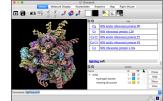
While we are waiting for other folks... Install ChimeraX:


https://www.cgl.ucsf.edu/chimerax/download.html

UCSF ChimeraX is the next-generation visualization program from the Resource for Biocomputing, Visualization, and Informatics at UC San Francisco.

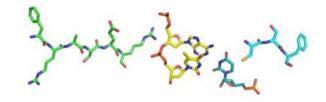
Download is free for academic, government, nonprofit, and personal use; commercial users, please see commercial

licensing.
 ChimeraX uses recent graphics features and works best on a newer computer (≤ 3 years old).
 Please <u>cite ChimeraX</u> in publications for which it was used.
 Latest Production Release
 Daily, Builds
 Change Log and Platform Notes
 Older Releases
 Download & Citation Counts

Features
 https://www.nature.com/articles/s41587-020-00778-3
 Missing Features

Latest Production Release

Production releases are stable platforms for ChimeraX Toolshed bundles to work with. You may need to use an older release if a bundle you wish to use has not been updated yet.


Operating System	Distribution	Notes
Windows 10 64-bit	ChimeraX-1.1.exe built: 2020-09-10 21:31:12 PDT committed: 2020-09-09 15:22:27 PDT size: 300.2 MiB md5: 0bbf1dee03bb33ee71c2d930ce454794 sha256: 7fed35e29f498466c7559b6f357531ce4f3ed15b1663783b014713b196441460	Download is a Windows installer. Tested on Windows 10. See Windows notes <u>below</u> .
macOS 10.13 64-bit	ChimeraX-1.1.1.dmg built: 2020-10-07 22:51:41 PDT committed: 2020-10-07 01:32:49 PDT size: 337.4 MiB md5: 32a908b72535aeeb4bcdbd8c9d3fff1a sha256: 2678efba1b11cd9400f2c432189e1b56ee73108f582c6427b13f7f0af5ed2cdb	Download is a disk image containing the application. Tested on macOS 10.13. Also works on 10.14, 10.15, and 11.0 (Big Sur).
Generic Linux 64-bit	ChimeraX-1.1.tar.gz built: 2020-09-10 21:42:44 PDT committed: 2020-09-09 15:22:27 PDT size: 390.9 MiB md5: a08113b964aae69bf7e6f1b3bfc34e1d sha256: a5f8bc54e55bda7243d49953bf329731ffac173bcb8ca1ed0e55fbf917601bf5	Download is a tarball of the chimerax application directory. ChimeraX executable is chimerax/bin/ChimeraX . Tested on Ubuntu 16.10 and Fedora 25. See Linux notes <u>below</u> .

Why is it so hard to design new small molecule drugs?

Inquiry Immersion 20-21 James Fraser (he/him)

Who am I?

- James (or Jaime, but not Jamie or Jim) Fraser - he/him pronouns
 - Background in Protein Biophysics and Evolutionary Biology
 - Ph.D. in Molecular and Cell Biology from UC Berkeley
 - I've run a lab at UCSF since 2011
- If you have additional questions:
 - email: jfraser@fraserlab.com
 - twitter: @fraser_lab

Class information https://fraserlab.com/inquiry/

Schedule

Monday Jan 4 - 2:30-4PM

- James Fraser: Intro to class and contrasting kinase and phosphatase drug discovery
 - Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase
 - Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.
- install ChimeraX

Tuesday Jan 5 - 2:30-4PM

- John Irwin: Docking what works and what doesn't
 - What docking is, how it works, and why it is hard; a review of some notable success stories "what docking can detailed look at 2 or 3 stories, focusing on how to run a docking campaign, and what to expect from the outcome production of the stories of the stories
 - resources DOCK Blaster, ZINC, DUDE, and how to use them.

Wednesday Jan 6 - 2:30-4PM

- Tom Goddard: ChimeraX demo
 - Elucidating the active delta-opioid receptor crystal structure with peptide and small-molecule agonists.
 - VR experience in Genentech Hall N453

Thursday Jan 7 - 2:30-4PM

- James Fraser: Fragment-based design and Crystallography 101
 - Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.
 - Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR
 - An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and coval
- Liam McKay: Tour of Crystallography facility
 - Crystalizing Lysozyme

Friday Jan 8 - 2:30-4PM

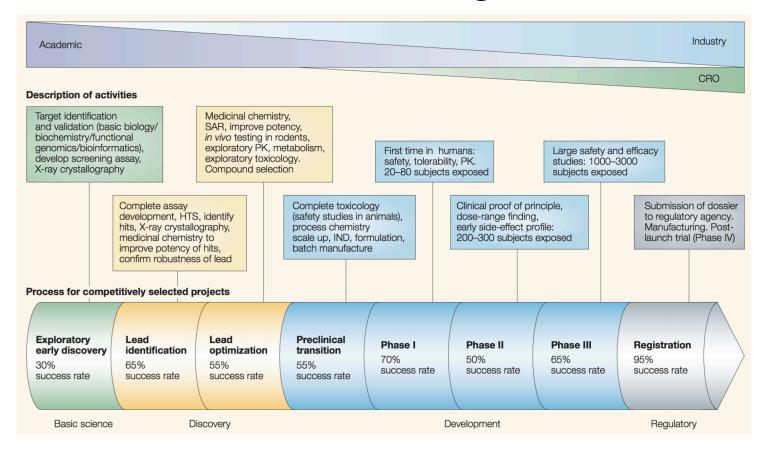
- Tanja Kortemme: Rosetta and Biologics
 - De novo design of potent and selective mimics of IL-2 and IL-15
 - Engineered ACE2 receptor traps potently neutralize SARS-CoV-2
 - De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.

Monday Jan 11 - 2:30-4PM

- David Bulkley: CryoEM facility tour
- James Fraser: cryoEM in drug discovery and antibiotics talk Synthetic group A streptogramin antibiotics that overc

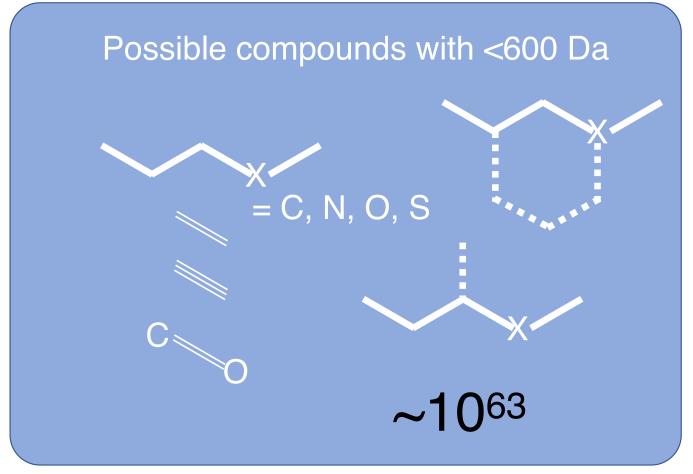
Tuesday Jan 12 - 2:30-4PM

Class time to work on final presentation


Thursday Jan 14 - 11AM-12PM

• final presentation!

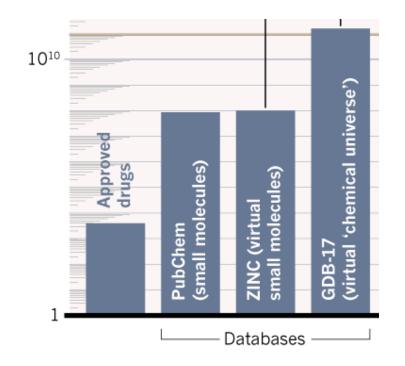
Circle!


- Who are you?
- Did you make a new year's resolution?
- What is one piece of pop culture you consumed over break?
- Why did you sign up for this class, what do you want to learn?
- Free for all questions?

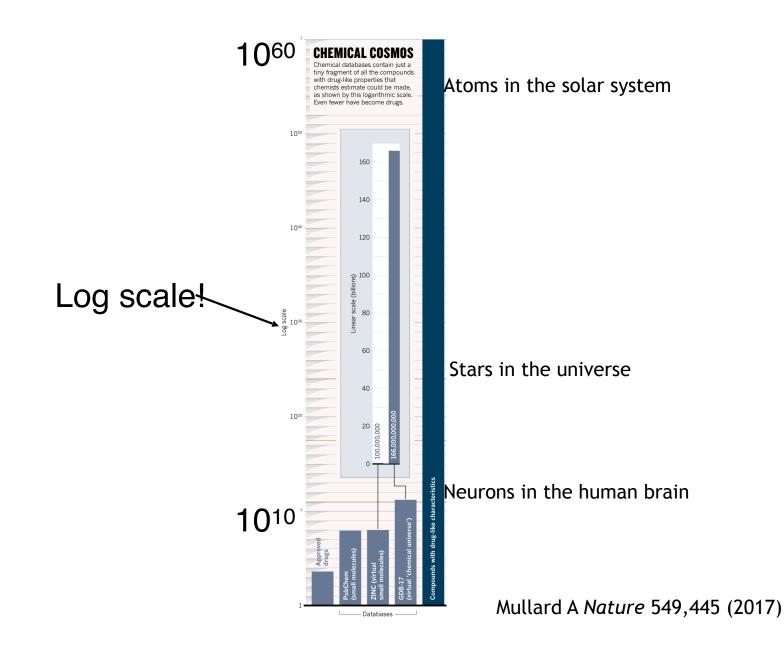
Why is it so hard to design new small molecule drugs?

Nwaka S and Ridley RG Nature Reviews Drug Discovery 2, 919-928 (2003)

Chemical space


Bohacek RS et al Molecular Research Reviews 1,3-50 (1996)

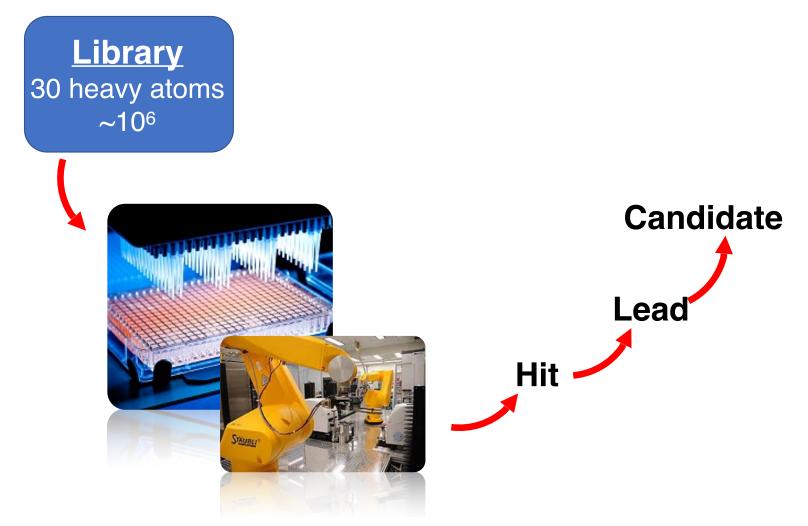
Chemical space is huge!

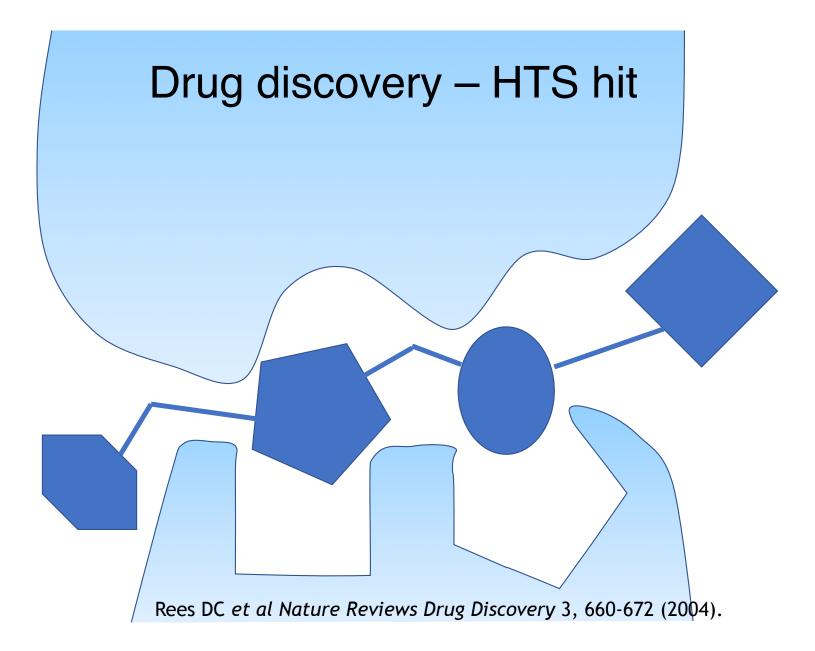


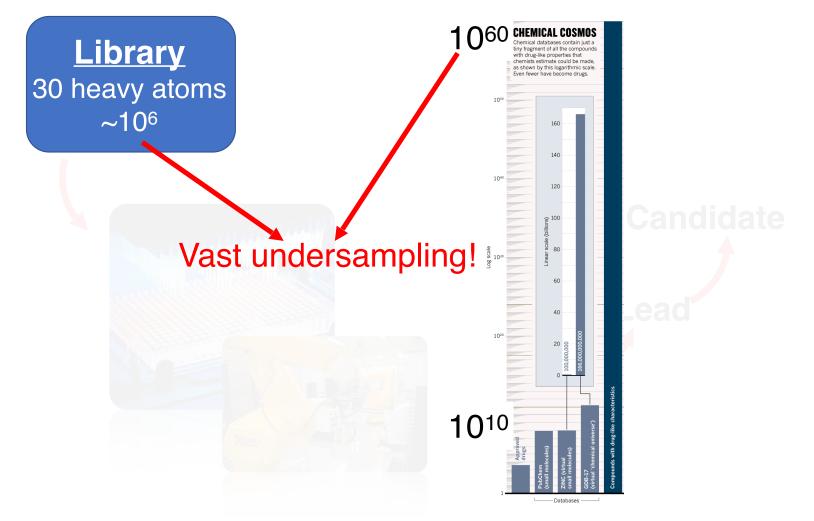
Mullard A Nature 549,445 (2017)

Chemical space is huge!

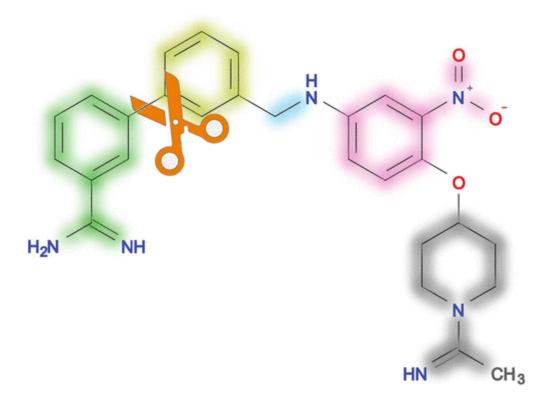
Mullard A Nature 549,445 (2017)

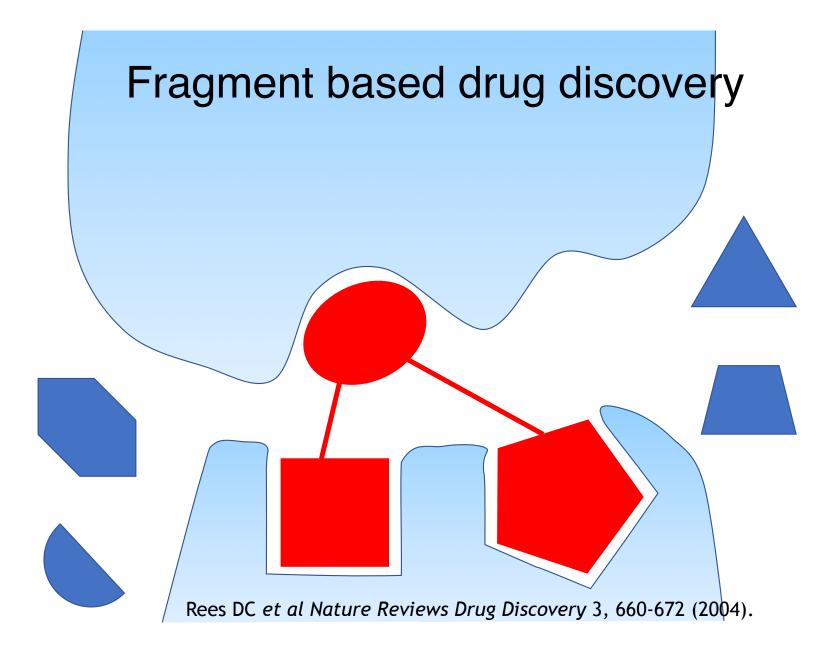

- What are the molecular interactions between ligand and protein?
- What are they worth energetically?
- How does that relate to affinity?
- How many interactions in between a typical drug and protein?
- How do they scale with size?
- What happens to specificity?


Needles in enormous haystacks

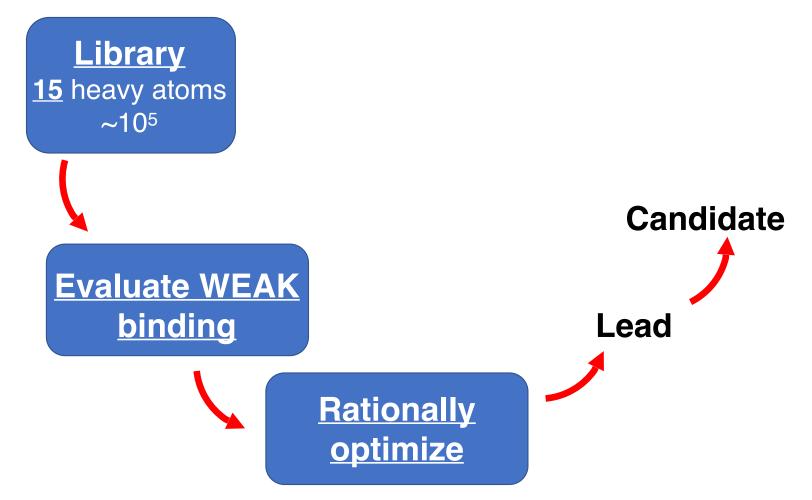

Finding that rare needle...

High throughput screening

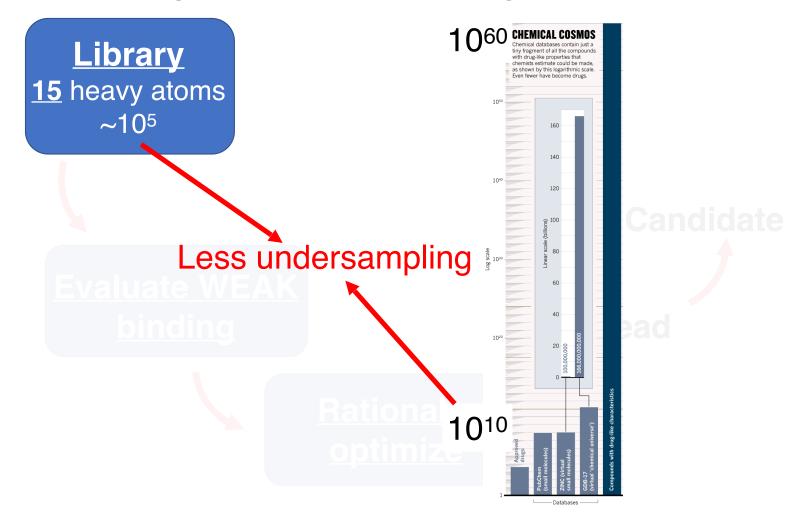


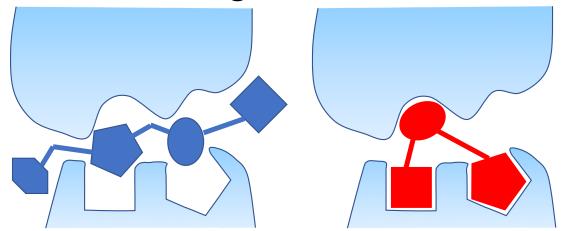


High throughput screening

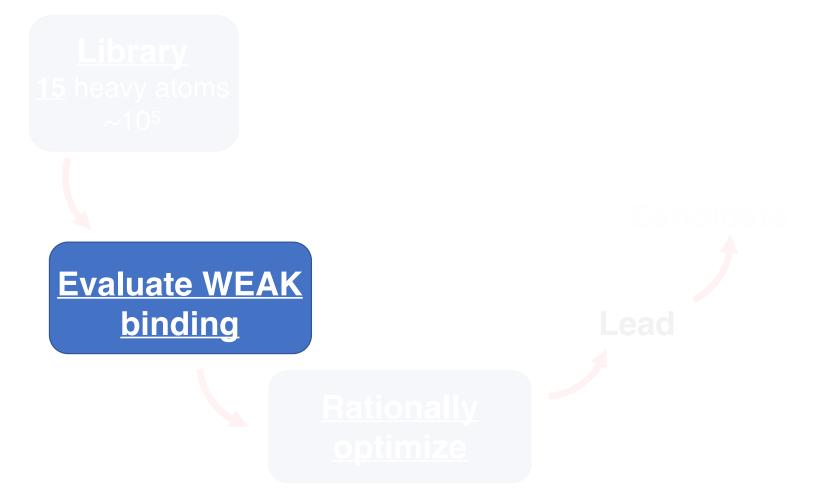


What is a **fragment**?

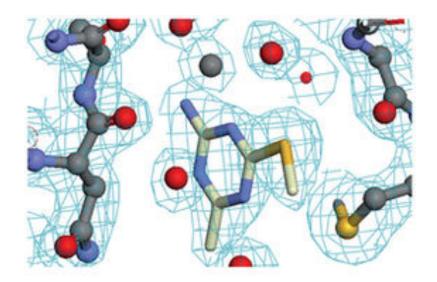



Fragment based drug discovery

Fragment based drug discovery

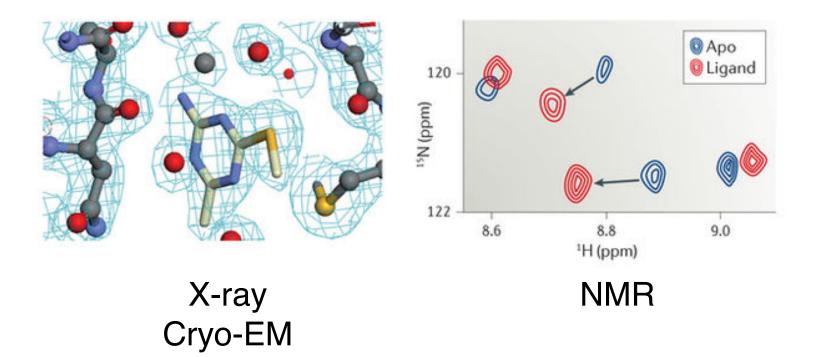


HTS vs Fragment based

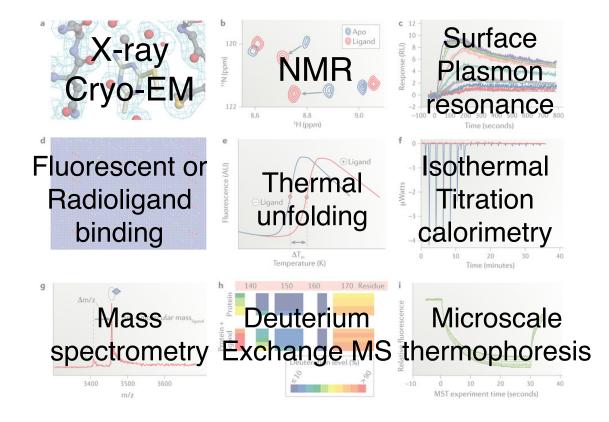


	High-throughput screening	Fragment-based
Library size	1,000,000 - 10,000,000	<10,000
Molecular weight	>300 kDa	<300 kDa
Screening	More flexible	Well characterized targets
Affinities	μM	mM
Optimization	Fixing problems, improving affinity	Iterative improvement
Main downside	Attrition, can't solve " challenging" targets	Biophysical methods are hard!

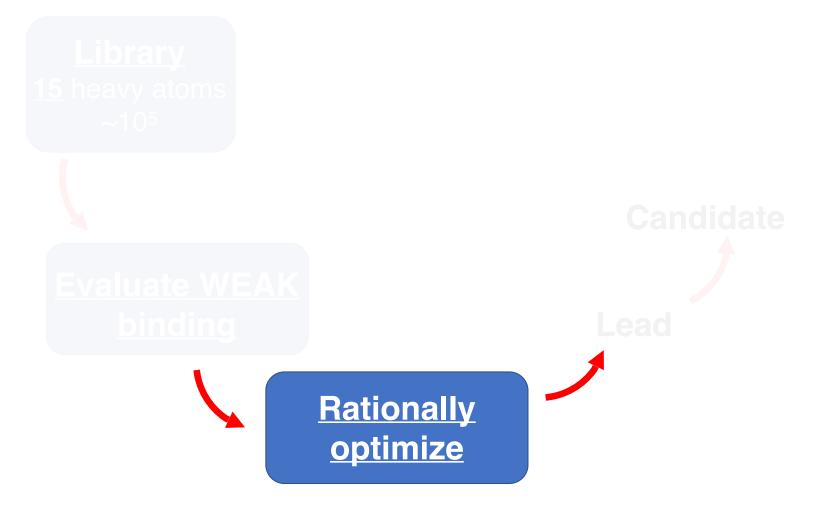
Fragment based drug discovery

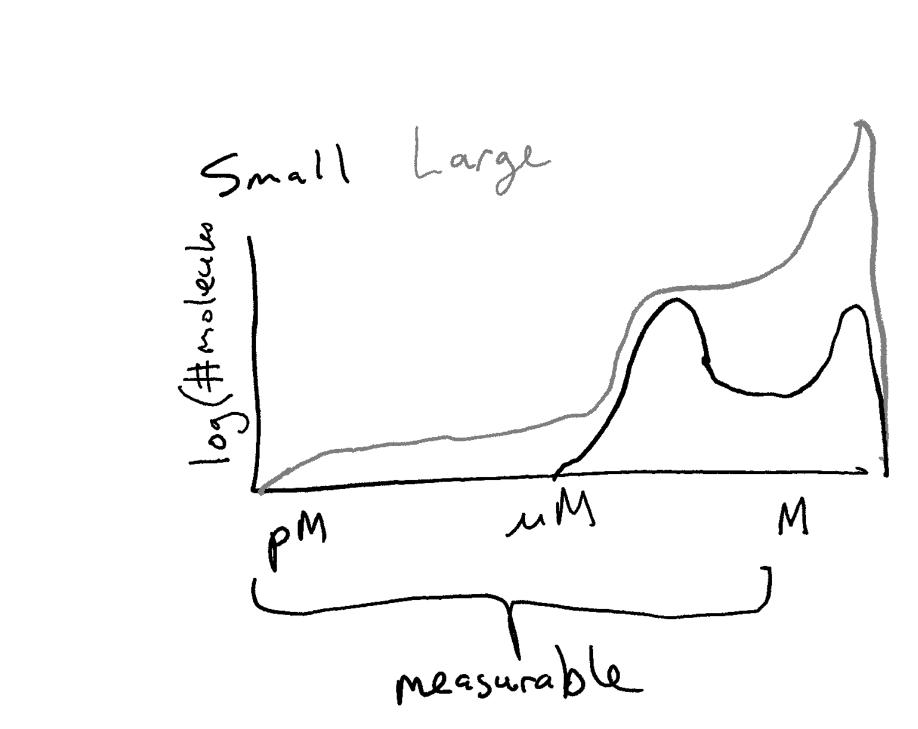

Assessing drug-target interaction

High resolution X-ray (or Cryo-EM) structure

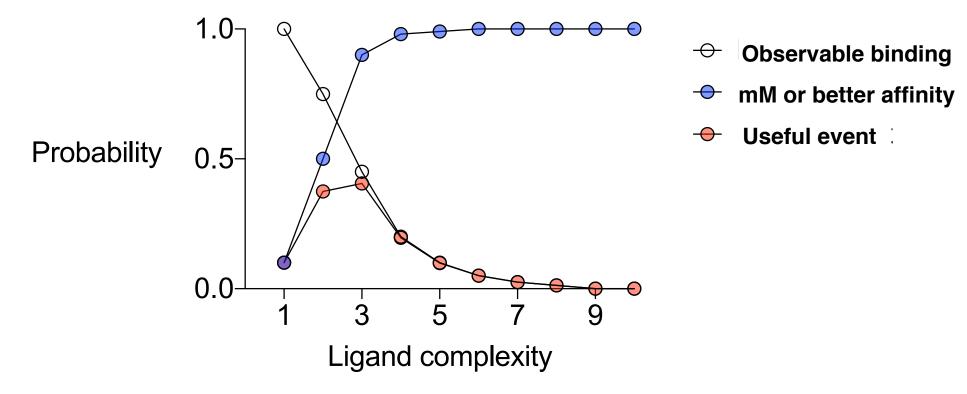

Renaud JP et al. Nature Reviews Drug Discovery 15,679-698 (2016)

Assessing drug-target interaction



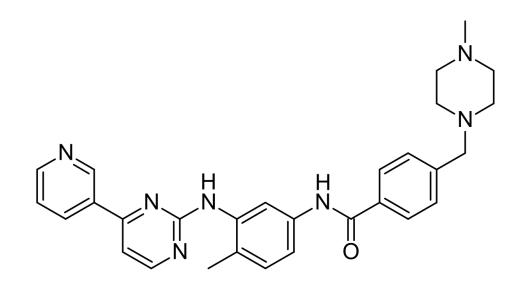

Renaud JP et al. Nature Reviews Drug Discovery 15,679-698 (2016)

Assessing drug-target interaction



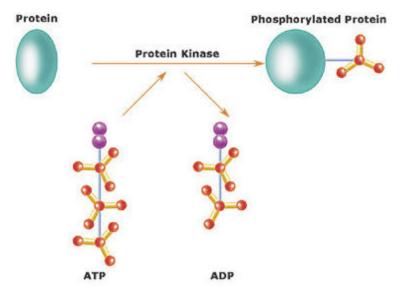
Fragment based drug discovery

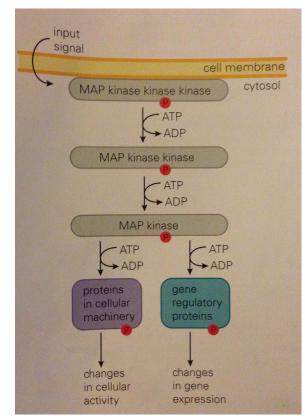
Why Fragments? Observability x Affinity = Usefulness


<u>J Med Chem.</u> 2016 Sep 22;59(18):8189-206. doi: 10.1021/acs.jmedchem.6b00197. Epub 2016 May 16. 💿 Paperpile

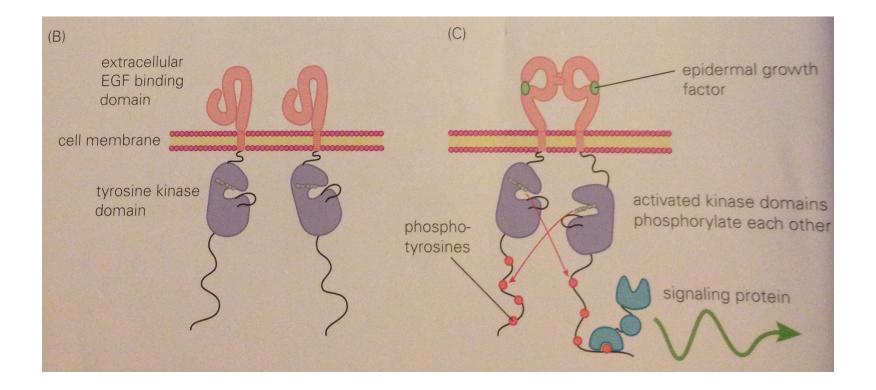
Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia.

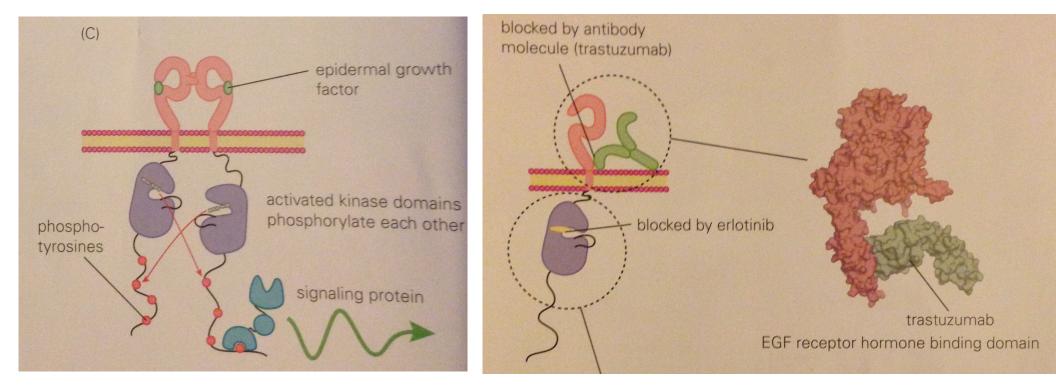
Keserű GM¹, Erlanson DA², Ferenczy GG¹, Hann MM³, Murray CW⁴, Pickett SD³.


Kinases have become one of the major drug target classes over the past 20 years

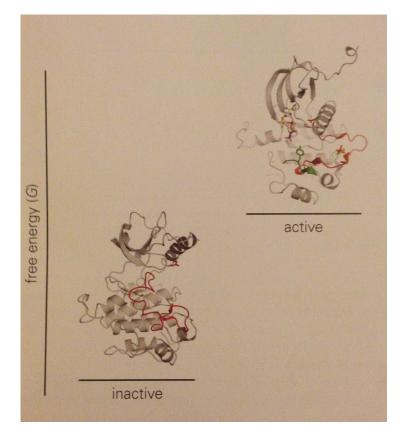


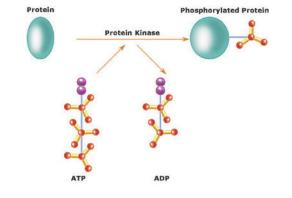
Break!

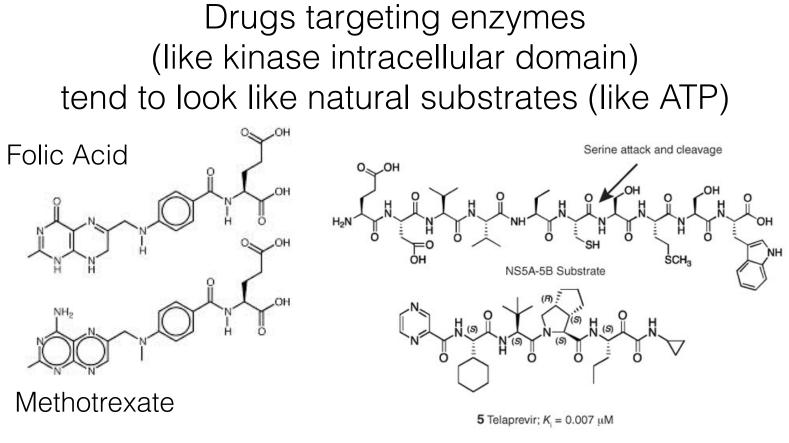

Kinases are enzymes that control cellular information flow


Control many **growth**/cell cycle signals Antagonized by **phosphatases** (to which there are no inhibitors in the clinic)

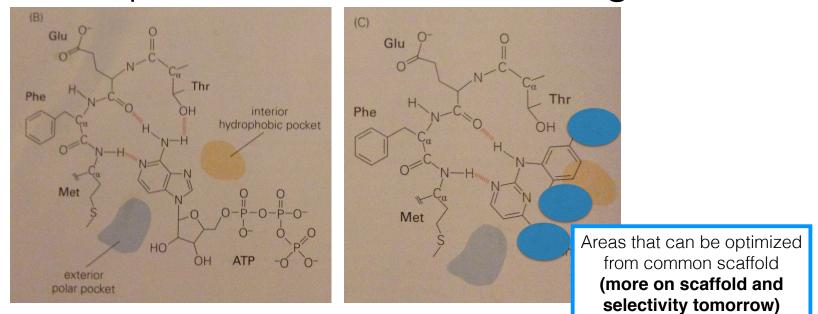
Receptor Kinases transmit signals from outside the cell, often through ligand-induced dimerization




Therapeutic antibodies block extracellular dimerization, often using a distinct set of interactions


More on antibodies from Prof. Kortemme (next Tuesday)

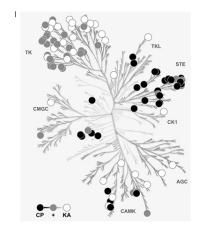
Kinases switch between active and inactive conformations


Hyperactive kinases are a common cause of cancer

Target: DHFR

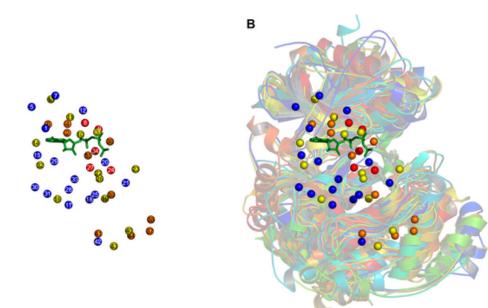
Target: HCV Protease

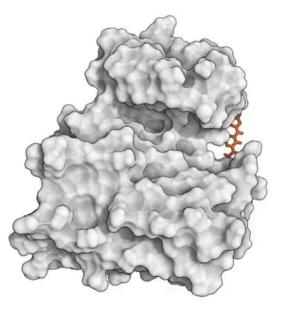
Kinase inhibitors mimic ATP and compete for the same binding site


Large medicinal chemistry efforts to "tune" selectivity for an individual kinases' ATP binding site *Keep in mind - nucleosides (base and ribose) are relatively hydrophobic*

The kinase active site is highly conserved and optimized for ATP binding

Description	CHK1	CDK2	SRC	ABL	EGFR	RAF	MEK
Ribose/hydrophobic pocket	L15	I10	L273	L248	L718	1463	L74
	G16	G11	G274	G249	G719	G464	G75
"Roof" of adenine pocket	V23	V18	V281	V256	V726	V471	V82
Glu-Lys ion pair	K38	K33	K295	K271	K745	K483	K97
	E55	E51	E310	E286	E762	E501	E114
Gatekeeper residue	L84	F80	T338	T315	T790	T529	M143


Only the "gatekeeper" residue is variable


Catalytic aspartate	D130	0 D127 D386 D363 D837		D576	D190		
Phosphate binding region	N135	N132	N391	N368	N842	N581	N195
"Floor" of adenine pocket	L137	L134	L393	L370	L844	F583	L197

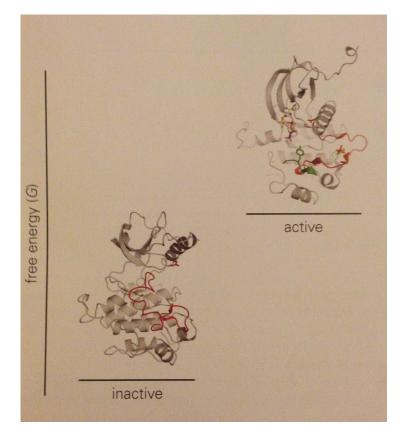
...because of this kinases were considered "undruggable"

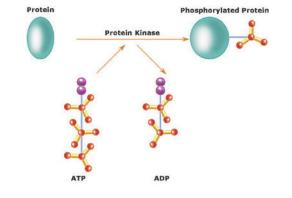
Fortunately two things help : 1) conservation is reduced away from the binding site,2) kinases are structurally plastic

How Does a Drug Molecule Find Its Target Binding Site?

Yibing Shan[†], Eric T. Kim[†], Michael P. Eastwood[†], Ron O. Dror[†], Markus A. Seeliger[§] and David E. Shaw^{*†‡}

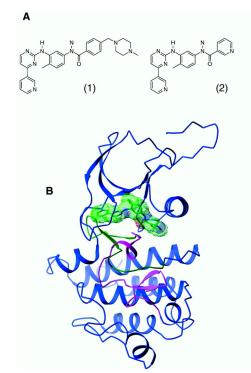
View Author Information \sim


Cite this: J. Am. Chem. Soc. 2011, 133, 24, 9181-9183

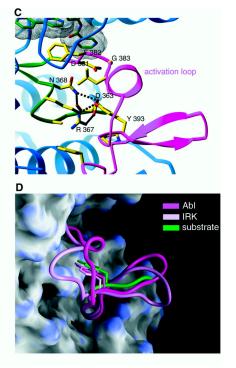

Conservation, Variability and the Modeling of Active Protein Kinases Junes D. R. Knight, Bin Clain, David Beker, Rashmi Kothary

Published: October 3, 2007 • https://doi.org/10.1371/journal.pone.0000982

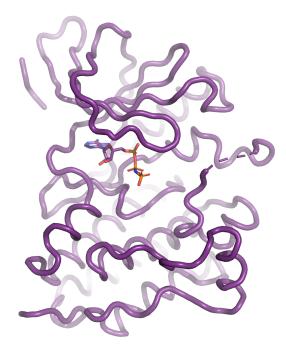
А

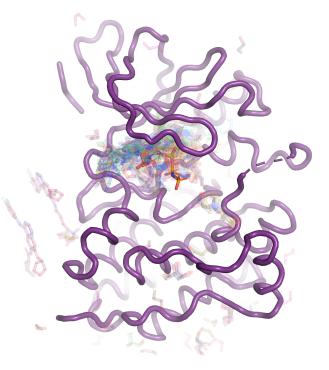

Kinases switch between active and inactive conformations

Hyperactive kinases are a common cause of cancer

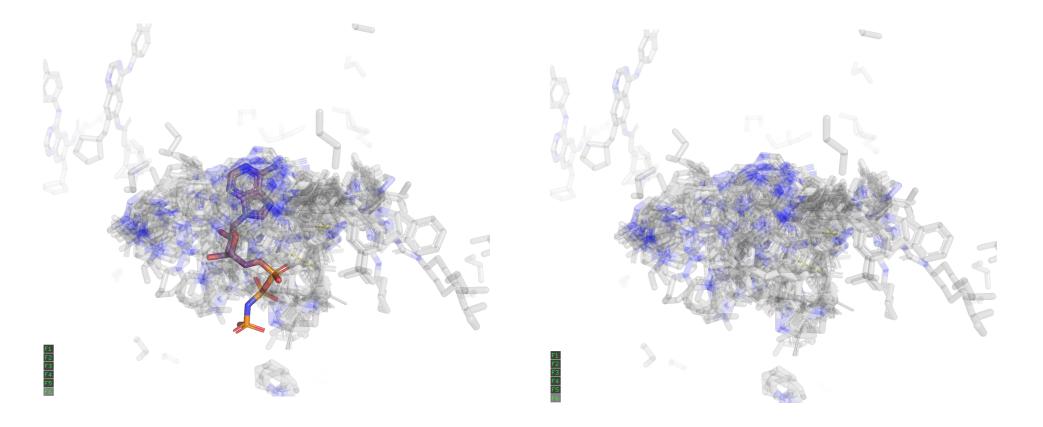

Binding of Gleevec to Abl exploits the active-inactive equilibrium

Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase


Thomas Schindler¹, William Bornmann³, Patricia Pellicena⁴, W. Todd Miller⁴, Bayard Clarkson³, John Kuriyan^{1,2,*} + See all authors and affiliations


Science 15 Sep 2000: Vol. 289, Issue 5486, pp. 1938-1942 DOI: 10.1126/science.289.5486.1938

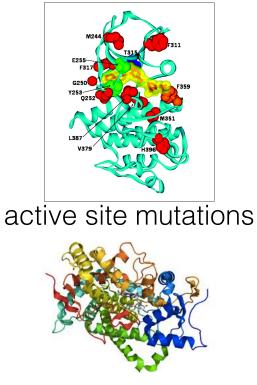
While kinase inhibitors maintain overlap with the adenine ring of ATP, the search for specificity goes elsewhere

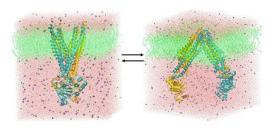


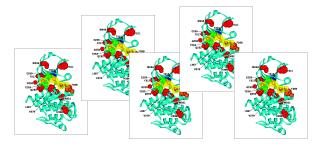

2GS7

All EGFR ligands

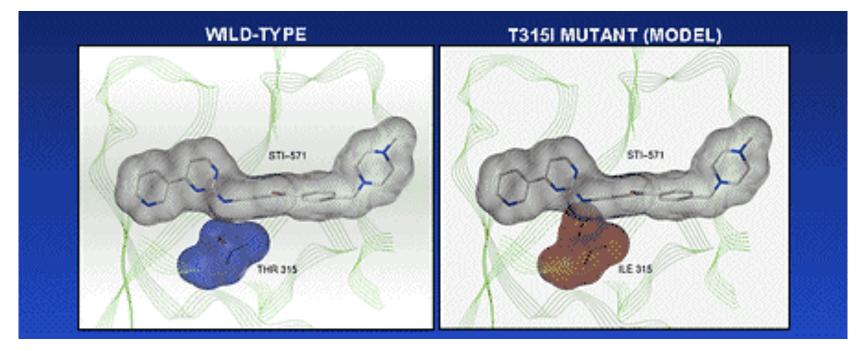
Key "hinge" hydrogen bonds are a major design element in kinase inhibitors, but other areas provide specificity



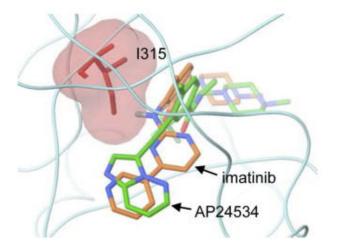

Clinical introduction of potent kinase inhibitors is closely followed by resistance


A 38-year-old man with BRAF-mutant melanoma and subcutaneous metastatic deposits. Photographs were taken (A) before initiation of PLX4032, (B) after 15 weeks of therapy with PLX4032, and (C) after relapse, after 23 weeks of therapy.

The common resistance mechanisms for small molecules


efflux

over-expression+other signaling


degradation of inhibitor

Active site mutations directly alter interactions with drugs

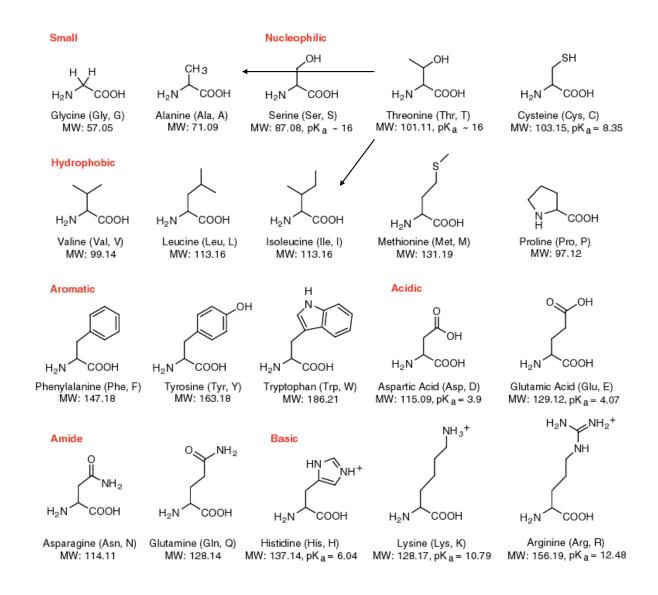
Mutation at variable "gatekeeper" residue Protein modeling and structural biology play a large role in combating resistance

- •X-ray crystallography of mutant proteins
- •Trimming the molecule to avoid clashes caused by Small-to-Large mutations
- •Conformational changes are difficult to predict (molecular dynamics simulations can help)

O'Hare...Clackson *Cancer Cell*, 2009

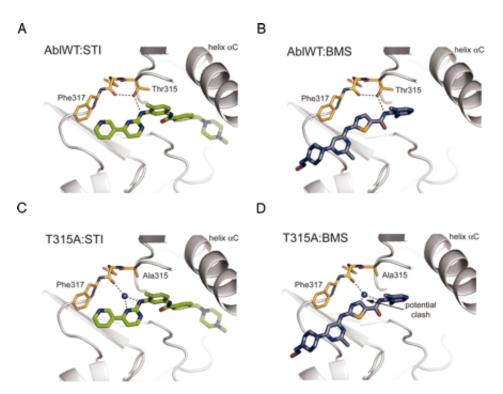
Dissecting Therapeutic Resistance to RAF Inhibition in Melanoma by Tumor Genomic Profiling

Nikhil Wagle, Caroline Emery, Michael F. Berger, Matthew J. Davis, Allison Sawyer, Panisa Pochanard, Sarah M. Kehoe, Cory M. Johannessen, Laura E. MacConaill, William C. Hahn, Matthew Meyerson, and Levi A. Garraway VOLUME 29 · NUMBER 22 · AUGUST 1 2011

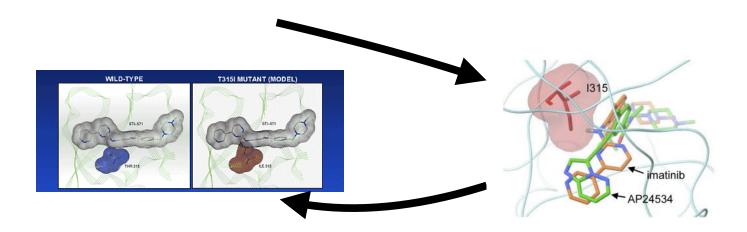

JOURNAL OF CLINICAL ONCOLOGY

Acquired Resistance via Secondary					
Targeted Agent	Target Gene	Mutation, Amplification, or Activation of Target	Acquired Resistance via Bypass	Acquired Resistance via Downstream Mutation	
Imatinib					
	ABL	T315I	IGF1R amplification		
		Y253F/H	AXL overexpression*†		
		E255K/V			
		ABL amplification			
		T670I			
		V654A			
		D816A/G/H/V			
		D820A/E/G/Y			
	KIT	Y823D			
		KIT amplification			
	PDGFRA	T674I			
Gefitinib or erlotinib	EGFR	T790M	MET amplification		
		D761Y	HGF overexpression*†		
		L747S	IGFBP3 loss*t		
		T854A			
		EGFR amplification*			
Trastuzumab	HER2				
Lapatinib	HER2/EGFR				
PKC412	FLT3	N676K			
	FGFR				
AZD6044	MEK1	MEK1 P124L			
		BRAF amplification*			
PLX4032	BRAF	NRAS Q61K	COT overexpression†	MEK1 C121S	
			PDGFR β overexpression†		
			CRAF overexpression*†		
			AXL overexpression*†		
			HER2 overexpression*†		
Crizotinib	ALK/MET	L1196M			
		C1156Y			
		F1174L			

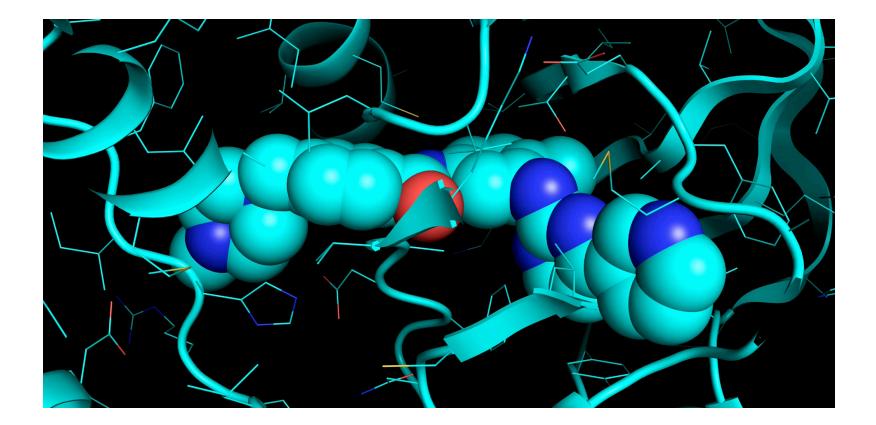
Abbreviations: IGF1R, insulin-like growth factor 1 receptor; HGF, hepatocyte growth factor; IGFBP3, insulin-like growth factor receptor binding protein-3; PDGFR β , platelet-derived growth factor β ; HER2, human epidermal growth factor receptor 2.

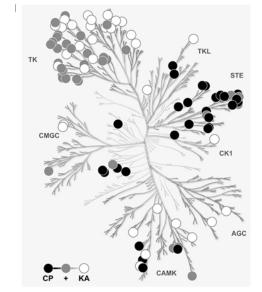

*Mechanisms that have been described in vitro.

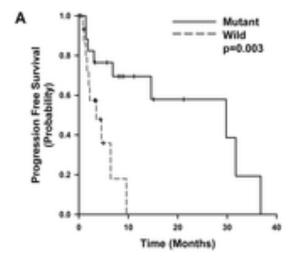
†Nongenetic mechanisms.



Compensatory chemical changes in drugs can target resistance mutations

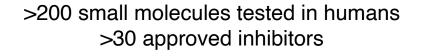

- •Filling the new holes created by Large-to-Small mutations
- or exploiting solvent interactions

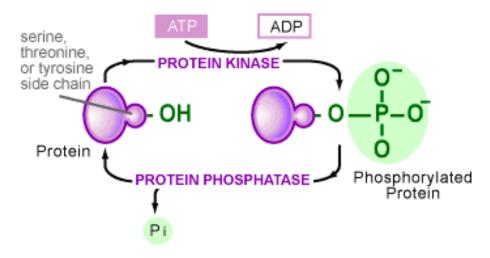

The cycle of compensatory changes - an evolutionary arms race!



More common to have many cycles of this race for anti-virals and anti-bacterials than anti-cancer

Mutant kinase profiling and sequencing studies will enable rapid feedback between drugs





Kinase profiling to expand

Drugs targeting emerging from WT to include mutants resistance will be more effective

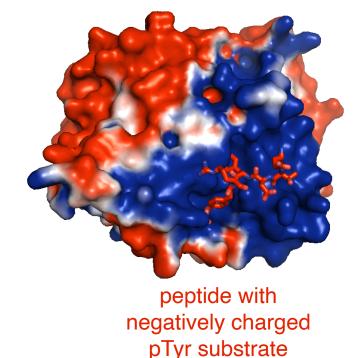
Keep in mind - nucleosides (base and ribose) are relatively hydrophobic

...but none against phosphatases (a phosphopeptide is very charged!)

The disease biology of **phosphatases** is, perhaps, no less compelling than kinases

Gene symb		Family	Subfamily	Disease(s)	Cancer ge
CDKN3	CC1	DSP	CDKN3	Hepatocellular carcinoma	Yes
DUSP6	CC1	DSP	DSP6	Hypogonadotropic hypogonadism	
DUSP16	CC1	DSP	DSP8	Tumor suppressor	
aforin	CC1	DSP	Laforin	Lafora disease	
итмт	CC1	Myotubularin	MTMR1	Cancer driver, severe X-linked myotubular myopathy	Yes
NTMR2	CC1	Myotubularin	MTMR1	Charcot-Marie-Tooth disease	
MTMR14	CC1	Myotubularin	MTMR14	Myopathy	
5BF1	CC1	Myotubularin	MTMR5	Charcot-Marie-Tooth disease	
5BF2		Myotubularin	MTMR5	Charcot-Marie-Tooth disease	
DNAJC6	CC1	PTEN	Auxilin	Parkinson's disease	
TEN	CC1	PTEN	PTEN	Tumor suppressor	Yes
PTPN1	CC1	PTP	PTPN1	Diabetes mellitus type 2	
TPN22	CC1	PTP	PTPN12	Diabetes mellitus type 1, rheumatoid arthritis, lupus	
PTPN13	CC1	РТР	PTPN13	Cancer driver	Yes
PTPN14	CC1	PTP	PTPN14	Choanal atresia and lymphedema	
PTPN11	CC1	PTP	PTPN6	Oncogene, LEOPARD syndrome 1, metachondromatosis, Noonan syndrome 1, Juvenile myelomonocytic leukemia	Yes
TPRB	CC1	PTP	PTPRB	Tumor suppressor	Yes
PTPRO	CC1	PTP	PTPRB	Nephrotic syndrome	
TPRQ	CC1	PTP	PTPRB	Deafness	
PTPRC	CC1	PTP	PTPRC	Tumor suppressor, severe combined immunodeficiency	Yes
TPRF	CC1	PTP	PTPRD	Breasts and/or nipples, aplasia or hypoplasia	
PTPRZ1	CC1	РТР	PTPRG	Susceptibility to Helicobacter pylori infection	
PTPRK	CC1	PTP	PTPRK	Cancer gene	Yes
IG4	CC1	Sac	FIG4	Yunis-Varon syndrome, Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, polymicrogyria	
SYNJ1	CC1	Sac	Synaptojanin	Parkinson disease	
YA1	HAD	EYA	EYA	Melnick-Fraser syndrome, otofaciocervical syndrome, branchiootic syndrome	
YA4	HAD	EYA	EYA	Deafness, dilated cardiomyopathy	
Dullard	HAD	FCP	DULLARD	Cancer gene	Yes
CP1	HAD	FCP	FCP1	Congenital cataracts, facial dysmorphism, and neuropathy	
ECR5	HAD	NagD	CUT	Cancer gene	Yes
RPGM	HP	HP1	PGAM	Bisphosphoglycerate mutase deficiency	
PGAM2	HP	HP1	PGAM	Giycogen storage disease	
ACP2	HP	HP2	ACP2	Acid phosphatase deficiency	
MINPP1	HP	HP2	MINPP1	Thyroid cancer	Yes
DP1	PPM	PPM	PDPc		res
		PPM PPM		Pyruvate dehydrogenase phosphatase deficiency	
PPM1D	PPM		PPM1D	Cancer gene, familial breast cancer	Yes
PPM1K	PPM	PPM	PPM1K	Maple syrup urine disease	
ACP5	PPPL	PAP	ACP5	Spondyloenchondrodysplasia	
PP6C	PPPL	PPP	PPP6C	Oncogene	Yes

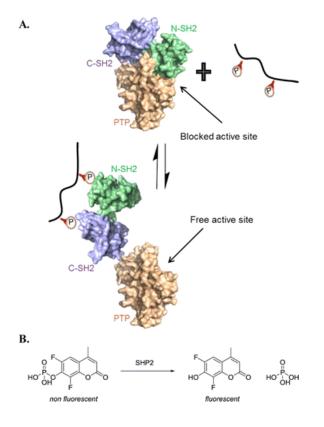
cell biology

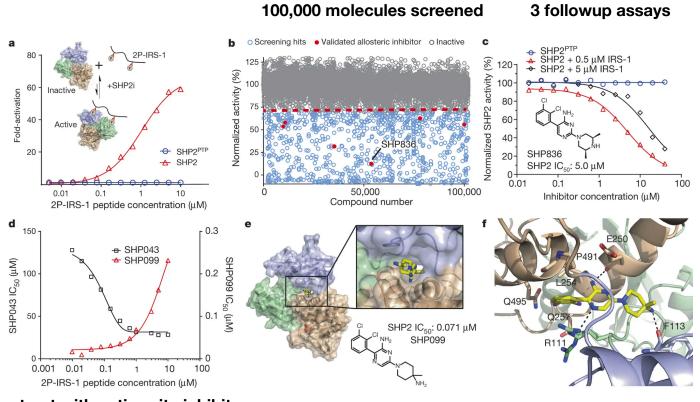

PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia

Robert S. Banh^{1,23}, Caterina Iorio^{2,11}, Richard Marcotte^{2,11}, Yang Xu^{1,23,11}, Dan Cojocari^{1,2}, Anas Abdel Rahman^{4,5}, Judy Pawling⁶, Wei Zhang⁶, Ankit Sinha^{1,2}, Christopher M. Rose⁷, Marta Isasa⁷, Shuang Zhang⁷, Ronald Wu^{1,2}, Carl Virtanen², Toshiaki Hitomi⁸, Toshiyuki Habu⁹, Sachdev S. Sidhu⁶, Akio Koizumi⁸, Sarah E. Wilkins¹⁰, Thomas Kislinger^{1,2}, Steven P. Gygi⁷, Christopher J. Schofield¹⁰, James W. Dennis⁴, Bradly G. Wouters^{1,2} and Benjamin G. Neel^{2,3,12}

Chen, Dixon, Manning Science Signalling, 2017

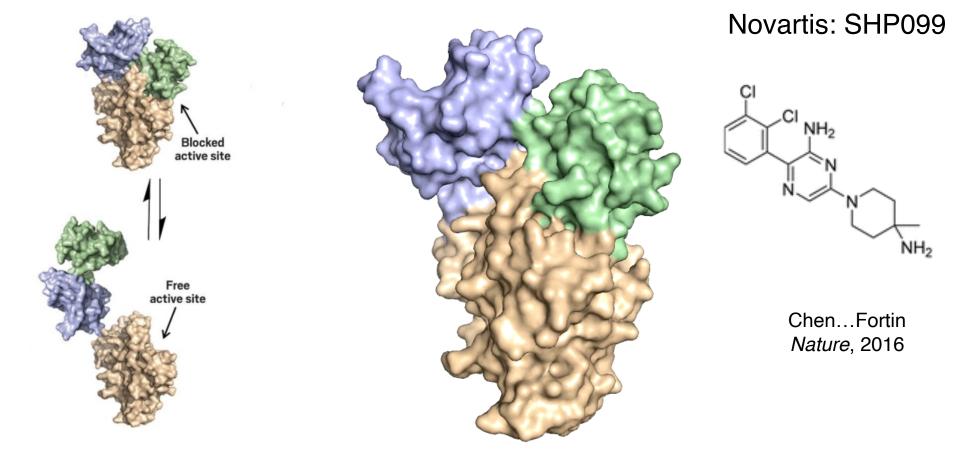
The highly charged active sites of protein tyrosine **phosphatases** exemplify the difficulties of active site drug discovery

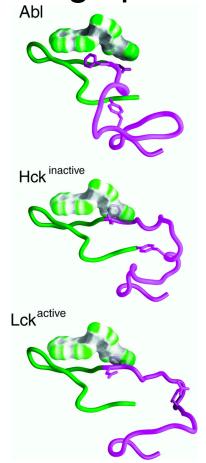


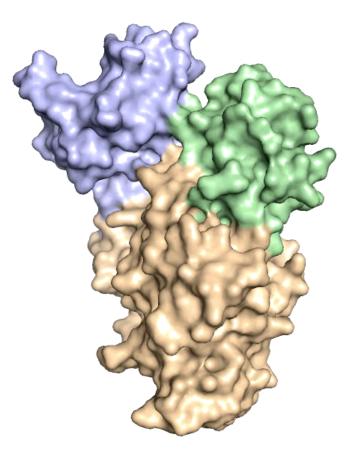

Barr...Knapp, Cell, 2009

Phosphatase inhibitors with good potency had been developed, but none were bioavailable

A new screening strategy for SHP2




Contrast with active site inhibitor


SHP836 - is a published ion channel inhibitor!

SHP2 brings new optimism for allosterically targeting **phosphatases**

Both kinases and phosphates can be inhibited by targeting specific inactive conformations

Install ChimeraX:

https://www.cgl.ucsf.edu/chimerax/download.html

UCSF ChimeraX is the next-generation visualization program from the Resource for Biocomputing, Visualization, and Informatics at UC San Francisco.

Download is free for academic, government, nonprofit, and personal use; commercial users, please see commercial

licensing. • ChimeraX uses recent graphics features and **works best on a newer computer** (≤ 3 years old). • Please <u>cite ChimeraX</u> in publications for which it was used.

Latest Production Release Daily Builds Change Log and Platform Notes Older Releases Download & Citation Counts

Features
 Missing Features
 https://www.nature.com/articles/s41587-020-00778-3

Latest Production Release

Production releases are stable platforms for ChimeraX Toolshed bundles to work with. You may need to use an older release if a bundle you wish to use has not been updated yet.

Operating System	Distribution	Notes
Windows 10 64-bit	ChimeraX-1.1.exe built: 2020-09-10 21:31:12 PDT committed: 2020-09-09 15:22:27 PDT size: 300.2 MiB md5: 0bbf1dee03bb33ee71c2d930ce454794 sha256: 7fed35e29f498466c7559b6f357531ce4f3ed15b1663783b014713b196441460	Download is a Windows installer. Tested on Windows 10. See Windows notes <u>helow</u> .
macOS 10.13 64-bit	ChimeraX-1.1.1.dmg built: 2020-10-07 22:51:41 PDT committed: 2020-10-07 01:32:49 PDT size: 337.4 MiB md5: 32a908b72535aeeb4bcdbd8c9d3fff1a sha256: 2678efba1b11cd9400f2c432189e1b56ee73108f582c6427b13f7f0af5ed2cdb	Download is a disk image containing the application. Tested on macOS 10.13. Also works on 10.14, 10.15, and 11.0 (Big Sur).
Generic Linux 64-bit	ChimeraX-1.1.tar.gz built: 2020-09-10 21:42:44 PDT committed: 2020-09-09 15:22:27 PDT size: 390.9 MiB md5: a081f3b964aae69bf7e6f1b3bfc34e1d sha256: a5f8bc54e55bda7243d49953bf329731ffac173bcb8ca1ed0e55fbf917601bf5	Download is a tarball of the chimerax application directory. ChimeraX executable is chimerax/bin/ChimeraX . Tested on Ubuntu 16.10 and Fedora 25. See Linux notes <u>below</u> .

Breakout room quiz

- Why is it easier to develop a kinase inhibitor than a phosphatase inhibitor?
- What does specificity mean in drug discovery? Which is more likely to be specific, a kinase inhibitor or a fragment?
- Did I install ChimeraX correctly?

Next class

Starting with a scaffold (development of PLX4032/Vemurafenib) and how crystallography is useful for fragment based discovery using a SARS CoV 2 example