologically relevant GPCRs in the genome

x-ray structure of DRD4/nemonapride to 1.95 Å reveals a specificity pocket

Wang, Wacker, Levit, Science in press

As structure refined, docking begins for novel, biased DRD4 agonists

Compound 3

Y7.43

LECL2

16.54

C^{3.36}

F6.52

Test

2 hits (10 tested): DRD4: 56 & 213 nM (EC₅₀), 10x vs D2/D3 Wang, Wacker, Levit, *Science* in press

FECI

S^{2.6}

Analog-By-Catalog (ABC) improves affinity & specificity 10-fold (to 100x D2/D3)

EC₅₀ 213 nM

EC₅₀ 33 nM

68 nM

Wang, Wacker, Levit, Science in press

optimization to a 4nM Gi agonist (arrestin antagonist?) with 10,000-fold specificity vs D2/D3

Wang, Wacker, Levit, Science in press; M. Caron & R. Chandrasekhar, unpub

'924 decreases mouse movement & exploration

UCSF924

Success stories: melatonin

LSD vs melatonin GPCR crystal structures (2.9 A): novel ligands with new pharmacology

1.5x10⁸ lead-like
molecules
1.7x10⁶ configurations
2.5x10¹⁴ complexes
2 cluster days
BUT multiple control calculations

synthesize

& test 38

15 hits, 6 µM to 250 pM

Reed Stein, Hye Jin Kang, Bryan Roth, **Enamine**

unexpected in vivo behavior of MT₁-selective inverse agonists in circadian rhythm

Margarita Dubocovich, in Stein et al, under review

Success stories: DRD4

How many ligands *findable* in the library? 138 million vs. dopamine D4 10^{10^7}

138 million molecules
10¹⁴ complexes
1 mol/sec;10³ cores
1.8 cluster days

Test 30

Test 549

from top ranked: novel, selective, potent D4 ligands

hit rates correlate with docking rank

Sheng Wang, Bryan Roth ⁴⁷

AUC predicts 479,000 (<u>+</u>40%) DRD4 actives (10 uM) in 72,000 (<u>+</u>30%) scaffold families

Success stories: fragments

docking vs. xtal in cavity sites (if only they cured cancer)

Wei, *JMB* 2002; Brenk, *JMB* 2006; Graves, *JMB* 2008; Balius, *PNAS* 2017

Failures/limitations/caveats

Current research questions

- When do we reach saturation?
- Reproducing D4R in two-to-three more targets
- Expanding the testing limits (to 1500, 5000?)
- Sampling the 10¹¹ accessible molecules for docking
- Impact on polypharmacology?
- On selectivity?
- Bespoke, academic libraries?
 - Ellman, Hartwig
- Chemical Space (JK).
- Improving Analog-by-catalog with better theory (FEP)
- Tilting the plateau for better hit rates, rankings, affinities

Suggestions on how to get started with docking

- Join a docking lab
- Attend a docking course (September, Byers Hall)
- Download the software and read the manual and the literature
- DOCK Blaster
- Make a friend in a docking lab
- Become a venture capitalist, hire people from a docking lab

Summary

results may vary: µM to pM in 9 LSD campaigns

Reed Stein, Magdalena Korczynska, Chase Webb, Anat Levit, unpublished

Hit Rates