Deep learning for protein
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Protein structure prediction — intro and significance
Alphafold2 / concepts
Applications: problem solved !?

Design of new proteins



. Breakthrough of 2021!

2021 BREA

Protein structures for all
Al-powered predictions show proteins finding their shapes

OUGH OF THE YEAR

T Check for updates

Method of the Year: protein structure prediction

Nature Methods has named protein structure prediction the Method of the Year 2021.

Vivien Marx

reasons, the causes can be geologic or
romantic. In science, in the context of
predicting protein structure, you might
have felt the ground tremble in late 2020 as
you perused the results of the 14th Critical
Assessment of Protein Structure Prediction
(CASP). In this competition, scientists
regularly test the prowess of their methods
that computationally predict the intricate
twirly-curly three-dimensional (3D)
structure of a protein from a sequence of
amino acids.
A pleasant frisson may have set in more

| f the Earth moves for you, among other

Al & AlphaFold2 Revolution

recently as you browsed the new and rapidly
=

A top-down view of the human nuclear lex, the largest machine in hs

WHAT'S NEXT FOR
THE Al PROTEIN-
FOLDING REVOLUTION

AlphaFold, software that can predict the 3D
shape of proteins, is already changing biology.
By Ewen Callaway

234 | Nature | Vol 604 | 14 April 2022

molecular machine in human cells.
This behemoth, called the nuclear
pore complex, controls the flow of
molecules in and out of the nucleus of the
cell, where the genomessits. Hundreds of these
complexes exist in every cell. Each is made
up of more than 1,000 proteins that together
form rings around a hole through the nuclear
membrane.

These 1,000 puzzle pieces are drawn from
more than 30 protein building blocks that
interlace in myriad ways. Making the puz
zle even harder, the experimentally deter
mined 3D shapes of these building blocks
are a potpourri of structures gathered from
many species, so don't always mesh together
well. And the picture on the puzzie'sbox —a
low-resolution 3D view of the nuclear pore
complex —lackssufficient detail to know how
many of the pieces precisely fit together.

In 2016, ateam led by Beck, who is based at
the Max Planck Institute of Biophysics (MPIB)

ormorethanadecade, molecular biol-
ogist Martin Beck and his colleagues
have been trying to piece together
oneofthe world's hardest jigsaw puz-
zles: a detailed model of the largest

https.//www.nature.com/articles/d41586-022-00997-5




Structural coverage of the proteome
WHAT'S KNOWN g

Homo sinlans 400,000,000 ()
ABOUT PROTEOMES (humar) Models
AlphaFold's predictions have greatly increased the R available
proportion of confidently known structures in the thaliana @Uniprot and

human proteome — the collection of all human (thale cress)
proteins. The software is even more Saccharomyces
useful for other species. cerevisiae

@EBI

(yeast) .
Source of knowledge about proteome ; :
® High-quality experimental structures in the PDB* S'aphy"’%‘;‘i‘;ﬁg --
® Structural knowledge derived from (bacterium) . : :
related proteins in the PDB* Mycobacterium f : 1
B Knowledge from AlphaFold models only '(“bgi’t%‘:ggf;j .-
(high confidence) : : g :
¥ Knowledge from AlphaFold models only 0 25 50 5100
(intermediate confidence) Percentage of proteome with

known structure

*PDE: Protein Data Bank, AlphaFold can also be used to calculate these
structures - but doesn't add signdicantly to what's already known.

https://www.deepmind.com/research/highlighted-research/alphafold



Structural coverage of the proteome

ESM Metagenomic Atlas

MetaAl ESMFold

ESM Metagenomic Atlas:
The first view of the
‘dark matter’ of the
protein universe

blue: dark matter - no
similarity to previous
structures)




Why predict protein structures?

(and what accuracy is needed?)



NMR, x-ray

Comparative modeling
% Sequence identity
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APPLICATIONS

Studying catalytic
mechanism

Designing and improving
ligands

Docking of macromolecules,
prediction of protein partners

Virtual screening and
docking of small ligands

Defining antibody epitopes

Molecular replacement in
X-ray crystallography

Designing chimeras, stable,
crystallizable variants

Supporting site-directed
mutagenesis

Refining NMR structures

Fitting into low-resolution
electron density

Structure from sparse
experimental restraints

Functional relationships
from structural similarity

Identifying patches of
conserved surface residues

Finding functional sites by
3D motif searching

Protein structure prediction and structural genomics.
Baker D, Sali A. Science. 2001 Oct 5;294(5540):93-6.



100

Which modeling accuracy
is useful depends on the
application

Studying catalytic
mechanism

NMR, x-ray

Designing and improving
ligands

Docking of macromolecules,

50 prediction of protein partners

e el : :
g - Drug & protein design
E DB Defining antibody epitopes .
A - Docking
é § § X-ray crystallography
8 *30 B Designing chimeras, stable,
m  crvsialzatioaate |
= e . :
g = />\ Design mutations for
£ B experimental tests

Fitting into low-resolution
electron density

Structure from sparse

experimental restraints H y p Ot h e Se S fo r
e N function, effects of
genetic variation

Identifying patches of
conserved surface residues

g e g Protein structure prediction and structural genomics.
motif searching Baker D, Sali A. Science. 2001 Oct 5;294(5540):93-6.

de novo prediction
Insignificant sequence similarity




15th Community Wide Experiment on the
Critical Assessment of Techniques for Protein Structure Prediction

http://www.predictioncenter.org/casp15/

CASP

-Blind structure prediction experiment

allows assessment of different approaches Machine

learning

CASP14 (2020) |

other competitors luti
— CASP13 (2018) coevolution

— CASP12 (2016) |

e every 2 years;, summer 2022: CASP15

Identification of major “winner strategies”:

Global distance test %

* CASP4: fragments (Rosetta) — CASP5 (2002) fragments

« CASP11&12: coevolution and contact R il o -
g o . asy e Icu
prediction methods (contact-assisted Bificulty of proteia siructars prediction

modeling)

Starting CASP13: Deep learning (Google alphafold)

CASP14 (2020): Google alphafold deepmind (AF2) “solved the problem”

CASP15 (2022): AF2-based methods lead; new, faster approaches using natural language
processing models (e.g., ESMFold) accelerate predictions




Alphafold2: a game changer (CASP14 — 2020)
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Highly accurate protein structure prediction with AlphaFold. 5
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C,
Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M,

Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Nature. 2021 Aug;596(7873):583-
589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.



What made the Alphafold2 breakthrough possible?

* Basic research - insights
from > 70 years of protein
research

* Big data - solved structures,
large-scale sequencing etc.

* Deep learning - new
architectures, optimization
methods




Sequence—» structure @

Anfinsen’s dogma*:
Native structure determined only by

sequence
— Native structure = global energy
minimum

® unique

e stable

e kinetically accessible

Conformation space

* true at least for a small globular protein, in its standard physiological environment



Structure predlctlon @

SequencemmE R

Basic Assumption:
Native structure = GMEC
Global Minimum Energy Conformation

= A good energy function selects GMEC

—>A good sampling technique finds GMEC



Why structure prediction is hard: Conformational space in “ab
Initio” structure prediction is enormous

Sequencemm

« If only 3 states per residue, 100 residue protein: 3% ~ 5 x 104/

» Just considering 3 states isn’'t going to be detailed enough

« Clearly need methods to restrict degrees of freedom



Breakthrough: contact maps ‘%

Sergey Ovchinnikov

Rosetta GREMLIN (Generative REgularized ModeLs of protelNs) i’%
Long-standing idea: derive residue-residue contacts from sequence information

* el

t

dMSA =) co-evolution =) Contact Map




Image recognition using Deep NNs ﬂ"

Good at image
recognition tasks:

Apply filters to image
that highlight specific
features

(for example: convoluted neural
networks, CNN)
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Neural Networks L

Single Neuron - linear separation

a x n—inputs |
Xq Wi...N - WelghtS
W

Output T/F, 0,1

Xz%‘

g
Xa_b \ 1
T, ) —
. \ 5

N g — transfer function
t — threshold

Problem: not (linearly) separable
Solution: multiple neurons, multiple layers




Deep Neural Networks %’

Universal approximation theorem:

A feed-forward neural network with
a finite number of nodes can
approximate any continuous

fu nctlon Hidden l\/—\

Input

Deep NN: many layers
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Brea kth rough M L e

¥ Collect

% «— Em  sequence
data

Neural Network Databases

Contact/Dist_aqce E Angle
prediction el prediction

... build structure from
. restraints (as in Modeller)




CASP performance

STRUCTURE SOLVER

DeepMind’s AlphaFold 2 algorithm significantly
outperformed other teams at the CASP14 protein-
folding contest — and its previous version’s
performance at the last CASP.
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Alphafold2: End-to-End architecture

Unprecedented accuracy using novel representations

Trained on publicly available data consisting of ~170,000 protein structures (PDB) & large protein sequence databases.
Uses ~ 16 TPUv3s (= 128 TPUv3 cores ~100-200 GPUs) run over a few weeks

Provides confidence value & iterative improvement New architectures

New approaches
New hardware

MSA embedding Sequence-residue edges

Residues —

(3 [Avacxs] Confidence
= . — Residues — Residues — Score
& [ [80ABvS » AVABKXS » AVABKS
Genetics = — 29 8¢
search ) |2 [ |vvosov|[*ee |83 s b —
& embed 8 2 3w
l 3 | ST 2 @ §
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| Protein sequence |

Embed &
outer sum
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Pairwise
distances

Go gle Residue-residue edges 3D structure
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Alphafold2 architecture in a nutshell
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Alphafold2 architecture in a nutshell
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Alphafold2 architecture in a nutshell

pLDDT: residue confidence (predicted
local distance difference test)

PAE: residue pair confidence (predicted

alignment error)
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Alphafold2: a game changer (CASP14 — 2020)

STRUCTURE SOLVER

DeepMind’s AlphaFold 2 algorithm significantly
outperformed other teams at the CASP14 protein-
folding contest — and its previous version’s
performance at the last CASP.
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The good, the

Protein Data Bank
(PDB) structure

The network also models
the uncertainty in its
predictions - when the
s.d. of the predicted
distribution is low, the
predictions are more
accurate:

Confidence measure for
each residue:

pLDDT

(predicted local distance difference test) — ooo

AlphaFold model of
phosphohistidine

phosphatase overlaps
closely with PDB structure.

https.//www.nature.com/articles/d41586-022-00997-5

. estimates for each section,

bad and the ugly

AlphaFold structure, with confidence
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AlphaFold has little confidence across
much of its prediction for this human
ubiquitin-protein ligase. There is no
PDB structure to compare it with.

AlphaFold model of
human insulin bears
no relation to the PDB
structure.



Accuracy on recent PDB structures
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Interpretation of Alphafold2 models

. pLDDT: predicted local distance from solved
structure [0..1] > 0.7 precise

Identifying domains & possible disordered regions

Residues 65-342
and 418-784 form
a confident domain

https://alphafold.ebi.at.uk/

pLDDT < 50
) A disorder
\ prediction not
a structure
prediction

Assessfng confidence within a domain

pLDDT > 90
Reasonable to
investigate side
chains / active
site details

B Very high (>90)
Confident (70-90)
Low (50-70)

Lower confidence on
Very low (<50)

these specific parts



What can be done now? (and what is difficult)

« Combine AF2 predictions with experimental data to create models
of complex proteins and assemblies

« Predict structures of complexes (limitation: MSA!)
- In some cases: use predictions for ligand docking

« Disorder? Some indication from pLDDT
« ”Orphan” sequences and de novo proteins — accuracy?
« Prediction of effect of mutations? Difficult!
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NMR, x-ray

Threading Comparative modeling
% Sequence identity

de novo prediction
Insignificant sequence similarity

Which modeling accuracy
is useful depends on the
application

Studying catalytic
mechanism

Designing and improving
ligands

Docking of macromolecules,
prediction of protein partners

Virtual screening and
locking of small lig

- Drug & protein design
- Docking

Defining antibody epitopes

Molecular replacement in
X-ray crystallography

Designing chimeras, stable,

crystalli ts

Supporting site-directed
mutagenesis
[ —

™
Refining NMR structures

MODEL ACCURACY

Design mutations for
experimental tests

Fitting into low-resolution
electron density

Structure from sparse

experimental restraints H y p Ot h e Se S fo r
e N function, effects of
genetic variation

Identifying patches of
conserved surface residues

g e g Protein structure prediction and structural genomics.
motif searching Baker D, Sali A. Science. 2001 Oct 5;294(5540):93-6.




Why are Al models often insensitive to mutations?

AlphaFold Experiment
r.m.s.d. = 0.59 A within 8 A of Zn

In the example, the metal binding site is
predicted accurately even though the
metal was not included!

Methods trained on metal-bound
structures recognize the pattern of a
metal binding site (even if a structure
unfolds in the absence of the metal)



Summary : Structure prediction

Enormous recent progress, enabled by:

large databases of sequences and structures, Al methods from other fields, new deep
learning network architectures, hardware, computing power

* Informative and large sequence alignment is (typically) critical, but many sequences
are available today (metagenomic data)

* ML & END-TO-END models (Alphafold2, ESMfold and more to come !)
 Language models to learn the Protein language (fast, perhaps more general?)
Accessible to all:

 Models available in Uniprot, EBI, MetaAl

e Modeling made easy on COLAB

Challenges: multiprotein assemblies, disordered proteins, mutations



Outlook

New applications Extend to protein design

Fast and accurate * inverse direction:

e structures for research &
medicine
 drug design

Structure

Sequence Features
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* protein “hallucinations”:
Dream new proteins with the
NN and much much more

Structur




Diffusion models for protein design

Fixed forward diffusion process

https://cvpr2022-tutorial-
Noise diffusion-
models.github.io

Data

Generative reverse denoising process

Diffusion Model

Forw:rd (Noising) Process

NOD ¥ ) - ¥
. £ “step. _
Gaussian y‘?; p ... 2 R < DY B\ sProteln
Nolse it £ % e Sracture https://www.biorxiv.org/content/10.1
X, \UAX, Xy X AX 101/2022.12.09.519842v2 full.pdf

Reverse (Generative) Process



Diffusion model for protein design

Generate a protein that binds to a helix:

https://www.ipd.uw.edu/2022/12/a-diffusion-model-for-protein-design/



Diffusion model for protein design

Make assemblies

https://www.ipd.uw.edu/2022/12/a-diffusion-model-for-protein-design/
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Diffusion Model
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RoseTTAFold RFdiffusion
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Figure 1: RFdiffusion is a denoising diffusion probabilistic model with RoseTTAFold
fined-tuned as the denoising network. A) Top panel: Diffusion models for proteins are trained
to recover structures of proteins corrupted with noise, and generate new structures by reversing
the corruption process through iterative denoising of initially random noise X, into a realistic

structure XO. Middle panel: RoseTTAFold (RF, left) can be fine-tuned as the denoising network in

a DDPM. RFdiffusion (right) is trained from a pre-trained RF network with minimal architectural
changes. While in RF, the primary input to the model is sequence, in RFdiffusion, the primary
input is diffused residue frames. In both cases, the model predicts final 3D coordinates directly

(denoted 3( . in RFdiffusion). In RFdiffusion, the model receives its previous prediction as a

template input (“self-conditioning”, see Methods 2.4). Bottom panel: At each timestep “t” of a
A t+1

design trajectory (typically 200 steps), RFdiffusion takes Xt and X 5 from the previous step and
At
then predicts an updated X . structure (X 5 ). The coordinate input to the model at the next time

At
step (Xt_ 1) is generated by a noisy interpolation toward X e B) RFdiffusion is of broad

https://www.biorxiv.org/content/10.1101/2022.12.09.519842v2.full.pdf



