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In macromolecular crystallography, the agreement between observed and

predicted structure factors (Rcryst and Rfree) is seldom better than 20%.

This is much larger than the estimate of experimental error (Rmerge). The

difference between Rcryst and Rmerge is the R-factor gap. There is no such

gap in small-molecule crystallography, for which calculated structure

factors are generally considered more accurate than the experimental mea-

surements. Perhaps the true noise level of macromolecular data is higher

than expected? Or is the gap caused by inaccurate phases that trap refined

models in local minima? By generating simulated diffraction patterns using

the program MLFSOM, and including every conceivable source of experi-

mental error, we show that neither is the case. Processing our simulated

data yielded values that were indistinguishable from those of real data for

all crystallographic statistics except the final Rcryst and Rfree. These values

decreased to 3.8% and 5.5% for simulated data, suggesting that the reason

for high R-factors in macromolecular crystallography is neither experimen-

tal error nor phase bias, but rather an underlying inadequacy in the models

used to explain our observations. The present inability to accurately repre-

sent the entire macromolecule with both its flexibility and its protein-

solvent interface may be improved by synergies between small-angle X-ray

scattering, computational chemistry and crystallography. The exciting

implication of our finding is that macromolecular data contain substantial

hidden and untapped potential to resolve ambiguities in the true nature of

the nanoscale, a task that the second century of crystallography promises

to fulfill.

Database

Coordinates and structure factors for the real data have been submitted to the Protein Data

Bank under accession 4tws.

Abbreviation

ADU, analog-to-digital unit, or integer pixel increment; ALS, advanced light source at Lawrence Berkeley National Laboratory; CC1/2, Karplus-

Diederichs internal correlation between half-datasets; CC, correlation coefficient; CCD, charge coupled device; MCS, multi-conformer

simulated; MD, molecular dynamics; MX, macromolecular crystallography; PDB, Protein Data Bank; RMSD, root-mean-square deviation;

RMS, root-mean-square; SAD, single-wavelength anomalous diffraction; SCS, single-conformer simulated; S-SAD, sulfur SAD.
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Introduction

Realistic simulation of X-ray diffraction experiments

requires a return to first principles. Currently, there

are so many scale factors and corrections that any

connection between the final coordinate model and the

value of a given pixel on the detector is easily lost,

but, in the early days of X-ray crystallography, this

relationship was at the forefront of research. Not long

after the discovery of X-rays by R€ontgen in 1895, he

was awarded the first ever Nobel Prize (in 1901), but

the properties of this new kind of ‘ray’ were still not

well understood. Indeed, Rutherford had only just

divided nuclear radiations into three categories (alpha,

beta and gamma), and it was by no means clear that

Thomson’s ‘cathode rays’ (1887) and Rutherford’s

‘beta rays’ were both electrons, or that naturally pro-

duced gamma rays and machine-produced X-rays were

both electromagnetic radiation. Indeed, at that time, it

was still debated whether ordinary visible light was a

particle or a wave, let alone the newly discovered

‘X-rays’. It was not even clear that crystals were regu-

lar arrays of atoms, and the internal structure of the

atom itself was still a mystery.

Despite this apparent chaos and confusion, precise

measurements were being made. Although W.L. Bragg

is now famously known for formulating the first equa-

tion relating the position of spots to distances inside

the crystal, his father W.H. Bragg is perhaps less well

known for his work on X-ray detectors. R€ontgen

found that X-rays darken photographic film, but, espe-

cially in those days, this process was far from quantifi-

able or linear. Building on the work of Perrin [1] and

Barkla [2], Bragg and son used what today is called an

ion chamber as the detector for their famous work on

rock salt [3]. The ion chamber is an amazing linear

device that directly converts the intensity of an X-ray

beam into an electric current. Even in those days, elec-

tric currents could be measured extremely reliably, the

basis of the ammeter having been discovered nearly a

century earlier by Schweigger and Amp�ere [4,5].

It was such precise measurements with this very

device [6] that enabled Charles G. Darwin (not to be

confused with his famous grandfather Charles R. Dar-

win, author of the 1859 book On the Origin of Species)

to extend Maxwell’s dynamical theory of electromagne-

tism to X-rays [7]. Incidentally, Darwin’s lab partner,

Henry Moseley, also obtained the first experimental

evidence that the atomic numbers proposed by Mende-

leev (1869) had any physical significance. They corre-

sponded beautifully to the wavelength of X-rays emitted

by chemical elements when bombarded with high-

energy radiations [8]. Until this discovery, acceptance of

the periodic table had been slow because it could not

explain the systematic discrepancies between atomic

number and atomic mass. The neutron was unknown at

that time, as it was discovered by Chadwick 19 years

later [9].

Although the dynamical theory of X-ray diffraction

came first, Darwin spent the following nine years revis-

ing it to account for imperfect crystals, largely because

the dynamical theory was not consistent with Mose-

ley’s observations of diffracted intensities. The crystals

available at that time were just not perfect enough for

dynamical theory to work, much like the protein crys-

tals of today. Darwin’s follow-up work was the first to

define a variable called f to represent the effect of the

structure contained within the unit cell [7]. Hartree

clarified the significance of this concept [10], much to

the delight of W.L. Bragg, who expounded on its use-

fulness [11]. Interestingly, the concept of a structure

factor had first been proposed almost a decade previ-

ously by Debye and Scherrer [12], but the idea did not

make its way into the English literature until well after

the end of World War I. Indeed, the field of crystal-

lography began to make tremendous leaps forward as

soon as scientists from both sides of that conflict

finally began to communicate.

It is Darwin’s master formula predicting the number

of photons in a fully recorded spot given the intensity

of the incident beam, camera parameters, a few physi-

cal constants, and the all-important ‘structure factor’

that enabled the present work. A modernized version

of Darwin’s formula has been described by Blundell

and Johnson [13], and has been instructively re-derived

by Woolfson [14].

Specifically, the formula used here is identical to

that given by Holton and Frankel [15]:

I ¼ Ibeamr
2
e

Vxtal

Vcell
� k3L
xVcell

P � A � jFj2 ð1Þ

where I is the integrated spot intensity (in photons/

spot), Ibeam is the intensity of the incident beam (pho-

tons�s�1�m�2), re is the classical electron radius

(2.818 9 10�15 m), Vxtal is the volume of the crystal

(in m3), Vcell is the volume of the crystal unit cell (in

m3), k is the X-ray wavelength (in m), x is the angular

velocity of the crystal (radians�s�1), L is the Lorentz

factor (speed/speed), P is the polarization factor (pho-

tons/photons), A is the X-ray transmittance of the

path through the crystal to the spot (photons/pho-

tons), and F is the structure factor (electron equiva-

lents).

Previously we explained how this formula gives

intensities on an absolute scale [15]. In the present
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work, we are concerned with the error associated with

this intensity, and the above formula is a useful guide

to this error propagation. Any relative error in any of

the terms in Eqn (1) propagates directly into a relative

error in the spot intensity. For example, if Vxtal is 5%

off, then so will I be. If Ibeam fluctuates by 5%, that

error too propagates into I, as would a 5% fluctuation

in the speed of the motor driving the spindle. Uncer-

tainties in the attenuation factor A due to the odd

shape of the crystal and vitrified solution around it

also propagate into the data as absorption errors, and

even a slight mis-alignment of the spindle with the

beam may cause a very large change in the Lorentz

factor.

Many of these sources of error may be removed by

scaling, because, as long as the incident beam intensity,

for example, is always 10% lower than expected, all of

the spot intensities will be off by exactly the same

amount. This means that no inaccuracy is propagated

into the final electron density map, which may be

placed on an absolute scale by comparing it to the cal-

culated map [16]. However, if the incident beam inten-

sity changes during the course of data collection, then

the scale factor must be made to follow it exactly, or

the error in the scale factor itself will propagate into

the data. In general, scaling may be used to remove

sources of error with low frequencies, such as the vari-

ation in illuminated volume as the crystal rotates, but

cannot remove errors with high frequencies, such as

the variation in illuminated volume as the crystal

vibrates in the cryo stream [17].

Because of the complex ways that data processing

may suppress certain sources of error and not others,

the only way to definitively evaluate the influence of all

sources of error is to simulate the diffraction experiment

and calibrate the magnitude and frequency of all

sources of error on a real-world instrument. To this

end, we developed MLFSOM, a program for generating

simulated diffraction images given a set of structure fac-

tors and a parameterized list of experimental variables.

A detailed description of the implementation of this

program is provided as Doc S1. The name MLFSOM

was chosen because it performs the reverse operation of

data-processing programs such as MOSFLM [18], but

the simulation is based on first principles and is not spe-

cific to MOSFLM, HKL2000 [19] or XDS [20]. Unlike

previous diffraction image simulators [21–23], imple-

mentation of MLFSOM has focused on putting both

signal and noise on an absolute scale, enabling direct,

side-by-side comparison with real data.

In performing this exercise, we followed in the foot-

steps of those early pioneers who were also devising

models that could quantitatively predict experimental

data. However, detector technology has come a long

way since the seminal rock salt experiment by Bragg

and son, and thus the information needed to create a

simulator spans nearly 100 years of literature. In addi-

tion, each source of noise implemented in MLFSOM

was calibrated by independent experimental measure-

ments. For example, correct estimation of the photon-

counting error requires that the data be placed on an

absolute scale because this is the only scale on which the

error in the count is the square root of the intensity. For

counting devices such as multi-wire or pixel array detec-

tors, the pile-up correction and its appropriateness to

the time structure of the incoming signal is also a source

of error [24], but as we are only concerned here with a

CCD detector, this source of error was not imple-

mented. Sources of error such as shutter jitter, beam

flicker and irregular spot shape are proportional to the

signal, and therefore independent of scale, while errors

such as CCD readout noise and dark current are

completely independent of the intensity, and therefore

must also be put on an absolute scale before they can be

meaningfully combined with other errors.

Results

The R-factor gap affects even the highest-quality struc-

tures in the Protein Data Bank, so here we elected to

simulate one of the most well-understood protein struc-

tures, Gallus gallus lysozyme in its tetragonal form, and

collected data at the most widely available wavelength,

the selenium edge (0.9795 �A). As a selenomethionine

analog of this protein was not available, we selected a

derivative with the same f″ value of Se at its edge, gado-
linium, which also avoids complications of simulating

anomalous signal near an absorption edge.

The Gd ligand had to be modeled carefully so that

the high electron density of the Gd ion did not domi-

nate the Fobs � Fcalc differences. With the simulated

data, the position, occupancy and B factor of the

ligand atoms were known exactly, and were readily

recovered during refinement, so ligand error was negli-

gible. If the ligand was not accurately derived from the

real data, a noticeable drop in Rcryst and Rfree values

was expected for the multi-conformer simulated data

relative to the real data. This was not observed, indi-

cating that the Gd ligand contributed little to the R-

factor gap in this case.

Data reduction statistics from real and simulated

data are very similar

Real and simulated lysozyme diffraction images

(Fig. 1) were prepared as described in the Experimental
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procedures, and processed using both MOSFLM and

XDS in order to compare and contrast the anomalous

signal and other statistical indicators of data quality

(Table 1). The mosaic spread reported by MOSFLM

for the real dataset was 0.50, and, using a simulated

mosaic spread of 0.4 in combination with 0.3% unit

cell dispersion as suggested by Nave [25], resulted in a

mosaic spread of 0.49 as reported by MOSFLM. XDS

uses a different approach for estimating mosaic spread

[20], resulting in values of 0.158 for the real data and

0.159 for the simulated data. The similar mosaic spread

reported by the two programs is encouraging, and indi-

cates that our representation of mosaicity in the simula-

tion is realistic.

The simulated crystal volume was also adjusted such

that the real and simulated data had the same scale

when combined with SCALA [26]. The scale of the real

data changed with phi rotation, and the crystal was big-

ger than the beam, so a change in the illuminated vol-

ume over the course of data collection was expected.

These scale factors may also be equally well explained

by a variation in incident beam intensity, but this mag-

nitude of drift over such a short experiment was consid-

ered highly unlikely with this instrument.

BA

DC

Fig. 1. Example diffraction images for (A) real data collected from Gd-containing lysozyme at Advanced Light Source beamline 8.3.1, and (B)

simulated diffraction generated using MLFSOM. (C,D) Magnifications of parts of (A) and (B), respectively.
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In order to match the low-angle Rmerge to that of

the real data (3.9%), the detector calibration error was

set to 5.4%, which is much larger than the manufac-

turer’s specified value of 0.2%. We confirmed the

0.2% reproducibility of flood fields, so this extra error

must have had some other source. Beam flicker, shut-

ter jitter and sample self-absorption may all be

excluded because these were calibrated independently,

and including all of them in a MLFSOM simulation

leads to a low-angle Rmerge of 0.5%. Diederichs

reported similar unrealistically low values for Rmeas in

the lowest-angle bin using data simulated with

SIM_MX, and postulated that this was primarily due

to an unknown and unmodeled systematic error [23].

Here we implemented this extra error in the form of

detector calibration, but other possible candidates are

sample vibration [17], non-isomorphism between parts

of the crystal rotating in and out of the beam, and per-

haps others. Understanding and reducing these errors is

of considerable interest, but they are difficult to distin-

guish using low-multiplicity datasets such as the one

considered here. Thorough discussion of all these phe-

nomena is beyond the scope of the present work, and

neither vibration nor self-isomorphism are implemented

in the current version of MLFSOM. For this study, we

simply require that the combination of all systematic

errors result in Rmerge = 3.9%, an effect that we simu-

lated by adjusting detector calibration error alone.

The overall <I/r(I)> at 1.45 �A resolution for the real

data was 17.6 (XDS) and 16.6 (MOSFLM), and process-

ing the simulated images resulted in values of 14.7

(XDS) and 15.0 (MOSFLM). The asymptotic ISa [27]

from XDS reached 19.2 for the real data and 21.2 with

the simulated data. Without the extra systematic error

introduced to match Rmerge, unrealistically high <I/r(I)>
values were observed, both overall and in the low-

angle bin, similar to the results seen with SIM_MX

[23]. Overall the results from processing of our real

and simulated data were encouraging, and showed that

we had developed a simulation that is able to repro-

duce the expected errors in macromolecule diffraction

data.

The sum of all errors is comparable to Rmerge

Having generated and processed a realistically noisy

simulated dataset, we compared the final, merged

structure factors (Fsim) to the structure factors that

were initially fed into the MLFSOM simulation

(Fstart). Although Fsim appears in the data-processing

output file as ‘Fobs’, we use Fsim to clarify that it is

derived from a simulation and is not an experimental

observation. Also, as this is a simulation, Fstart may be

defined to be the error-free ‘true’ structure factor. This

definition allowed us to measure how much error the

simulate-and-process-back procedure introduced into

the ‘true’ structure factor, and therefore extrapolate

the magnitude of the total experimental error in Fobs.

This was done by inputting Fstart and Fsim into the

CCP4 [26] program SCALEIT as though they were

merged native and derivative datasets. After least-

squares refining and applying a scale and B factor to

Fsim, the R-factor (Rdiff) between Fstart and Fsim was

6.6% overall at 1.45 �A and 2.8% in the low-resolution

bin for XDS-processed data. For MOSFLM/SCALA-

processed data, these values were 6.9% overall, and

Table 1. Data reduction statistics. The simulated data were from the multi-conformer model. Space group, P43212; X-ray wavelength,

0.97934 �A, which is far from the Gd edge having a theoretical f 0 = �0.92, f 0 0 = 6.7 electrons from Gd. Completeness and unique

observations were calculated from the final merged reflection file using MTZDUMP [26]. Total observation counts taken from XSCALE [20]

or SCALA [26]. Friedel mates were treated as symmetry-equivalent in scaling. Values in parentheses are for the outer resolution bin.

Real Simulated Real Simulated

Data processing program XDS XDS MOSFLM MOSFLM

Cell dimensions a = b, c (�A) 77.1, 38.7 77.2, 38.8 77.2, 38.8 77.2, 38.8

Resolution (high-resolution bin) (�A) 50–1.45 (1.54–1.45) 50–1.45 (1.54–1.45) 50–1.45 (1.53–1.45) 50–1.45 (1.53–1.45)

I/r(I) (high-resolution bin) 18.0 (1.99) 15.0 (1.15) 16.6 (2.6) 15.2 (1.2)

R-factor or Rmerge (%) 4.5 (26.8) 5.7 (55.5) 6.0 (28.2) 6.6 (67.5)

Rmeas (%) 5.3 (35.4) 6.7 (72.8) 6.9 (37.3) 7.6 (89.6)

CC½a [26a] 99.8 (86.0) 99.8 (65.5) 99.7 (88.8) 99.8 (60.2)

Anomalous CC (%) 69 (–) 62 (–) 46.7 (–) 52.4 (–)

Completeness 96.7 (86.7) 96.4 (85.5) 92.8 (62.3) 92.7 (61.7)

Number of unique observations 19 728 19 731 18 426 19 864

Total number of observations 119 744 120 037 117 173 117 945

Redundancy 6.1 (2.1) 6.1 (2.2) 6.0 (2.2) 5.9 (2.1)

Wilson B factor 18.3 18.8 14.1 14.4
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1.6% in the low-angle bin. These low residuals are

quite remarkable considering how many sources of

error were included in the MLFSOM simulation. The

total error in the data (Rdiff) was comparable to the

self-consistency of the data (Rmerge or Rmeas), implying

that the accuracy of real data is similarly indicated by

its precision. Specifically, the root mean square (RMS)

value of r(Fsim) assigned by data-processing programs

was found to be lower than the RMS difference

between Fstart and Fsim by a factor 0.71 for XDS and

0.64 for MOSFLM/SCALA, i.e. the data are slightly

less accurate than they are precise.

Overall, the total error in the data was only a few per

cent, comparable to the magnitude of Rmerge, and thus

cannot explain the typically observed macromolecular

Rcryst/Rfree values of 20–30%. We therefore conclude

that the high values of Rcryst/Rfree are not a direct mani-

festation of any of the sources of experimental error

implemented in MLFSOM.

Models refined against simulated data have

unusually low refinement R values

Given the similarity between Fstart and Fsim, it is perhaps

not surprising that simply dropping the coordinate

model that was used to calculate Fstart into refinement

against Fsim yields remarkably low values of Rcryst and

Rfree. Specifically, we obtained starting Rcryst/Rfree val-

ues of 7.37%/7.16%, which evolve to 6.75%/8.06%

after 100 cycles in REFMAC [28]. Rmerge is an intensity

statistic, and therefore represents twice the relative error

in F, complicating direct comparison to Rcryst and Rfree.

Weak data also inflate refinement R-factors significantly

above the relative error in r(F). For these reasons,

small-molecule structures are evaluated using R1, for

which data with I < 4xr(I) are omitted, and

Rsigma = <r(I)>/<I>. The validation criterion is

R1 < 2*Rsigma, and no structure in the Protein Data

Bank passes this test. In our case, both Fsim and Fobs

have Rsigma = 4%, and after refining the ‘right answer’

coordinate model against Fsim, we obtained R1 = 4.3%,

easily passed this small-molecule quality standard.

However, as R1 and Rsigma are rarely used in macromo-

lecular crystallography, we compare Rmerge to Rcryst and

Rfree using data cut to 2 �A resolution (last column of

Table 2 and Fig. 3). Refining the ‘right answer’ coordi-

nate model against Fsim data truncated to 2.0 �A yields

Rcryst/Rfree = 3.92%/5.59%, comparable to R1.

However, refining this same model and data in phe-

nix.refine [29], gives significantly higher values, i.e.

Rcryst/Rfree = 7.38%/9.88% to 2 �A resolution, which

do not pass the R1 versus Rsigma test. The main reason

for this discrepancy is because implementation of the

bulk solvent correction differs between these two

refinement programs and the bulk solvent mask from

REFMAC was used to compute Fstart. REFMAC uses

two different solvent probe radii to model ionic and

Van der Waals interactions with bulk solvent, whereas

phenix.refine uses the same probe radius for all coordi-

nate atoms. Even when phenix.refine was set to opti-

mize_mask = True, the Rcryst/Rfree values were 7.19%/

9.94% and the Fsim � Fcalc difference map only con-

tained features far from atomic positions. Neither of

these programs can reproduce the bulk solvent mask

of the other in their current implementations. Indeed,

after refining the same model against Fobs using each

program, Rdiff calculated as described above with

SCALEIT between the calculated total structure fac-

tors ‘FC_ALL_LS’ from REFMAC and ‘F-model’

from phenix.refine yielded an Rdiff value of 11.2%.

This relatively large difference coming from the bulk

solvent, which is ‘invisible’ in normally contoured elec-

Table 2. Data refinement statistics.

Real Real

Simulated

multi-conformer

Simulated

single-conformer

Simulated

single-conformer

Model Hand-built Autobuild Autobuild Autobuild Build-back

Resolution (�A) 1.45 1.45 1.45 1.45 2.0

Rwork 0.1463 0.1910 0.1664 0.1530 0.038

Rfree 0.1733 0.2091 0.1830 0.1624 0.055

Number of atoms 1375 1199 1177 1173 1269

Non-solvent 1165 988 968 945 1012

Solvent 210 211 209 228 271

Wilson B factor 11.27 11.64 12.53 12.71 12.71

RMSD bond lengths (�A) 0.015 0.007 0.008 0.007 0.016

RMSD bond angles (�) 1.60 1.20 1.15 1.06 1.60

Ramachandran favored (%) 98.51 97.60 96.75 95.83 98.43

Ramachandran outliers (%) 0.00 0.80 0.00 0.83 0.00

All-atom clash score [27a] 17.27 10.42 7.43 3.27 2.9
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tron density maps, highlights how sensitive R-factors

are to features that fall below traditional map contour

levels [16]. However, as it would take three indepen-

dent sources of 11.2% error to add in quadrature to

20%, and seven sources to reach 30%, this 11.2% is

still significantly smaller than the R-factor gap, some

other source of systematic error must be involved.

Building atomic models with low R-factors does

not require phase information

The uncharacteristically low Rcryst/Rfree achieved when

refining against simulated data with realistic noise

suggests that Rcryst/Rfree values obtained with real data

may in theory be just as low, provided the ‘true’ state

of the electron density in the unit cell is accurately rep-

resented by the model. It is unclear what inadequacies

in the model are responsible for this. Do mistakes in

model building accumulate by becoming ‘locked in’ by

phase bias? Or is it simply not possible to represent

the ‘true’ electron density of real unit cells using exist-

ing coordinate-and-bulk-solvent models?

To address this question, we generated a new set of

Fstart values from a single-conformer model of lyso-

zyme, and repeated the full MLFSOM simulation and

XDS processing followed by phenix.autobuild with

anomalous data (Fig. 2), and then implemented a sim-

plistic Fsim � Fcalc guided build-back procedure (see

Experimental procedures). The results are shown in

Fig. 3, together with those for exactly the same

rebuilding algorithm performed on real data. Despite

the virtually identical data-processing statistics, the

simulated data rapidly converge to small molecule-like

Rcryst/Rfree values of 3.8%/5.5%, but the real data do

not. In fact, the final Rcryst/Rfree using Fsim is essen-

tially identical to the values of 3.92%/5.59% obtained

by dropping the ‘right answer’ coordinate model

directly into the refinement. This result implies that,

provided the ‘right answer’ is a single-conformer struc-

ture with unit occupancy, good geometry and flat bulk

solvent, then simply building into Fobs � Fcalc differ-

ence features may be expected to rapidly and easily

converge to the ‘right answer’. The noise in the data

and the lack of any external phase information are
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Fig. 2. Schematic representation of the workflow, showing the process used to generate both simulated and real diffraction images, and

then process, solve and refine the data. The refinement statistics for the models are detailed in Table 2.
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simply not enough to trap the building and refinement

into a local minimum. We therefore conclude that the

reason why building and refinement with Fobs does not

converge to small molecule-like Rcryst/Rfree values is

because the content of the real unit cell cannot be

accurately represented by current coordinate models.

Otherwise, building into Fobs � Fcalc difference features

would converge.

Relative contributions of sources of error

Whenever possible, published values are used for these

parameters. For example, detector performance was

taken from manufacturer’s specifications. Where no

published values are available (such as the jitter in the

shutter), parameters were measured experimentally at

Advanced Light Source beamlines 8.3.1 [30] and 12.3.1

[31] (Table 3), but it is a simple matter to input the

characteristics of a different beamline if they are

known. A general result of testing MLFSOM is that

only one of the many sources of noise in the diffrac-

tion experiment typically dominates a given dataset.

For example, the noise introduced by background

scattering limits the signal-to-noise ratio of faint, high-

resolution spots, and detector readout noise is only

important in cases where the background is very low.

Conversely, X-ray background and readout noise

have almost no effect on anomalous data. This may be

demonstrated by turning off background and readout

noise in the simulator or by adding additional readout

noise to real images and examining the resulting

anomalous signal. Anomalous differences are so small

that they may only be measured with thousands of

photons per spot, where the relative error due to pho-

ton counting is less than a few per cent. Because of

this, small relative errors, like the ones that propagate

through Darwin’s formula, dominate the errors in

anomalous difference measurements. However, MLF-

SOM simulations using realistic levels of shutter jitter,

beam flicker and sample self-absorption produced low-

angle Rmerge values of less than 0.5% and <I/r(I)> val-

ues > 100, which is clearly unrealistic. It was only after

including detector calibration error that realistic statis-

tics were obtained, indicating that a truly ‘perfect’

detector would enable S-SAD phasing with Bijvoet

ratios less than 0.5%. Unfortunately, no current detec-

tors give Rmerge or Rmeas values less than 1%.

Discussion

Realistic simulation of diffraction images using MLF-

SOM, and subsequent processing with commonly used

data-reduction programs reproduced essentially all rel-

evant data quality metrics, but still did not change the

structure factors by more than a few per cent, indicat-

ing that modern data-reduction packages accurately

capture structure factor amplitudes. Furthermore,

applying a standard SAD phasing pipeline followed by

careful rebuilding without phase restraints consistently

recovered the ‘right answer’ model with remarkably

low Rcryst/Rfree values (Fig. 3). This tells us that not

only are refinement programs stable to realistic noise,

but conventional difference map-guided model build-

ing should converge to ‘small molecule’ precision. Why

is this not possible with real data? There are two

places that the residual systematic error may reside: in

either the protein or the solvent.

There have been many attempts over the decades to

apply multi-conformer models [32–36], but the reduc-

tions in Rfree have never been more than approxi-
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Fig. 3. Reduction in R-factors as individual atoms are automatically

built into difference maps. The starting coordinate model used to

compute Fstart for the simulated data (blue and green) was a

single-conformer model of 100% occupied atoms with isotropic B

factors. In both cases, the processed data were provided to

phenix.autobuild with anomalous differences, the sequence of

lysozyme and no other sources of phase information. The resulting

model was trimmed of all water atoms and subjected to a simple

five-step rebuilding procedure using data truncated to 2.0 �A: (1)

refine in REFMAC for 500 cycles, or until atoms and B factors stop

moving, (2) add dummy atoms to the five highest peaks in the

difference map, (3) assign new atoms the proper atom name if

they are within 0.5 �A of an atom in the reference model, (4)

remove atoms with B > 100 �A2 or that fall on negative difference

features < �6r, and (5) repeat until convergence. Models built into

the simulated data converge to very low Rfree values

(Rcryst = 4.57% and Rfree = 7.27%), roughly the same magnitude

as the Rmerge from the XDS/MOSFLM-processed data, whereas

the Rfree for the real data never goes below 20%.
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mately 4%. This is consistent with the quadrature

summation of errors if half the errors arise from the

multi-conformer protein and half from solvent. For

example, if 20% error is coming from hidden conform-

ers in the protein region, and another 20% from the

unflatness of the solvent region, then the total error

will be 28%. If we assume no correlation between the

solvent errors and the model errors, then eliminating

all errors in either region entirely will still lead to Rfree

‘hanging up’ at approximately 20%, not 14% as one

would expect if two errors added algebraically to 28%.

Unfortunately, refinement tends to spread errors

evenly across the map, which means that the non-

flatness of the solvent must be explained if we are to

ever achieve noise levels in electron density maps on

a par with experimental noise. For example, if there

was no noise at all and the model refined down to an

R-factor near zero, then removing any single atom

would produce an enormous Fobs � Fcalc peak. Dur-

ing our automated build-back procedure, the peak

height of the next difference feature of the simulated

data steadily increased with building cycle, a behav-

ior that is not observed with real macromolecular

data (Fig. 4). With the simulated data, this is because

the phases are steadily improving, the occupancy of

all the atoms are unity, the bulk solvent is flat, and

each atom has a perfectly Gaussian-shaped Debye–
Waller factor. In the case of real data, the model has

these same characteristics, and apparently the errors

that arise from this assumption accumulate faster

than the new difference features rise. However, if the

coordinate model were more realistic and the build-

ing strategy more intelligent, there would be every

reason to expect that the difference features will

become increasingly more obvious all the way down

to ‘small molecule’-like R-factors. Specifically, if the

error in the map arises from experimental noise only,

it would generally be less than 5%, and as carbon

contains six electrons, single-electron changes are

approximately 18%. This is independent of diffracted

resolution, implying that data with sufficient overall

signal-to-noise are capable of distinguishing single-

electron changes. However, as long as the model–
data difference remains above 20%, these subtle

features remain indiscernible.

Although the bulk solvent itself may at first seem

uninteresting, the ‘littoral zone’ between the protein

and solvent channels is after all the interface between

the molecule of interest and the rest of the world. Sub-

strates, ligands and even other proteins must pass

through this region for biochemical reactions to occur,

so its structure and the forces involved in it are key to

understanding function. A better understanding of sol-

vent density will also have cross-over benefits in other

scattering techniques, in much the same way that pre-

vious work on crystallographic water [37–39] led to

better water models for small-angle X-ray scattering

analyses [40]. Developments in other fields, such as the

ability to distinguish between conformational switching

and bona fide disorder in small-angle X-ray scattering

analysis [41], may also help build better crystallo-

graphic models. The microscopic behavior of water is

still an active field of research [42–44], and our under-

standing of it continues to improve. Recently, a mole-

cular dynamics (MD) simulation of a protein crystal

revealed details in the solvent density beyond what

was originally built into electron density maps [45],

suggesting that a synergy between MX and MD more

fully describing multiple protein conformations and

the protein-solvent interface may finally be underway.

An exciting possibility is that realization of such

untapped information in the almost 78 000 macromo-

lecular datasets in the Protein Data Bank [46] will

spark a wave of new methodological developments

and functional insights [47]. It is clear now that model

building and refinement are held back neither by noise

nor phases but instead by the appropriateness of the

modeling framework currently used to represent mac-

romolecules and their environment – both protein and

solvent. Better models will inevitably provide better

descriptions of the dynamic nature of macromolecules
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that is so critical for their function. Once such models

are built, we expect the wealth of structural data accu-

mulated during the high-throughput structural genom-

ics era to stimulate insights into comprehensive protein

dynamics and the key protein–water interface. The

resulting enhanced knowledge of flexibility and the

solvent interface will propel us towards more accurate

crystal structures that will support improvements in

computational methods and better link structure to

activity and biology.

Experimental procedures

Reference lysozyme dataset

A reference dataset was collected at Advanced Light Source

beamline 8.3.1 from a lysozyme crystal measuring

0.12 9 0.21 9 0.3 mm grown with Gd-HPD03A [a neutral

gadolinium complex with 10- (2-hydroxypropyl)-1,4,7,10-

tetra-azacyclododecane-1,4,7-triacetic acid) as previously

described [48,49]. The detector was a model Quantum 315r

(Area Detector Systems Corporation, Poway, CA) operat-

ing in hardware binning mode with the data collection

parameters shown in Table 4 . The Gd/lysozyme crystals

were chosen because they combine the well-understood

nature of lysozyme and the Se-like f″ value of Gd at the Se

edge.

Simulated lysozyme datasets

Two simulated datasets were generated by MLFSOM

using the same parameters as the real data, some of

which were refined values from processing of the reference

dataset. Other parameters, such as flux, detector calibra-

tion error, and the magnitude of all sources of error were

each calibrated from independent experiments (Tables 2

and 3). The first simulated dataset (multi-conformer simu-

lated) was generated from a coordinate model containing

alternate conformation side chains and Gd ligand

positions refined against the real data collected here. This

model was generated starting with Protein Data Bank ID

1h87, refining alternately using phenix.refine [29] and

REFMAC [28], with periodic rounds of manual rebuild-

ing using Coot [50,51]. After a final refinement using

REFMAC, the calculated bulk solvent contribution was

extracted using the MSKOUT feature, and these structure

factors were added to those of the coordinate atoms

before calculating anomalous differences using ano_sfall.-

com. The resulting values of F+ and F- were then input

in to the mlfsom.com script to generate the simulated dif-

fraction images. The second simulated dataset (single-con-

former simulated) was generated from a simplified version

of this model containing only single conformer side chains

and two Gd sites, refined against the real data with the

X-ray weight reduced so that the right answer had excel-

lent geometry.

Random errors

The simulated sources of random error included beam

flicker, shutter jitter, detector readout noise, dark current,

Table 3. Sources of random error.

Source of error Values used for simulated data

Photon counting noise rN = √N
Readout noise RMS 11.5 electrons/pixel

Shutter jitter RMS 0.57 ms

Beam flicker 0.15%/√Hz
Dark current 0.036 RMS ADU/pixel/s

Table 4. Sources of systematic error.

Source of error Values used for simulated data

Air absorption Attenuation depth = 3220 mm

Sample self-absorption 100 lm thick 9 340 lm wide loop;

attenuation depth = 1538 lm

Detector front window 12.7 lm thick; attenuation

depth = 610 lm

Detector phosphor 40 lm thick; attenuation depth =

10.9 lm; energy absorption depth =

11.1 lm; visible light self-absorption

depth = 100 lm

Detector gain 1.8 ADU/photon

Detector point spread

function

g(r2 + g2)�3/2 with g = 30–60 lm

(center to corner)

Detector sensitivity

spatial variation

5.4% RMS with spatial frequency

five pixels

Detector vignette effect 100% center to 40% at corner

Detector ‘window pane’ Three pixel separation between nine

modules

Detector size 3096 9 3096 pixels; pixel size =

0.102539 mm

Spindle miss-alignment �0.1° about vertical

Detector miss-alignment 0.366° tilt; 0.115° twist; �0.141°

omega

Crystal mis-setting angles 147.188° about spindle; 34.5869°

about vertical; 144.977° about the

X-ray beam

Spot splitting threshold Two pixels or 1°

Maximum sub-spots 10 000

Mosaic spread 0.4°

Unit cell dispersion 0.3% Dd/d

Spectral dispersion 0.014% Dk/k

Beam divergence 2.0 9 0.3 mrad

Kahn polarization factor 0.9

Wavelength 0.97934 �A

Exposure time 0.1 s

Flux 7.7 9 1010 photons�s�1

Beam size 100 lm

Crystal size/thickness 120–200 lm, varying with rotation
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and X-ray shot noise from both Bragg-scattered photons

and background. The beam flicker was taken to be the

RMS variation of the direct beam intensity on a photodi-

ode placed at the sample position at Advanced Light

Source beamline 8.3.1, which was 0.15% at 5 Hz or

0.067%/√Hz if it follows a canonical 1/frequency power

spectrum, but, to be safe, the value 0.15%/√Hz was used in

the simulation. The shutter jitter was apparent in the varia-

tion of the PHIZ camera parameter refined by MOSFLM

(Doc. S1), and dominated by the 2 ms update rate of the

PMAC motor controller (DeltaTau Inc., Los Angeles, CA).

This generates a sawtooth distribution of timing errors with

an RMS of 0.577 ms. The readout noise of the detector was

taken from blank images as RMS 4.1 pixel level (ADU)

variation, with additional noise from the dark current

accumulating at 0.036 RMS ADU/s. The shot noise

(photon-counting error) was taken as the square root of

the expectation value of photons that were absorbed in the

phosphor layer of the detector.

Systematic errors

Attenuation of X-rays in the sample, the air and the

detector are all sources of systematic error. These were

calculated using Beer’s law [52–54] and the tabulated

cross-sections from the National Institute of Standards

and Technology XCOM database [55]. The shape of the

sample was represented using a facet/planes model, by

which the surface of the sample was approximated as a

collection of planes defining each facet. As the simulated

crystal rotated, the intersection point between the incident

X-ray beam and the facet currently in its path was com-

puted. The distance from this point to the center of the

sample was taken as the first segment of the X-ray attenu-

ation path, with the second segment similarly calculated

for the diffracted beam exiting toward each pixel.

The energy deposited into the phosphor was also com-

puted from Beer’s law using its mass energy absorption

cross-section [56]. It is this dose that leads to the visible

light that is eventually detected by the CCD. The vignette

effect, which makes transmission 40% less efficient at the

corners of each fiberoptic taper than at the center, was sim-

ulated by scaling down the absorbed photons before calcu-

lating the shot noise error, and then scaling back up to

simulate the flood-field correction.

The point spread function was implemented as described

previously [57], with the width varying twofold from the

center to corner of each module to simulate the corner

correction effect. Another effect of the point spread func-

tion varying across the face of the detector is that it limits

the applicability of the flood field correction to sharp

features such as spots. Together with other sources of sys-

tematic error, this calibration error effect must have

resulted in the observed Rmerge = 3.9% in the lowest-angle

bin. Although detector calibration was probably not the

only source of systematic error at work, for this low-multi-

plicity dataset, the total error was implemented as a fixed

mask of scale factors varying by RMS 5.4% from unity

with a spatial frequency of five pixels. This mask was mul-

tiplied by the spot intensities on every image, and the

resulting Rmerge and ISa were equal to those of the real

data.

The simulated spindle was misaligned 0.1� from ideal to

induce realistic errors in the Lorentz factor. The illumi-

nated crystal volume was made to vary in thickness from

120 to 200 lm as the crystal rotated, matching the scale

factors of the real dataset. Global radiation damage was

modeled as an exponential decay with resolution and dose,

reaching half the undamaged spot intensity at 10 MGy/�A

as described previously [15]. Specific damage may be mod-

eled by a similar dose-dependent conversion of the zero-

dose set of pristine structure factors to those of a heavily

damaged structure using radiation-induced non-isomor-

phism of 1% for every MGy of dose [58]. However, as the

total dose to the sample in the real dataset was less than

40 kGy, the effect of radiation damage was negligible for

the simulations reported here.

Background scattering from air, water and Paratone-N

oil (Hampton Research, Aliso Viejo, CA, USA) was cali-

brated from constant-resolution pixel average of the dif-

fraction pattern from reference materials of known

thickness. Diffuse scatter from disorder in the crystal lattice

and Compton scattering from the whole sample were mod-

eled as described in Doc. S1. The sum of all these sources

of background reproduced the background level in the ref-

erence experiment very well (Fig. 1). It should be noted

that, by definition, diffuse scatter is ‘flat’ underneath the

Bragg peaks, as the act of integrating a background-sub-

tracted spot in reciprocal space is mathematically equiva-

lent to averaging the electron density over a patch of unit

cells equal to the reciprocal dimension of the spot size. This

is usually a few hundred nanometers, so deviations from

the cell repeat must be correlated for many dozens of unit

cells in a row for it to contribute more to the integration

area than it does outside of it.

Spot shapes were represented as the sum of a collection

of Gaussian peaks. Each spot-broadening parameter (beam

divergence, spectral dispersion and mosaic spread) was

evaluated individually. If sweeping any one of these over its

entire range moved a spot by more than two pixels, then

the parameter was split into sub-beams or sub-crystals. A

separate parameter splitting was performed for every spot.

For example, if the beam divergence was wide enough to

spread a spot over six pixels, then the beam was divided

into three sub-beams, each with one-third of the divergence

of the overall beam, but with slightly different directions.

The width of the rocking curve due to each effect was

evaluated using the Greenhough–Helliwell equation [59],

and the effect was split again if it broadened the spot by

more than 1�. Each diffraction spot produced by each sub-
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beam from each sub-crystal was then treated separately

when computing spot width, height and tilt on the detector

face by partial numerical differentiation of spot position

with respect to divergence, dispersion and mosaic rotation

about the beam. These widths were then convoluted

together to form a single 2D anisotropic Gaussian peak on

the detector surface. This shape was then convoluted with

the Gaussian series expansion of the point spread function

[57]. The partiality of each sub-spot was computed by

applying the rocking width given by the Greenhough–Helli-

well equation to the rocking curve of a disk-shaped recipro-

cal lattice point passing through the Ewald sphere

described by Winkler et al. [60]. MLFSOM also supports

Gaussian, Lorentzian, arctan, ‘top hat’ or square rocking

curve functions, but the disk function was empirically

found to best match the spot shapes of the real data.

Current limitations of MLFSOM

Every effort was made to include all effects postulated to

have a significant impact on data quality into the MLF-

SOM simulation, but the ‘realism’ is by no means perfect.

For example, the crystal size was described by a single

length parameter, as was the X-ray beam, and both are con-

sidered to be square. There is no allowance for non-uniform

radiation damage as the crystal rotates [61]. Beam shape

and mosaic spread are both presumed to have simple ‘top

hat’ shapes with no internal structure. Photon counts have a

Poisson distribution, but all other sources of error such as

beam flicker, shutter jitter and readout noise were taken

from a normal distribution. The spatial, flood and dark cor-

rections normally used with CCD detectors [62] are not cur-

rently implemented explicitly, nor is electron-counting noise

as this becomes significant only for very long exposures.

Processing real and simulated lysozyme data

For both real and simulated lysozyme data, the images were

reduced to mtz format reflection files using either MOSFLM

[18], SCALA and TRUNCATE [26] or XDS, XSCALE

and XDSCONV [20] as pipelines. In both cases, a 5% Rfree

set was assigned, and the same Rfree flags were used for the

real and simulated data. For side-by-side comparisons, both

the real and simulated data were input to phenix.autosol as

SAD datasets. Statistics are shown in Table 1.

Build-back routine

For the rebuilding test shown in Fig. 3, a model of lyso-

zyme was generated to include only a single conformer for

every atom, with all occupancies set to 1.0. This model was

refined to convergence against the real data using REF-

MAC with the X-ray weight turned down, so that the

resulting model had excellent geometry. A new value of

Fstart was calculated from this coordinate model and the

best-fit bulk solvent mask from the last cycle of REFMAC.

This Fstart value was used to simulate a new set of images

with the same camera and noise parameters described

above, and processed back to Fsim using XDS.

The F+ and F� data from processing the real, multi-con-

former simulated and single-conformer simulated images

were input to phenix.autosol and phenix.autobuild, together

with the sequence of lysozyme and instructions to find two Gd

sites. The final Rcryst/Rfree values of these runs are shown in

Table 2. The water molecules, side chains and ligands from

these models were then removed, and the remaining protein

main chain was refined to convergence against Fobs or Fsim (no

anomalous) using up to 500 cycles in REFMAC. Then

dummy atoms (DUM in REFMAC) were added to the high-

est five peaks in the Fobs � Fcalc or Fsim � Fcalc difference map.

To simulate ideal chemical intuition on each building cycle,

each peak found to be within 0.5 �A of an atom in the ‘right

answer’ model was assigned the proper atom name, but the

xyz coordinates remained those of the initial picked peak.

Each newly added atom was assigned the median B factor of

the current model. After each build cycle, another 500 cycles

of refinement were performed, and again dummy atoms were

added at the top five positive difference peak positions. For

each build cycle, if the largest difference peak was negative,

any atom found within 0.5 �A of that negative peak was elimi-

nated. Atoms with B factors that increased to more than ten

times the median absolute deviation from the median B factor

were also discarded. The Rcryst/Rfree history of this building

and refinement procedure is shown in Fig. 3. Exactly the same

procedure was applied to the real data, and the results are also

shown in Fig. 3.

The images for all datasets are available from http://

bl831.als.lbl.gov/example_data_sets/mlfsom/. Coordinates

and structure factors for the real data have been deposited

in the Protein Data Bank under accession number 4tws.
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