Personalized Structural Biology for Genome Interpretration

Tony Capra Associate Professor – BCHSI, Epi&Biostats http://www.capralab.org/

Pizza Talks 2022/3

Research Foci

How many protein sequence altering variants does your genome carry?

Genome sequencing is "cheap"

How many protein sequence-altering variants does your genome carry?

- 10,000–12,000 protein altering variants
- 50–100 protein truncating variants

Each of us carries thousands of rare coding germline variants.

- Most of these variants have not been functionally characterized
 - aka Variants of Unknown Significance (VUS)
- Most of these variants are benign.

How do we distinguish these from causal rare disease variants?

Solving medical mysteries through team science

Twelve clinical sites, a coordinating center, a sequencing core, a metabolomics core, two model organisms screening centers, and a central biorepository

How can **we** help distinguish the 1000s of rare benign variants from causal rare disease variants?

Central Dogma of Molecular Biology

Central Dogma of Structural Biology

Central Dogma of Structural Biology

>200,000 3D structural models

>200 million human protein variants

>140,000 exomes and genomes

Population Genetics

Structural Biology

Which spatial regions of human proteins tolerate genetic variation?

Intuition:

Spatial regions that do not vary in large healthy populations are functionally constrained.

Variants in these regions are candidates for disease.

Li et al. 2022; https://github.com/CapraLab/cosmis

Alphfold substantially increased our coverage of protein space

COSMIS quantifies depletion of missense variants in contact sets

A range of mutational constraint...

Li et al. 2022; https://github.com/CapraLab/cosmis

Which spatial regions are constrained?

COSMIS strongly predicts pathogenicity

Li et al. 2022; https://github.com/CapraLab/cosmis

COSMIS outperforms other constraint metrics

Li et al. 2022; https://github.com/CapraLab/cosmis

What can we do to help?

Variant Effect Predictions Disagree

Analyzed 1400 VUS

Variant Effect Predictions Disagree

Variant Effect Prediction Challenges

- Methods frequently disagree
- May not be applicable across human populations
- Do not provide mechanistic justification for predictions

GOAL: Evaluate functional effects in a less biased / more interpretable way.

Tools for computational interpretation of structural effects of patient variants

Interactions

Dynamics

Pathogenic Proximity (PathProx)

Tools for computational interpretation of structural effects of patient variants

Interactions

Incorporating 3D structure improves rare var interpretation

Sheehan PhD

Chris Moth PhD

UDN Patient with DEE-like Symptoms

A 4-year-old boy at the Vanderbilt University UDN site presented with DEE-like phenotypes, including multiple types of refractory seizure and global developmental delay. Around 18 months of age, he developed generalized tonic clonic seizures, and was diagnosed with Lennox-Gastaut syndrome, a severe form of DEE. However, he continued to have frequent myoclonic absence seizures and occasional generalized tonic clonic seizure.

Negative on Athena epilepsy gene panel

WGS reveals ⁶ KCNC2 p.V469

 homo-tetrameric voltage-gated potassium channel Kv3.2

highly expressed in GABAergic interneurons in the CNS

•

Leucine at position 469 is bulkier than native residue Valine and could block channel pore

Conventional MD simulations reveal decrease in pore radius for V469L

WT

V469L

V471L

- Isosurface representation of the average spatial density of water in MD simulations of WT (blue), V469L (orange), and V471L (green).
- Constriction and dewetting of the inner cavity observed in MD simulations of V469L.
- L471 appears to stabilize S6-S6 inter-subunit interactions which help to keep the inner channel gate open.

Figure 2. Candidate Kv3.2 variants cause loss and gain of channel function

KCNC2 Summary

- Protein structural modeling and MD simulations rationalize the mechanistic basis for the phenotypic heterogeneity of candidate variants
- Demonstrate heterogeneous loss-of-function and gain-of-function effects, despite both affecting the essential hinge region of Kv3.2
- Validate links between KCNC2 and heterogeneous DEE phenotypes
- Blueprint for integrating genetics, protein structural modeling, and experimental validation to develop mechanistic understanding of the molecular effects of *de novo* variants in rare disease.

Undiagnosed Diseases Network

Undiagnosed Diseases Network

https://doi.org/10.1038/s41467-022-30936-x OPEN

The 3D mutational constraint on amino acid sites in the human proteome

Bian Li
 ${}^{1,2\,\boxtimes},$ Dan M. Roden
 2,3 & John A. Capra
 ${}^{1,4\,\boxtimes}$

Do available protein 3D structures reflect human genetic and functional diversity?

Gregory Sliwoski, Neel Patel, R. Michael Sivley, Charles R. Sanders, Jens Meiler, William S. Bush, John A. Capra

Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by *de novo* KCNC2 variants

Souhrid Mukherjee,^{1,6} Thomas A. Cassini,^{11,17} Ningning Hu,^{8,9,17} Tao Yang,^{5,17} Bian Li,^{1,5,6,17} Wangzhen Shen,⁸ Christopher W. Moth,⁶ David C. Rinker,^{4,6} Jonathan H. Sheehan,^{6,10} Joy D. Cogan,² Undiagnosed Diseases Network, John H. Newman,³ Rizwan Hamid,² Robert L. Macdonald,^{5,8} Dan M. Roden,^{5,7,15} Jens Meiler,^{4,5,6,7,12,13,14} Georg Kuenze,^{4,6,12,*} John A. Phillips,^{2,*} and John A. Capra^{1,6,7,15,16,*}

http://www.capralab.org/

