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Introduction

About me:
Background in Physical Chemistry & Biophysics
Ph.D. in Biophysics from EMBL, Heidelberg, Germany

Research in quantitative biology (computational & experimental)
http://kortemmelab.ucsf.edu

Development of computational protein design methods since 1999
https://www.rosettacommons.org

Earlier review on our work: Mandell et al, “Computer-aided design of
functional protein interactions” Nature Chemical Biology 2009

Recent highlight: Glasgow et al, “Computational design of a modular
protein sense-response system” Science 2019


https://www.rosettacommons.org/

Agenda

Background
— Why protein drugs

State of the field

— Principles of engineering & optimizing antibody drugs

Current research
— Creating protein drugs from scratch
— Computational protein design (Rosetta)
— Successes and challenges



Proteins are important therapeutics

« > 200 protein therapeutics on the market

Adalimumab/Humira Pen
Etanercept/Enbrel

Infliximab/Remicade
Rituximab/Rituxan

Bevacizumab/Avastin
Trastuzumab/Herceptin

Insulin glargine/Lantus

Epogen (erythropoietin)

Rheumatoid arthritis

arthritis
Non-Hodgkin’s B-cell lymphoma

Colorectal cancer
Breast cancer

Type | and Il diabetes

Renal anemia

$8 billion

$7 billion

$6-5 billion

$4.8 billion

$2.5 billion



Biologics are innovative
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Nature Reviews | Drug Discovery

a | Biologic NME approvals by the US Food and Drug Administration in 1986-2014, split into innovation
categories and 5-year time periods. b | Comparison of the innovativeness of biologic and small-molecule
NMEs approved in 1986-2014. NME, new molecular entity. “The last bar is only a 4-year time period.

Nature Reviews Drug Discovery 14, 83 (2015) doi:10.1038/nrd4535



Protein and small molecule drugs have
different targets




Protein and small molecule drugs have
different targets

e

HIV protease‘ |

+ flat interface  binding pocket (“druggable”)
* many interactions » fewer interactions



Proteins can be very potent in blocking protein-protein
Interactions

Interface

- a small molecule drug may not
have enough surface/binding
energy to efficiently block a
protein-protein interaction *

protein 2

* large protein-protein interfaces are difficult to disrupt with a small molecule,
although sometimes possible: see Jim Wells & Chris McClendon, Nature 2007



Protein-protein interactions important in cancer
are key targets for inhibition

MM-121

Trastuzumab
T-DM1
MM-302

Ertumaxomab
MM-11
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Migration & cycle control
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Journal of Cancer 04: 0117



Proteins drugs can be very potent in blocking protein-
protein interactions

- Pertuzumab inhibits
dimerization of Her2
with other Her
receptors

MM-121




Proteins can be very specific, because they can form many
defined interactions with their targets

. ' 2
s+ IL-2Rf  H133
: helix A helix C

Example IL-2/ IL-2 receptor, Wang et al., Science 310: 1159-1163, 2005

A protein drug may be able to form similar specific interactions to
distinguish a target, such as the IL-2 receptor, from a paralog that has
slightly different amino acids in the interface.




Agenda

Background
— Why protein drugs:

e potent as protein-protein interaction inhibitors
e can perform “endogenous” activity: insulin, human growth hormone, IL-2
e often very specific



Agenda

State of the field

— Principles of engineering & optimizing antibody drugs



Protein drug FDA approval 2011-2016
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Figure 2. U.S. Food and Drug Administration (FDA)-approved therapeutic proteins
(2011-2016*). (a) Bar graph showing the number of therapeutic protein FDA approvals by
year (2011-20167%). (b) Pie chart showing the distribution of FDA-approved therapeutic
proteins (2011-2016%) by drug class. *January 1, 2011, through August 31, 2016.

Lagassé HAD, Alexaki A, Simhadri VL et al. Recent advances in (therapeutic protein) drug development [version
1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):113



Monoclonal antibodies can be generated via immunizing mice
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But the problem with this approach: antibodies are from mouse
and can lead to immune reactions in humans!

(but even completely human antibodies can cause immune reactions)




Antibody
Structure

Antigen-binding
Fragment (Fab)

CDRs (complementarity-determining regions)
that bind the antigen are formed by a small
region: loops in the heavy (H1-H3) and light
chains (L1-L3)

Red spheres indicate amino acid residues mainly
responsible for target recognition

Framework
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Different classes of therapeutic antibodies have a
different fraction of mouse amino acid sequence

These are most desired

Approved therapeutic

antibodies

HUMAN
Humira
Vectibix

HUMANIZED
Synagis

Herceptin Types of mAbs

Zenapax

UTa

Murine Entirely murine amino acids
CHIMERIC Myelotarg
Rituxan Campath -
Remicade Xolair Chimeric Human constant (C)

+ murine variable (V) regions

Reopro Raptiva
OKT3 Simulect Avastin Humanized Murine complementarity
BEXXAR Erbitux Tsyabri determining regions (CDRs)

Zevalin (Actemra-Japan)

Human Entirely human amino acids



“Humanized” antibodies are a common solution to decease
the immunogenicity of mouse antibodies

« “transplant” the CDR loops from the mouse antibody onto
a human constant “scaffold”

 How? Insert into the gene sequence

Human scaffold

The problem with this approach: “transplanting” generally
decreases potency (small sequence differences in the scaffold can
change the precise structure / positioning of the CDR loops )




Can we use a human antibody scaffold in the first
place?

« Can be done using a technique
called “phage display”:
select from “libraries” of antibody Humira
variants where the scaffold is human i

and the red residues are varied

* Phage display can also be used A,
to improve potency: antibody |
“affinity maturation™ by selection in
the laboratory




“Phage display” can efficiently generate specific
antibodies (and also optimize them)
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By phage display, antibodies can be selected to be
specific for diverse antigens

The same “library” of antibody variants (that had the sequences of their
CDR loops randomized) was screened against 6 targets to yield 6 different

specific antibodies
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Agenda

Current research
— Creating protein drugs from scratch
— Computational protein design (Rosetta)
— Successes and challenges



Can we design (non-antibody) protein therapeutics
de novo?

o |et’s first think about why we
would want to...



Can we design (non-antibody) protein therapeutics
de novo?

Two case-studies:

— Vaccines
— Potent and selective mimics of endogenous proteins

Before we get to applications: How does de novo
protein design work? -> in Rosetta



A large community of research labs
develop Rosetta to model & design proteins

Source code free for academia: rosettacommons.org

Licensed for a fee by >70 companies
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Computational protein design (Rosetta) is an

optimization problem

INPUT

\_

Design Objective:

Structure &
Function
(represented at
all-atom level)

%

Score each structure-sequence
combination, find “best”

Monte-Carlo simulated annealing

Genetic Algorithms
SAT solvers
Dead-end Elimination

OUTPUT
4 N

Amino acid
Sequences
Optimized for
Design Objective &
Structure

o %




The key challenge is that the possible space is
absolutely enormous

possible sequences for 100 residue protein: 20100 ~ 10130
(most proteins are larger; only a small fraction will be functional)

number of atoms in the universe: ~ 1080



The key challenge is that the possible space is
absolutely enormous

possible sequences for 100 residue protein: 20100 ~ 10130
(most proteins are larger; only a small fraction will be functional)

number of atoms in the universe: ~ 1080

number of different proteins on earth today: ~ 1072

number of proteins sampled in evolution: 104" - 10°°



As a consequence, need to make simplifications

- How we "sample” space (reduced degrees of freedom)

- How we "score” solutions (approximate energy function)



Rosetta all-atom energy function
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As a consequence, need to make simplifications

- How we "sample” space (reduced degrees of freedom)

- How we "score” solutions (approximate energy function)

Both of these are main causes of errors and determine
current state of the field.



Despite these
simplifications, many
design successes:
small, "idealized”
folds

Closest native
structures

Koga et al, Nature 2012 DOI:
10.1038/nature11600

Dou, Vorobieva et al, Nature 2018
DOI: 10.1038/s41586-018-0509-0




In particular, a wealth of architectures from helical
bundles (that can be “functionalized”, more later)

PUAIVY )
R ARARAN

Huang, Boyken & Baker, Nature 2016 doi:10.1038/nature19946



Helical structures can be assembled into a range of
higher-order architectures

Huang, Boyken & Baker, Nature 2016 doi:10.1038/nature19946



Computational protein design: state of the field

(>3 decades of fundamental work, enormous progress in
applications in the last 15 years!)

* de novo folds built from rules: a, a/b and all-beta proteins
* new architectures, symmetrical assemblies & materials
 helical bundles, can be functionalized



Current challenges are in designing function

Sensors

switches

efficient enzymes

machines

... many complex and composite functions

key difficulties:

« precise control over irregular functional geometries
 often polar recognition

 switchable states (not deep minima)



An approach to circumvent this problem:
“transplant” functional region to new stable protein

Neutralization epitope

Epitope-antibody
complex
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Correia et al, Nature 2014
DOI: 10.1038/nature12966



Proof of principle for epitope-focused vaccine design
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De novo design of potent and selective and protein
mimics as therapeutics (case study IL-2)

a H1—>H2—>H3—H4

0
C€ad?)
\ .

g

Challenges with using IL-2 as drug:

« marginal stability, aggregation

 toxicity (perhaps by interaction with
IL-2Ralpha)

« immune response will also target
endogenous |L-2

e previous engineering efforts

compromised activity and / or
stability

Silva et al, Nature 2019 doi.org/10.1038/s41586-018-0830-7



A design strategy for IL-2 mimics

H1—H2—H3—H4

Gen2

Sequence design
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Silva et al, Nature 2019 doi.org/10.1038/s41586-018-0830-7



The design structure confirms the preserved (and
improved) interactions with beta and gamma

e f
=Neo-2/15 =HsIL-2 = NMmlL-2Rp —=Neo-2/15  =HsIL-2 — Mmy,

Outside these regions, Neo-2/15 is quite different from IL-2:
Sequence identity to human 14%, mouse 24%

Silva et al, Nature 2019 doi.org/10.1038/s41586-018-0830-7



Neo-2/15 has the desired binding properties (in vitro)

Binding

= Neoleukin-2/15 HsIL-2 = Super-2 = MmlIL-2
Human Mouse

HsIL-2Ra |_.— MmIL-2Ro.

-

—h
Q

= 1.0

no detectable
binding to alpha

o
o

- 0.0 '
10710 {108 10 10710 108 10

Normalized response (SPR)

1.0y HslL-2RB o 1.0 MmIL-2RB
- ﬂ+Hs|L-2Ry - ﬂ+Mm|L-2Ry
| t | t strong
| | binding to
0.01 e —m— Y] e beta-gamma
1010 108 10 1010 108 10

Concentration (M) Concentration (M)

Silva et al, Nature 2019 doi.org/10.1038/s41586-018-0830-7



Neo-2/15 has increased thermal stability

C Protein thermal stability
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Neo-2/15 shows limited immunogenicity
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Silva et al, Nature 2019 doi.org/10.1038/s41586-018-0830-7



Neo-2/15 is more effective than mouse IL-2 in a colon
cancer model

d Colon cancer
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In summary

e enormous progress in de novo design of protein structures

« promise to create fine-tuned new architectures for many
new functions

 design of function is more challenging

« some of these challenges can already be overcome by
building known functional elements into de novo
architectures with improved properties






