
The properties of small-molecule drugs, especially those 
that are orally bioavailable, are concentrated in a rela-
tively narrow range of physicochemical space known as 
‘drug-like’ space1,2. In studies of extensive data sets of 
small molecules, the fundamental properties of molec-
ular size, lipophilicity, shape, hydrogen-bonding prop-
erties and polarity have been correlated — to varying 
degrees — with solubility3, membrane permeability4, 
metabolic stability5,6, receptor promiscuity7, in vivo tox-
icity8,9 and attrition10,11 in drug development pipelines.

Lipophilicity and hydrogen bond donor count seem 
to be key properties, as they have remained essentially 
constant in oral drugs over time7,12–15. The median and 
mean molecular mass of approved drugs has risen by 
only around 50 Da (15%) over the past three decades, 
whereas the median and mean molecular mass of syn-
thesized experimental compounds has risen by over 100 
Da (30%)16. By contrast, the molecules that are being 
published in the literature15 and patented by the phar-
maceutical industry17, as well as those entering clinical 
development pipelines10, are more lipophilic, larger and 
less three-dimensional14,18 than approved oral drugs. 
However, analyses indicate that compounds that have 
a higher molecular mass and higher lipophilicity have a  
higher probability of failure at each stage of clinical 
development10,19,20.

The control of physicochemical properties is depend-
ent on the specific drug target, the mode of perturbation 
and the target product profile — all of which may just-
ify developing compounds that lie beyond the norm — 
and it is also dependent on the variable drug discovery 

practices of originating institutions7,17. Individual drug 
discovery projects often justify the pursuit of molecules 
that have additional risks associated with suboptimal 
physicochemical properties, as long as experimental 
project goals and the target product profile criteria are 
met. However, when viewed in aggregate at a company 
portfolio level, the physicochemical properties of inves-
tigational drugs can have an important influence on the 
overall attrition rates10,19,20 and therefore ultimately on 
the return on investment.

Three factors have been proposed to underlie the 
observed inflation in physicochemical properties21,22 of 
investigational drugs over the past three decades. First, 
the discovery of initial hit compounds with inflated 
physicochemical properties has been linked to the rise 
of high-throughput screening (HTS)23. Larger and more 
lipophilic compounds, potentially with a higher binding 
affinity, are more likely to be detected in HTS assays, 
which are often based on a single affinity end point. 
Second, the tendency of HTS methods to identify large 
and lipophilic compounds is amplified by the observed 
tendency of the lead optimization process to inflate 
physicochemical properties24,25. Third, the portfolio of 
drug targets being tackled by the industry includes a 
growing number of targets that are less druggable than 
those pursued previously, which may justify the develop-
ment of compounds with less optimal physicochemical 
properties20.

We believe that the overemphasis on potency, as 
well as the associated tendency to inflate physicochemi-
cal properties, can be remedied by monitoring and 
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Abstract | The judicious application of ligand or binding efficiency metrics, which quantify 
the molecular properties required to obtain binding affinity for a drug target, is gaining 
traction in the selection and optimization of fragments, hits and leads. Retrospective 
analysis of recently marketed oral drugs shows that they frequently have highly optimized 
ligand efficiency values for their targets. Optimizing ligand efficiency metrics based on 
both molecular mass and lipophilicity, when set in the context of the specific target, has 
the potential to ameliorate the inflation of these properties that has been observed in 
current medicinal chemistry practice, and to increase the quality of drug candidates. 
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optimizing ligand efficiency metrics instead of potency 
alone. Ligand efficiency metrics, which are measures of 
the in vitro biological activity corrected for the physico-
chemical property ‘load’ of the molecule, quantify how 
effectively the molecule uses its structural features in 

binding to the target. The LE (equation 1; BOX 1) con-
cept26 was derived from the observation that the maxi-
mum affinity achievable by ligands is –1.5 kcal per mole 
per non-hydrogen atom (‘heavy’ atom), ignoring simple  
cations and anions27, and from studies examining 

Box 1 | Ligand efficiency metrics

Ligand efficiency (LE) was first proposed as a method for comparing molecules according to their average binding energy 
per atom26,27. This concept has been extended to incorporate other properties such as lipophilicity7, molecular mass82, 
polar surface area82, combinations of physicochemical properties23,48 and functional group contributions54. The measures 
are focused only on in vitro binding affinity and not on in vivo properties. Commonly used efficiency metrics are described 
in equations 1–6, where HA denotes the number of non-hydrogen (that is, heavy) atoms. In equations 1–6, the negative 
logarithmic value of the half-maximal inhibitory concentration (pIC

50
) can be substituted with the negative logarithmic 

values of the inhibition constant (pK
i
), the dissociation constant (pK

d
) or the effector concentration for half-maximum 

response (pEC
50

; logarithms are to base 10) (see below). In equations 4–6, cLogP can be substituted by LogD. Each equation 
corresponds to a mathematically valid function, mapping either  ×  →  (equations 1–3), 2 →  (equation 4) or 2 ×  →  
(equations 5,6), where  and  denote the spaces of real numbers and positive integers, respectively.

LE = (–2.303(RT/HA)) × logK
d
 (1)

LE = (1.37/HA) × pIC
50

 (2)
LEI = pIC

50
/HA  (3)

LLE = pIC
50

 – cLogP  (4)
LLE

AT
 = 0.111 + 1.37(LLE/HA) (5)

LELP = cLogP/LE  (6)
Equation 1 (REF. 27) is derived from the Gibbs free energy of binding per heavy atom. The free energy of binding is 

defined as follows: ΔG0 = –RT × ln(K
d
/C0) = –2.303RT × log(K

d
/C0), where R is the ideal gas constant (1.987 × 10–3 kcal/K/mol), 

T is the temperature in Kelvin (K), C0 is the standard concentration and K
d
 is the dissociation constant. Varying the 

temperature and standard concentration will change the relative ΔG. Assuming standard conditions of aqueous solution 
at 300K, neutral pH and remaining concentrations of 1M, –2.303RTlog(K

d
 /C0) approximates to –1.37 × log(K

d
) kcal/mol.  

In other words, a change in Gibbs free energy of binding of –1.37 kcal/mol is equivalent to a tenfold increase in 
affinity. It follows that LE = ΔG0/HA = –(2.303RT/HA) × log(K

d
/C0) ≈ –(1.37/HA) × log(K

d
) = (1.37/HA) × pK

d
 kcal/mol/heavy 

atom. Following the common practice of substituting pK
d
 by pIC

50
 (or pK

i
 or pEC

50
) values, LE can be expressed as  

(1.37/HA) × pIC
50

 (equation 2). As IC
50

 values for competitive inhibitors depend on the concentration of the competing 
ligand, ideally equation 2 should be used only to compare LE values under the same assay conditions. In this paper, all LE 
values are expressed as LE = (1.37/HA) × p(Activity) where p(Activity) is pK

i
, pIC

50
 or pEC

50
 (note that in the studies of 

target LE values reported in this paper, checking all assay conditions for >200,000 compounds was not practical, but we 
treat published K

i
, IC

50
 and EC

50
 values separately).

From equation 1 it follows that for a given LE, HA is linearly related to pK
d
, with a slope of 1.37/LE. Therefore, the 

change in HA required to maintain constant LE for a tenfold increase in affinity (change in pK
d
 = +1) is 1.37/LE. There is 

no requirement that each change in HA that increases potency by tenfold should be constant for compounds with 
different LE values29. A simple approach has been adopted by some practitioners to define binding efficiency by simply 
dividing p(Activity) by HA to produce a unitless quantity referred to as the ligand efficiency index (LEI; equation 3).  
An alternative is to substitute HA with molecular weight to provide the binding efficiency index (BEI)82.

Lipophilic ligand efficiency (LLE, equation 4) is simply the difference between p(Activity) and lipophilicity (cLogP or 
LogD) and is an estimate of the specificity of a molecule in binding to the target relative to partitioning into 1-octanol7. 
LLE is also referred to in the literature as LipE (lipophilic efficiency)43; LLE and LipE are defined identically and in this 
paper we use the term LLE.

Proposed acceptable values of LE and LLE (based on cLogP) for drug candidates are as follows: LE >~0.3 kcal per mole per 
heavy atom (REF. 26) and LLE >~5 (REF. 7), based on a K

d
<10 nM molecule having a heavy atom count of 38 (~500 Da)26 and a 

cLogP<3 (REF. 7). Published mean oral drug values that provide the benchmark we use for druggability assessment (FIG. 4; 
BOX 4) are as follows: LE = 0.45, LLE (based on cLogP) = 4.43 (n = 261, calculated from the in vitro potencies provided in the 
supplementary data in REF. 2). In another compilation44 the values were similar: LE = 0.52, LLE (based on ChemAxon 
LogP) = 5.02 (n = 302). Supplementary information S3 (table) compiles potencies, LE, LLE and lipophilicity-corrected ligand 
efficiency (LELP) values of exemplar collections of drugs, hits and leads44.

Equation 5 and equation 6 provide efficiency metrics that combine potency, lipophilicity and HA count in different ways, 
and are useful for fragment optimization. LLE

AT
 (LLE adjusted for heavy atom count; equation 5) is scaled to be comparable 

to LE (equation 1)48. LELP (equation 6) provides a metric that indicates the price of LE paid in lipophilicity23. Considering the 
acceptable lower limit of LE (0.3), and the lipophilicity range for lead-like compounds (−3 < LogP <3), the optimal LELP 
value in lead discovery should be in the following range23: −10 < LELP <10. It should be noted that LELP values will be less 
responsive to changes in size or potency as cLogP gets closer to zero. The LE metrics LLE, LELP and LLE

AT
 can be derived 

using measured 1-octanol–water or buffer partition coefficients or using calculated values of LogP (the partition 
coefficient) or LogD. Because of the risk of variability in calculating lipophilicity46,83, it is recommended that confirmatory 
experimental data are obtained for exemplar molecules.

Size-independent ligand efficiency (SILE) measures and fit quality (FQ) are described in BOX 2, and group efficiency  
is described in BOX 3.
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Spline fit
A statistical, numerical 
method for fitting a curve 
through a set of data points 
using a cubic polynomial.

functional group binding energy28. Kuntz et al. presented 
binding free energy (ΔG) per atom by dividing the free 
energy of binding by the number of heavy atoms, and 
postulated the potential use of the binding energy per 
heavy atom as a means to assess ligands throughout the 
drug discovery process27.Treating the data in this way 
makes two assumptions: it assigns all of the intermolec-
ular interaction to the ligand alone, and it assumes the 
binding energies per atom are additive. Thus for a given 
ligand efficiency (the gradient) there is a linear relation-
ship between the free energy of binding and the number 
of heavy atoms, where it is assumed that a ligand with 
zero atoms has zero free energy of binding at standard 
conditions. 

The most widely used ligand efficiency metrics are cal-
culated in a simple way and are summarized in BOXES 1–3; 
they can be applied at all stages of drug discovery to evalu-
ate fragments, screening hits, leads and candidate drugs. 
The use of molecular-size measures such as heavy atom 
count in LE metrics (for example, see BOX 1) has some 
caveats29. In particular, component atoms (that is, carbon, 
nitrogen, oxygen, sulphur and halogen) are treated equally 
even though their sizes and binding properties are differ-
ent, and some atoms in a molecule may not participate in 
receptor binding interactions (BOX 2).

Nevertheless, monitoring ligand efficiency metrics 
during hit and lead optimization can highlight the price 
paid in physicochemical properties when modulating 
binding affinity. Depending on the binding affinity 

and the physicochemical properties of a lead molecule, 
ligand efficiency values may increase or decrease dur-
ing optimization. This is exemplified by the changes in 
affinity that are needed to maintain constant LE (equa-
tion 1; BOX 1) values when substituting a lead molecule 
with various groups (BOX 3; FIG. 1). Applying ligand 
efficiency analyses has practical utility in guiding lead 
discovery — and, more importantly, lead optimization 
— towards drug-like chemical space. Here, we illustrate 
this with new analyses, including recent optimizations 
from the literature and surveys of ligand efficiencies of 
compounds for particular drug targets as well as recently 
approved oral drugs.

Binding thermodynamics and ligand efficiency
Hit-to-lead efforts typically start from hits with micro-
molar affinity (or even low millimolar affinity in the case 
of fragment hits), and aim to identify submicromolar 
lead series with promising physicochemical and ADMET 
(absorption, distribution, metabolism, excretion and tox-
icity) profiles that are suitable for further optimization. 
Improving potency increases the negative free energy of 
binding (ΔG), which in turn is composed of two thermo-
dynamic quantities: binding enthalpy (ΔH) and binding 
entropy (TΔS).

Predicting how structural modifications will affect 
the enthalpy or entropy of binding is extremely diffi-
cult, particularly given the well-known phenomenon 
of entropy–enthalpy compensation, but there are some  

Box 2 | Size-independent measures of ligand efficiency

Analysis of large numbers of protein–ligand complexes over a broad range of affinities38,39 demonstrates that average 
or optimal ligand efficiency (LE) values are systematically higher for small ligands than for large ligands. By contrast, 
the relationship between lipophilic ligand efficiency (LLE) and cLogP is linear, with the gradient of the slope depending 
on the extent to which potency is driven by lipophilicity in the ligands used; a slope of –1 indicates that there is  
no relationship between potency and lipophilicity. Supplementary information S1 (figure) shows the nonlinear 
relationship between LE and heavy atom (HA) count, and the linear relationship between LLE and lipophilicity.

Lipophilicity-corrected ligand efficiency (LELP) and LLE adjusted for heavy atom count (LLE
AT

; BOX 1 ) normalize 
lipophilic efficiency for molecular size. Two size-independent modifications of LE using only HA have been proposed: 
fit quality (FQ; equation 1)39 and size-independent ligand efficiency (SILE; equation 2)84.

FQ = [pIC
50

 or pK
i
 ÷ HA] ÷ [0.0715 + (7.5328 ÷ HA) + (25.7079 ÷ HA2) – (361.4722 ÷ HA3)] (1)

SILE = pIC
50

 or pK
i
 ÷ HA0.3      (2)

FQ normalizes LE by binning LE values for a large number of disparate complexes and using a scaling factor derived 
from a spline-fit of the most potent compounds in each bin. SILE does essentially the same thing with a different fitting 
function (that is, ΔG/HA0.3, where ΔG stands for the negative free energy of binding). In either case, the effect is to 
transform LE into a metric that is more consistent across broad ranges of molecular size. Similarly, this approach has 
been applied to derive size-independent enthalpy efficiencies, in which free energy is replaced by enthalpy36.

Of course, this trend begs the question of why the HA count alone is not a more consistent normalization term for 
molecular size. At least three factors have been proposed to explain this result. First, the HA count is being used as a 
surrogate for molecular surface, as the latter would be expected to be more relevant to molecular recognition and 
binding. Second, analysis of the computed molecular surface as a function of molecular mass shows that although 
these two factors are generally related, the increase in molecular surface per additional HA declines with increasing 
size39. This is sensible given that larger molecules, by necessity, have a more buried (that is, internal) surface relative to 
small molecules. Third, beyond the breakdown in linearity between the number of atoms and surface area, there is also 
a fundamental problem with satisfying multiple binding subpockets simultaneously. As molecular structures are not 
infinitely adjustable (that is, bond distances and angles can only adopt very limited values without introducing strain), 
structural compromises are increasingly inevitable as ligand size increases. This was demonstrated with simple model 
systems39 and is further supported by subsequent analysis of enthalpy and entropy efficiencies42 showing that size 
dependency is related to enthalpy (see Supplementary information S2 (figure)).
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general trends30,31. Optimization of specific polar  
interactions between the target binding site and the 
ligand is usually associated with a more promising  
physicochemical profile (lower lipophilicity) and 
improvements in binding enthalpy. By contrast, 
increasing ligand size and lipophilicity to generate 
nonspecific interactions often leads to entropy-driven 
improvements in affinity32, whereas specific lipophilic 
interactions can increase or decrease the binding 
enthalpy. The entropy-driven approach to improving 

affinity probably contributes to the well-documented 
inflation of physicochemical properties in hit and lead 
optimization22–25.

Although this picture is qualitative, thermodynam-
ics-based optimizations have recently been the subject 
of increasing interest33,34. Isothermal titration calorim-
etry (ITC) allows the determination of ΔH and TΔS35, 
and ITC data have been analysed from more than 700 
protein–ligand complexes, which were obtained from a  
literature survey covering both medicinal chemistry and 

Box 3 | Group efficiency

Group efficiency (GE)54 is used to show the contribution of different parts of a lead molecule to the overall binding affinity. 
It is analogous to ligand efficiency (LE), but GE refers only to the atoms that have been added onto an existing molecule.

GE provides a guideline of the gain in affinity that should be sought depending on the size of a group that is added to an 
existing compound. GE is the contribution to the negative free energy of binding (ΔG) per heavy atom (HA; the number  
of non-hydrogen atoms) of the added group54. So, if a group of atoms is added to compound ‘A’ to form compound ‘B’, 
the GE of the added group is defined by equation 1 (in which ΔΔG and ΔHA are defined as in equations 2 and 3):

GE = –ΔΔG/ΔHA    (1)
ΔΔG = ΔG (compound B) – ΔG (compound A) (2)
ΔHA = HA (compound B) – HA (compound A) (3)
GE is a more sensitive metric than LE when considering the change in affinity, as a fragment (or early lead) is optimized 

into a lead with a higher affinity and increased molecular mass, and it can be used to show ‘hotspots’ in terms of binding 
efficiency. Consider, as an example, an early compound A that has 25 atoms and an affinity of 1 μM. If a phenyl group is 
added to compound A and a tenfold increase in affinity is measured for the new compound B, the LE values for the two 
compounds are similar, 0.33 and 0.31 respectively (compound A: 6 × 1.37 ÷ 25; compound B: 7 × 1.37 ÷ 31). However, the GE of 
the phenyl group is only 0.23 (GE = [(7 × 1.37) – (6 × 1.37)] ÷ 6), which indicates that it is a relatively poor addition in terms of 
binding affinity. As shown in the table54, if a phenyl group (HA = 6) is added and if the aim is to achieve a GE of 0.39 (or an 
overall LE of 0.39, which is in line with a candidate molecular mass of 400 Da and a half-maximal inhibitory concentration 
(IC

50
) of 10nM), then a 46-fold increase in affinity is required.

GE is useful in fragment-based drug discovery (FBDD) during the optimization of the binding affinity of a millimolar or 
micromolar fragment into a nanomolar lead. It provides the chemist with a measure of whether atoms that are added onto 
the starting fragment justify their presence in terms of providing additional binding affinity (see the example in FIG. 3). 
Some of the limitations of GE are that it can only be determined if binding affinities have been measured for closely related 
compounds, and GE assumes that the structure–activity relationship of the groups being added is additive (that is, each 
one is independent of the other groups). Furthermore, GE, as with LE and related terms, is primarily intended for use when 
focusing on affinity optimization rather than on in vivo properties.

The table shows the affinity increase required when adding atoms onto a lead molecule in order to maintain overall LE54. For example, 
if a phenyl group, C

6
H

5
 (HA = 6), is added onto a molecule and the resulting affinity increase is 22-fold, this phenyl group has an LE of 

0.31. This is referred to as the GE.

ΔHA Fold-improvement in binding affinity required to maintain GE

GE = 0.31 (500 Da lead with 
IC50 = 10nM)

GE = 0.39 (400 Da lead with 
IC50 = 10nM)

GE = 0.52 (300 Da lead 
with IC50 = 10nM)

1 1.7 1.9 2.3

2 2.8 3.6 5.5

3 4.6 6.8 13

4 7.7 13 30

5 13 24 71

6 22 46 170

7 36 88 390

8 60 170 920

9 100 320 2,200

10 170 600 5,100

11 280 1,100 12,000

12 460 2,200 28,000

A N A LY S I S

108 | FEBRUARY 2014 | VOLUME 13  www.nature.com/reviews/drugdisc

© 2014 Macmillan Publishers Limited. All rights reserved



0.1 1 10 100 1,000

S
F

Cl

OH

NH2

Br

OI

NH2

NH2

O

N

OH

OH

O
Me

N

2

OH

NH

F

F

F

N

N
S

N

NH

N
O

N

N

ON

O

H
N

O

a

Nature Reviews | Drug Discovery

S

F Cl

OH

NH2

Br

O

INH2

NH2

O
N

OH

OH

O

Me

N

2

OH

NH

F

F

F

N

N
S

N

NH

N
O

N

N

O

N

O

H
N

O

0.1 1 10 100 1,000

b

natural product-derived ligands36. In contrast to ΔG27, 
ΔH decreases with increasing molecular size at a heavy 
atom count of 25 or greater37. 

As the number of heavy atoms increases, LE (BOX 1) 
decreases (see BOX 2 and Supplementary information 
S1,S2 (figures))38,39. It has been suggested that the less 
favourable TΔS values for larger and more flexible 
ligands may contribute to the fall-off that is typically 
observed for LE in larger ligands40. However, in an 
analysis of the number of energetically accessible con-
formations for several thousand ligands of varying sizes 
and affinities, no trend was observed for increased con-
formational entropies with increasing ligand size39. It is 

clear from this analysis that many large molecules are 
much more conformationally constrained than might be 
expected from their overall size or from a simple count 
of the number of rotatable bonds. It also seems likely 
that any effect of conformational entropy on ligand bind-
ing may well be swamped by other contributions to the 
overall TΔS of binding40.

Thermodynamic data allow individual ligand enthal-
pic and entropic efficiencies per heavy atom to be calcu-
lated35. A size-independent version of enthalpic efficiency 
(SIHE)36 can also be used. Analysis of experimental ITC 
data33,41 across a broad range of chemotypes shows that the 
average entropic efficiency does not change significantly 

Figure 1 | Maintaining acceptable ligand efficiencies during optimization of binding affinity. a | The diagram 
shows the fold increase in affinity (on the horizontal axis) that is needed to maintain a ligand efficiency (LE; defined in 
BOX 1) value of 0.3 when adding the indicated groups to a lead molecule. Adding a methyl group (with a heavy atom 
(HA) count = 1) requires an approximately twofold increase in affinity, whereas adding a benzyl group (HA = 7) requires 
an approximately 30‑fold increase in affinity. b | The diagram shows the fold increase (on the horizontal axis) in binding 
affinity that is needed to maintain a lipophilic ligand efficiency adjusted for heavy atom count (LLE

AT
; defined in BOX 1) 

value of 0.3 when adding the indicated groups to an aromatic carbon of a lead molecule. Note the differences in the 
affinity increase required when adding a six‑membered ring according to its cLogP value (piperazine versus morpholine 
versus pyridine versus a phenyl group)48.
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with size (Supplementary information S2 (figure)), but it 
narrows when ligand size is increased42. By contrast, the 
enthalpic efficiencies show a much more dramatic trend 
with increasing size, which is similar to the trend seen 
with the overall LE values (that is, derived from ΔG). 
Very favourable enthalpic efficiencies are common for 
small ligands, but the average — and most favourable — 
enthalpic efficiencies for larger ligands are systematically 
reduced (see Supplementary information S2 (figure)). 
Hence the overall trend in ΔG-related LE is mainly a con-
sequence of enthalpic efficiency40,42. These results suggest 
that the effects of conformational entropy may not be as 
significant as is commonly believed. In contrast to size, 
both lipophilic enthalpy efficiencies and lipophilic entropy 
efficiencies tend to decrease with increasing lipophilicity 
(see Supplementary information S2 (figure)). For indi-
vidual protein targets, lipophilic ligand efficiency (LLE), 
also known as LipE (equation 4, BOX 1), might be a more 
useful surrogate than LE or lipophilicity-corrected ligand 
efficiency (LELP) for the enthalpic component of ligand 
binding, especially under circumstances where structur-
ally similar series such as matched molecular pairs display 
similar specific lipophilic binding interactions43.

Optimization of enthalpy-driven binding efficiency 
appears to be an attractive strategy37, but it is not yet clear 
whether this will lead to less attrition in drug candidate 
pipelines. Analysis of four targets from the literature sug-
gests that as well as enthalpy efficiency, lipophilic ligand 
efficiency measures can provide practical guidance in 
designing ligands with improved molecular properties44, 
as discussed below.

Lipophilic ligand efficiency
The mean lipophilicity of marketed drugs — measured 
by the partition coefficient (LogP) or the distribution 
coefficient (LogD) — has not changed substantially over 
several decades7,12–15. This important observation implies 
that lipophilicity is a fundamental property that affects the 
progress of drug discovery programmes and the ability  
to develop identified candidates. By contrast, it has been 
observed that the physicochemical properties of ana-
logues in a chemical series, including molecular mass 
and lipophilicity, often increase during optimization 
from hit to lead23 and from lead to drug candidate24,25.

The concept of using minimal hydrophobicity in drug 
design is not new45, and is supported by a wealth of recent 
evidence46 showing that lipophilicity has an important 
effect on drug-like properties. In addition to its con-
nection to solubility3, lipophilicity affects many ADME 
properties as well as toxicity properties such as voltage-
gated potassium channel hERG liability, phospholipidosis, 
cytochrome (CYP) inhibition and receptor promiscuity46. 
Owing to its central role in pharmacokinetics and safety,  
most of the empirical ADMET guidelines include lipo-
philicity, such as Lipinki’s rule of five guidelines on absorp-
tion47, GlaxoSmithKline’s 4/400 guideline on ADMET 
properties6 and Pfizer’s 3/75 guideline on toxicological 
outcomes8.

In addition to influencing ADMET properties, lipo-
philicity (LogP or LogD) is one of the key factors deter-
mining binding affinity to drug target proteins. High 

target potency combined with high lipophilicity may 
therefore also increase the risk of ADMET-related attri-
tion2. As a result, medicinal chemistry optimization 
needs to be balanced and multidimensional37, which is 
a difficult task but one that can be assisted by the use of 
efficiency metrics to control lipophilicity. LLE7 (BOX 1) is 
a simple but important index combining in vitro potency 
and lipophilicity. A molecule with an LLE equal to zero 
based on LogP, where target affinity is equal to LogP, can 
be thought of  as having the same affinity for its target 
as it does for 1-octanol, whereas a drug candidate with 
an LLE of 6 has a one-million-fold higher affinity for its 
target compared to 1-octanol. Negative LLE values are 
clearly unfavourable. Based on the properties of an aver-
age oral drug, with a calculated LogP (cLogP) of ~2.5–3.0 
and potency in the range of ~1–10 nM, an ideal LLE value 
for an optimized drug candidate is ~5–7 units or greater7. 
Fragments or lead-like molecules that are used as chemi-
cal starting points generally cannot possess drug-like LLE 
values because they are not potent enough. Hits with LLE 
≤2 are commonly found from HTS (that is, ≥1 μM affin-
ity with cLogP ~4 (REF. 23)), and these will have to be 
improved by ~3 or more LLE units during optimization 
to a candidate. Additional metrics such as LE are useful 
for dealing with molecular size in fragment-to-hit and 
hit-to-lead optimizations.

Combining both size and lipophilicity into a single 
efficiency index is useful at the hit identification and 
hit-to-lead stages as well as in fragment-based drug dis-
covery (FBDD; see the next section). Two such para-
meters — LELP23 and LLEAT (LLE adjusted for heavy 
atom count)48 — have been developed (BOX 1). Although 
the full range of optimal LELP values23 is −10 to +10, 
a desirable hit or lead against a tractable target in the 
early optimization stage — with an LE of >0.40–0.45 
and a cLogP of 0–3 — would have an LELP value of 
0–7.5 units. The LLEAT was derived from experience in 
FBDD, and is scaled to be comparable in magnitude to 
LE48. Both LELP and LLEAT can also be applied in lead 
optimization.

It has been shown44 that increasing lipophilic effi-
ciency, using LLE and LELP values, is associated with 
improved ADMET characteristics, probably as a result 
of both lowered lipophilicity and increased specificity. In 
one study, developmental candidates were successfully 
discriminated from marketed drugs by LELP but not by 
LE and LLE alone49. In addition, compilations of hits, 
leads, successful leads (those that produced marketed 
drugs)50 and drugs are differentiated by their mean LLE 
and LELP values44; potency, LE, LLE and LELP values 
for these compound sets are given in Supplementary 
information S3 (table). An analysis presented below 
in the section titled ‘Ligand efficiencies of oral drugs’ 
shows that using LE and LLE together can differentiate 
between marketed drugs and other molecules acting at 
the same target.

The recent medicinal chemistry literature contains 
an increasing number of examples where LLE has been 
explicitly used in the optimization process; 59 examples, 
covering 47 different molecular targets, are summarized 
in FIG. 2 (see Supplementary information S4 (table) for 
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Figure 2 | Examples from the literature in which lipophilic ligand efficiency was explicitly used in the 
optimization process on 47 different targets. Changes in p(Activity) between the starting point and the optimized 
compound are plotted against the corresponding changes in LogP (part a) and lipophilic ligand efficiency (LLE) (part b)  
for the 59 examples. The upper left quadrant in part a contains examples where activity is increased and cLogP is lowered 
(34 out of 59 examples). The upper right quadrant in part b contains examples where potency and LLE are increased  
(48 out of 59 examples). Results from matched pair analysis of starting properties versus optimized properties for the 59 
pairs are given in part c. Full data, including literature references, are available in Supplementary information S4 (table).  
The targets are as follows: 1, 11β‑hydroxysteroid dehydrogenase; 2, acetyl‑CoA carboxylase 1; 3, AKT; 4, MAPK/ERK 
kinase kinase 5 (also known as ASK1); 5, β‑secretase 1; 6, cannabinoid 1 (CB

1
) receptor; 7, CB

2
 receptor; 8, CC‑chemokine 

receptor 8; 9, MET–ALK (anaplastic lymphoma kinase); 10, diacylglycerol O‑acyltransferase 1; 11, epoxide hydrolase;  
12, free fatty acid receptor 1 (also known as GPR40); 13, formyl peptide receptor 1; 14, glycoprotein GP120; 15, G 
protein‑coupled receptor 119; 16, growth hormone secretagogue receptor type 1a; 17, histone H4; 18, HIV integrase;  
19, HIV reverse transcriptase; 20, human rhinovirus major capsid protein VP1; 21, Janus kinase 1; 22, UDP‑3‑O‑acyl‑N‑
acetylglucosamine deacetylase; 23, leucine‑rich repeat kinase 2; 24, metabotropic glutamate receptor 1 (mGluR1);  
25, mGluR2 and mGluR3; 26, mGluR5; 27, matrix metalloproteinase 13; 28, metallothionein 1 and metallothionein 2;  
29, NMDA (N‑methyl‑d‑aspartate) receptor subtype 2B; 30, N‑myristoyltransferase; 31, NS4B protein; 32, OX2 membrane 
glycoprotein; 33, phosphodiesterase 8B; 34, phosphoinositide 3‑kinase (PI3K); 35, PI3K p110β isoform; 36, serine/
threonine protein kinase PIM1; 37, peptidyl‑prolyl cis‑trans isomerase NIMA‑interacting 1; 38, protein kinase Cθ;  
39, progesterone; 40, tankyrase; 41, G protein‑coupled bile acid receptor 1; 42, tyrosine kinase 2; 43, vasopressin 
receptor V

1A
; 44, vascular endothelial growth factor receptor; 45, β

1
‑adrenergic receptor; 46, γ‑secretase; 47, σ1 receptor. 
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details). For each example, in vitro activities as well 
as LLE and LE values of the starting points and opti-
mized molecules were collected. The median changes 
in p(Activity) and LLE were +1.22 and +1.96, respectively 
(P <0.001 from matched pair analysis). Median values of 
LELP (–2.74) and LLEAT (+0.066) were also significantly 
reduced and increased, respectively. These results show 
that focusing on LLE in lead optimization facilitates the 
discovery of molecules with increased binding affinity 

without necessarily increasing lipophilicity at the same 
time. In fact, 48 of the 59 examples increased LLE in the 
optimization process, even though properties in addition 
to binding affinity were being optimized in many of the 
examples cited.

The importance of controlling lipophilicity in opti-
mization is further exemplified in an analysis50 of 60 
recently marketed drugs and their leads, which showed 
that mean lipophilicity remained constant during the 
optimization process, whereas mean potency — and 
therefore mean LLE — increased by ~2 Log units. For 
these 60 drug examples50, a high drug LLE is linked to 
a decreased lead cLogP, with the straight line fit being 
as follows: LLE drug = 7.93 – 0.78 × lead cLogP (n = 60, 
r 2 = 0.47, P < 0.0001). In the recent 59 LLE-aware opti-
mizations shown in FIG. 2, the same trend is present, 
but — as expected — it is much less pronounced: opti-
mized LLE = 6.15 – 0.30 × lead cLogP (n = 59, r2 = 0.077, 
P = 0.033). Achieving high LLE values in optimized mol-
ecules is therefore more likely when starting with leads 
that have a low cLogP (ideally <3). These observations 
on newer drugs and on current practices contrast with 
earlier studies in the literature24,25,51, largely pre-dating 
the application of LE concepts, in which lipophilicity 
increased — on average — during optimization. We 
conclude that the optimization of LLE values will guide 
projects towards potent molecules with lowered lipo-
philicity, which will — in turn — improve the ability to 
develop the emerging candidate compounds.

It is interesting to note that the mean LE did not 
change in either the lead to drug optimizations analysed 
in REF. 50 or in the LLE-based optimizations shown in 
FIG. 2. The conservation of LE during lead optimiza-
tion supports the original premise of LE as a metric for 
aiding the selection of leads, as well as for comparing 
compounds for further optimization at the hit selec-
tion stage20,26. By contrast, median size-independent 
ligand efficiency (SILE; BOX 2) values were significantly 
increased by +0.48 (P <0.001) in the optimizations shown 
in FIG. 2. SILE is therefore a metric that could be useful for 
differentiating among molecules in the physico chemical 
property ranges where lead optimization commonly 
takes place.

FBDD and ligand efficiency
An important emerging area for the application of LE 
metrics is in FBDD. During the past decade, FBDD 
has been used to discover several compounds that have 
progressed into clinical trials52 and onto the market53. 
Fragments are compounds that have molecular masses 
between 100 and 250 Da and are small relative to the 
compounds that are typically screened in HTS. As a con-
sequence of their small size, fragment hits commonly 
have low binding affinities, usually in the range of 1 mM 
to 10 μM. LE itself is a useful metric for normalizing the 
affinities of hits to identify the best starting points for 
optimization — that is, those with the highest LE values, 
all else being equal.

Despite their low affinities, fragment hits that are 
selected for further optimization often have generally 
good (>0.4) or even excellent LE values. Developing 

Figure 3 | HSP90 inhibitors as an example of the application of ligand efficiency 
metrics in fragment-based drug discovery. a | Fragment‑to‑clinical candidate for 
heat shock protein 90 (HSP90). Around 1,600 fragments were screened by NMR LOGSY 
(ligand observed by gradient spectroscopy), and 125 were progressed into X‑ray 
crystallography studies56. The phenol (compound 2) has a low ligand efficiency (LE),  
0.26 kcal per mol per heavy atom, which shows that its binding affinity (790 μM by 
isothermal titration calorimetry) is suboptimal. However, examination of its binding to 
HSP90 by X‑ray crystallography, together with the binding interactions of previously 
reported chemically related inhibitors (such as radicicol), indicated three opportunities 
for improvement: filling a lipophilic pocket in the region of the methoxy group; 
incorporating a second hydroxyl group onto the phenol; and growing from the 
diethylamide into the region occupied by the conformationally flexible Lys58 side chain. 
Adding only six heavy atoms (non‑hydrogen) to the phenol compound 2 led to 
compound 3 (with a dissociation constant (K

d
) of 0.54nM), which has a >1,000,000‑fold 

increase in affinity leading to a corresponding improvement in LE to 0.57 kcal per mol per 
heavy atom. Optimization of physicochemical, pharmacokinetic and in vivo properties 
led to AT13387 (K

d
 = 0.7 nM, LE = 0.41)57, which is currently under evaluation in Phase II 

trials for the treatment of cancer. b | Group efficiency (GE; see BOX 3)54 for the different 
parts of the HSP90 inhibitor, AT13387. The GE values are colour coded and illustrate the 
binding ‘hotspots’ for this compound. As expected from the fragment‑to‑lead structure–
activity relationships and the X‑ray crystal structure, each hydroxyl interacts with the 
protein via direct and water‑mediated hydrogen bonds and has a very high GE (GE = 4.65 
and 3.2, corresponding to a 2,640‑fold and 220‑fold increase in binding affinity, 
respectively), and the isopropyl group that fills a lipophilic pocket also has a high GE 
(0.79). The piperazine group improves the pharmacokinetic properties without directly 
binding to HSP90 and hence has a very low GE (–0.04).
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these fragments into leads is a challenge and often 
requires the addition of more than ~15–20 heavy 
atoms (corresponding to an increase of ~200–250 Da 
in molecular mass) to increase the affinity by several 
orders of magnitude (from the millimolar or micro-
molar range to the nanomolar range). This presents an 
opportunity to use the various ligand (BOX 1) and group 

efficiency (GE)54 (BOX 3) metrics to carefully control 
chemical properties. This approach to FBDD, when 
practised by specialist teams, can result in optimized 
molecules with improved drug-like properties17.

An example of a FBDD programme targeted at heat 
shock protein 90 (HSP90) — a chaperone protein that 
is a promising anticancer target55–57 — illustrates the  

Box 4 | Ligand efficiencies and target druggability

To examine physicochemical property and ligand efficiency (LE) trends at the drug target level, compounds acting  
at human drug protein targets and their affinities were assembled from the primary medicinal chemical literature 
using the GVK BIO database85. Important caveats in using the medicinal chemistry literature are that the bulk of the 
molecules reported are not fully optimized and, in contrast to potency optimization, physicochemical property-based 
optimization is not routine. For targets where mean LE values are currently relatively low, better molecules may not 
yet have been discovered.

The database contained 270,471 inhibition constant (K
i
), half-maximal inhibitory concentration (IC

50
) and effector 

concentration for half-maximum response (EC
50

)
 
values from 1,045 targets, predominantly from the Journal of 

Medicinal Chemistry (41% of values), Bioorganic and Medicinal Chemistry Letters (42% of values) and Bioorganic  
and Medicinal Chemistry (13% of values). Where compounds had more than one reported K

i
, IC

50 
or EC

50 
value at a 

specific target, the mean value was determined. The physicochemical properties of all compounds were calculated 
as described previously7,17, and LE and lipophilic ligand efficiency (LLE; based on cLogP) values determined; K

i
, IC

50  

and EC
50 

values were treated separately for each target. Finally, weakly active molecules (>100 μM) and very large 
molecules (>70 heavy atoms (HAs)) were excluded, and the database (containing 228,265 compound–assay pairs)  
was analysed by target–assay type pairs. Out of a total of 1,690 target–assay pairs, only those for which there were 
≥100 compounds were used, resulting in 480 target–assay pairs covering 329 different targets that represented 
201,041 molecules (88% of the database; 127 targets had more than one assay type with ≥100 compounds).  
For the 480 target–assay pairs, median values are as follows: LE = 0.32, LLE (based on cLogP) = 2.83, HA = 29.75, 
cLogP = 3.89.

The median LE values of the 480 target–assay pairs span a broad range: ~0.2 to 0.6 for LE and ~ –3 to 9 for LLE 
(FIG. 4a). This is a consequence of intrinsic target druggability, combined with the properties of the actual molecules 
synthesized. For the purpose of comparing the druggability of target classes only, arbitrarily defined property and 
efficiency criteria were derived from oral drugs (FIG. 4b). For the property criterion, we use the percentage of 
published molecules at each target that meet both the size and lipophilicity criteria according to the rule of five 
guidelines (HA <38, equivalent to a molecular mass <500 Da, and cLogP <5)47. For the efficiency criterion, we use the 
percentage of published molecules at each target for which both the LE and LLE values are higher than the mean 
values of oral drugs (LE >0.45, LLE >4.43; see BOX 1). Although fewer molecules meet the efficiency criteria compared 
to the property criteria for the majority of targets, both of these measures clearly indicate the relative druggability of 
the target classes. The physicochemical property trends across the target classes in FIG. 4b are consistent with other 
studies17,20,51,60. The least druggable target classes, on both property and efficiency measures, are peptidergic and 
lipidergic G protein-coupled receptors and nuclear hormone receptors. Although the bulk (>60%) of the published 
molecules for the other target classes meet the rule of five criteria (FIG. 4b), there is greater relative variability in the 
percentages meeting the drug-like ligand efficiency criteria, from 2.8% for kinases to 14.8% for the most druggable 
target class — aminergic G protein-coupled receptors. The major challenge in finding active compounds for many 
targets is demonstrated by the fact that 120 of the 480 target–assay pairs have no published compounds with both LE 
and LLE values exceeding the mean values of oral drugs.

Reducing size and lipophilicity will tend to increase ligand efficiencies, and the individual target data suggest that 
doing so may not necessarily have a detrimental effect on affinity for many targets. Thus, among the 480 target–assay 
pairs, although straight line fits between activity and either HA count or lipophilicity are mostly statistically 
significant, they frequently have low r2 (correlation coefficient) values and the slopes can be negative as well as 
positive (FIG. 4c, d). In agreement with reported data2, there are broad trends towards increased activity with 
increasing size and lipophilicity if the full data set of >200,000 compounds is analysed without taking into account  
the targets, with the effect of size being greater than lipophilicity. Within individual series of structurally similar 
compounds that are typically investigated in lead optimization, correlations of potency with size and lipophilicity  
are often found, but when all of the published molecules acting at a target are taken into account, increasing these 
properties does not have a large effect on potency in most cases (FIG. 4c,d). The effects of size and lipophilicity  
are often different on each target, as indicated by the r2 value of 0.14 for the correlation of the slopes of the 
potency-cLogP versus potency-HA target relationships for the 480 target–assay pairs (see Supplementary 
information S4 (table) for details).

A key conclusion, therefore, is that for targets that possess small-molecule binding sites there should be no need 
a priori to seek to increase bulk physicochemical properties in pursuit of increased activity. In practice, optimization 
across 59 targets for which LLE was used during potency and other optimizations (FIG. 2) resulted in a reduction in 
mean lipophilicity and an increase in mean size (resulting in an increase in mean LLE and a conservation of mean LE).
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Figure 4 | Druggability analyses. Data from 480 target–assay pairs with more than 100 compounds covering 329 
human drug targets, obtained from the GVK BIO database85 (see BOX 4 for details). Target mean ligand efficiency (LE) 
values are widely distributed, as shown in the plot in part a of median target LE versus target lipophilic ligand efficiency 
(LLE; based on cLogP). Target class druggability assessment using physicochemical property and LE criteria based on 
marketed drugs (part b). The mean percentage of molecules for each target that meet physicochemical property 
criteria from the rule of five guidelines47 is shown, with both cLogP <5 and heavy atom (HA) count <38 (HA count = 38 
approximates to a molecular mass of 500 Da)26, versus the mean percentage of molecules for each target that exceed 
the mean efficiency values of 261 oral drugs (see supplementary data from REF. 2), where LLE ≥4.43 and LE ≥0.446. 
Target classes and numbers of targets are shown. Error bars are standard errors of the mean. Correlations of potency 
versus size and lipophilicity within targets are often weak, and may be negative as well as positive. Distribution of the 
correlation coefficient (r2) values from straight line fits for the 480 target–assay pairs in part a are shown in part c for 
p(Activity) versus HA count, and in part d for p(Activity) versus cLogP. Data are available in Supplementary information S4 
(table). GPCR, G protein-coupled receptor; NHR, nuclear hormone receptor.
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general principle of only adding atoms to the starting 
fragment that provide the desired increase in binding  
affinity (FIG. 3a). This example is a showcase, as six heavy 
atoms are added and the affinity increases by six orders 
of magnitude (from 0.79 mM to 0.70 nM)56,57. Careful 
attention to the experimentally determined X-ray crys-
tal structure and overall chemical properties was crucial 
during this fragment-to-lead optimization. The LLEAT 
metric is useful during this stage because it represents 
LLE normalized for size (BOX 1) and helps to ensure that 
an increase in affinity is not unduly driven by nonspe-
cific lipophilic interactions. Ligand efficiency metrics 
are, by definition, useful for in vitro binding affinity,  
but the advantage of starting in vivo optimization 
with high LE is that additional atoms can be added 
to the lead compound to optimize in vivo efficacy, 

pharmacokinetics and safety while still resulting in a 
clinical candidate that is ‘drug-like’ in terms of molecular  
mass and lipophilicity.

GE (BOX 3) is also particularly useful when growing frag-
ments because it focuses on the efficiency of the atoms that 
are added to the original molecule. In the case of HSP90, the 
GE values for each group in the final molecule are deter-
mined by comparing matched pairs of related compounds. 
The groups with high GE values are those that appear in the 
X-ray crystal structure to form clear binding interactions. 
The GE values for the different parts of the HSP90 inhibitor, 
AT13387, were determined retrospectively by comparing 
the binding affinities of closely related compounds (FIG. 3b) 
(see BOX 3 for the method used). Several other published 
examples of fragment optimizations and the use of ligand 
efficiency metrics have been reviewed in the literature58,59.

Figure 5 | Relative ligand efficiencies of 46 oral drugs acting at 25 targets. In vitro affinity data for oral drugs 
(half‑maximal inhibitory concentration (IC

50
), inhibition constant (K

i
) or effector concentration for half‑maximum 

response (EC
50

) values) and for other molecules that were reported to be active (in the primary literature) at the specific 
human drug targets were collected from the ChEMBL database in late 2012. For compounds that had more than one 
reported IC

50
, K

i
 or EC

50
 value, the mean value was used. Ligand efficiency (LE) and lipophilic ligand efficiency (LLE) 

values based on cLogP were calculated (BOX 1). The y‑axis shows the percentage of compounds reported in the 
literature acting at the drug target for which both LE and LLE values are superior to the oral drug. The targets are 
arranged on the x‑axis by target class and show the total numbers of compounds in the analysis. The active form of 
fingolimod is the S -O‑phosphate; the parent molecules of the thrombin inhibitor prodrugs melagatran and dabigatran 
are used. Full data are available in Supplementary information S4 (table). 5‑HT

2C
, 5‑hydroxytryptamine receptor 2C; 

β
3
‑AR, β

3
‑adrenergic receptor; ALK, anaplastic lymphoma kinase; CCR5, CC‑chemokine receptor 5; DPP4, dipeptidyl 

peptidase 4; EGFR, epidermal growth factor receptor; ETA, endothelin A receptor; FXa, factor Xa; GPCR, 
G protein-coupled receptor; HDAC, histone deacetylase; JAK, Janus kinase; NK

1
, neurokinin 1 receptor; P2Y12, P2Y 

purinergic receptor 12; PDE, phosphodiesterase; S1P1, sphingosine 1‑phosphate; SMO, Smoothened; VEGFR2, 
vascular endothelial growth factor receptor 2. 
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Figure 6 | Examples of target ligand efficiency analyses. a | Ligand efficiency (LE) 
versus lipophilic ligand efficiency (LLE) plot for compounds acting at CC‑chemokine 
receptor 5 (CCR5; n = 1,513; half‑maximal inhibitory concentration (IC

50
) values). 

Although the mean affinity for the target is <100 nM, this comes at some cost in mean 
physicochemical properties. Mean values of all compounds are as follows: pIC

50
 =

 
7.57; 

heavy atom (HA) count = 38.6; cLogP = 4.65; LE = 0.27; LLE = 2.93. Compounds that are 
labelled are known clinical candidates66,67,86, of which only maraviroc (compound 1) 
has reached the market. AZD5672 (compound 2)67 was aimed at rheumatoid arthritis, 
whereas the others are used for HIV treatment. Cenicriviroc (compound 6)86 is a dual 
CCR5 and CCR2 antagonist. The highlighted box on the top right of the plot shows 
the compounds that have better combined LE and LLE values than maraviroc  
(1.4% of the total, the value used for the analysis in FIG. 5). AZD5672 is comparable to 
maraviroc in balancing overall physicochemical properties (especially lipophilicity) 
and potency. b | Compounds that inhibit the cholesteryl ester transfer protein (CETP, 
n = 721; IC

50
 values). The left‑hand panel, showing the LE versus LLE plot, and the 

right‑hand panel, showing the pIC
50

 versus cLogP plot and the LLE = 4 boundary, 
exemplify recommended LE data analyses (along with potency versus size) that are 
applicable to any target. CETP68,69 was chosen because there are several drug 
candidates targeting this protein in clinical trials and it is one of the most challenging 
in terms of achieving good physicochemical properties of inhibitors: mean values of 
all compounds are as follows: pIC

50
 = 6.80; HA count = 36.4; cLogP = 6.07; LE = 0.23; 

LLE = –0.73. The drug candidates have suboptimal LE and especially LLE values. 
Torcetrapib (compound 7) and dalcetrapib (compound 8; the deacylated active 
metabolite, compound 9, forms a disulphide bond with Cys13 on CETP) were 
discontinued in Phase III trials because of cardiovascular toxicity and inadequate 
efficacy, respectively. Anacetrapib (compound 10) and evacetrapib (compound 11)  
are currently in Phase III trials. Even with this poorly druggable target, it is possible  
to find molecules with better balanced properties, including a class of benzoxazoles 
(for example, compound 12)70 that were identified from high‑throughput screening. 
Notably, compound 13 (REF. 74) was discovered by lowering the lipophilicity of 
torcetrapib while retaining comparable affinity, resulting in an increase in LLE of  
3.9 units. IC

50
 values were taken from the ChEMBL database, and LE and LLE (based on 

cLogP) values were calculated (BOX 1). The contours represent densities of points. 

Ligand efficiencies of oral drugs
Target classes (for example, G protein-coupled receptors, 
kinases, proteases and nuclear hormone receptors) dis-
play differing molecular properties among their small-
molecule ligands17,20,51,60. Measures such as LE and LLE 
(BOX 1) can be used in conjunction with physicochemical 
properties (such as cLogP and heavy atom counts) to 
assess the relative ‘druggability’ of human drug targets  
and target classes by analysing their known ligands 
(BOX 4; FIG. 4). The variability in LE and LLE values and in 
the physicochemical properties of targets evident from 
FIG. 4 is a consequence of the inherent differences in the 
relative druggability of targets combined with varying 
practices in drug discovery7,17 that lead to published 
active compounds.

Drug molecules are the final result of the exhaustive  
optimization of chemical, biological, toxicological, phar-
maceutical and clinical profiles of lead compounds. Can 
LE metrics help to distinguish drugs from non-drugs? 
We compared LE and LLE values of recently marketed 
drugs with other molecules that had shown reported 
activity at the same target (FIG. 5). The data set was com-
piled by searching the ChEMBL database for compounds 
with published human target affinity in vitro (half-max-
imal inhibitory concentration (IC50), inhibition con-
stant (Ki) or effector concentration for half-maximum 
response (EC50) values), and by calculating LE and LLE 

values (BOX 1). The percentage of all compounds at each 
target where both LE and LLE values were superior to 
the oral drug was determined. This approach weights LE 
and LLE equally and, to achieve a low percentage score 
(the y axis of FIG. 5), a drug must rank highly on one or 
both of these efficiency measures. Based on their relative 
target rankings, both LE and LLE values make a similar 
overall impact on the percentage scores for the 46-drug 
set shown in FIG. 5 (see Supplementary information S4 
(table)).

A group of first-in-class — and currently ‘only-in-class’ 
— drugs acting on single targets stands out as having  
notably better combined LE and LLE values than other 
compounds acting on the same primary targets. These 
drugs (FIG. 5) include aprepitant (a neurokinin 1 (NK1; 
also known as substance P) receptor antagonist), aliskiren 
(a renin inhibitor), vorinostat (a histone deacetylase 1  
(HDAC1) inhibitor), maraviroc (a CC-chemokine 
receptor 5 (CCR5) antagonist; see also FIG. 6), lorcaserin 
(a 5-hydroxytryptamine receptor 2C (5-HT2C) agonist), 
roflumilast (a phosphodiesterase 4A (PDE4A) inhibitor), 
ruxolitinib (a Janus kinase 2 (JAK2) inhibitor), tofaci-
tinib (a JAK3 inhibitor), vismodegib (a Smoothened 
antagonist), fingolimod (a sphingosine-1-phosphate 1  
(S1P1) receptor antagonist; the active form is the 
S-phosphorylated metabolite) and ticagrelor (a P2Y 
purinergic receptor 12 (P2Y12) antagonist). Although 
these targets vary substantially in their druggability, 
with the relative druggability ranging from 5-HT2C and 
HDAC1 at the higher end to renin and CCR5 at the 
lower end, the median percentage of molecules per tar-
get with superior combined LE and LLE values for these 
‘only-in-class’ drugs is just 1.5%.

Among other targets shown in FIG. 5, two NS3 pro-
tease inhibitors — boceprevir and telaprevir — were 
both approved in 2011 for the treatment of hepatitis 
C virus infection. NS3 protease is a challenging target 
for developing inhibitors with good physicochemical 
properties, but boceprevir is clearly highly optimized in 
the class, with only 1.0% of NS3 inhibitors having better  
combined LE and LLE values. For telaprevir, which 
possesses a bicyclic structural moiety that is absent in 
boceprevir, 38% of NS3 inhibitors have a better LE and 
LLE profile. Both drugs are covalent inhibitors that 
have slow dissociation kinetics and require high doses 
(750 mg for telaprevir and 800 mg for boceprevir, both 
three times daily). However, the physicochemical prop-
erties of telaprevir result in very low solubility61, requir-
ing a non-standard formulation, and it also carries a 
boxed warning on the label for the risk of serious skin 
reactions.

Many anticancer drugs that inhibit kinases show 
non-optimal LE and LLE values for their targets (FIG. 5). 
The median percentages of compounds per target that 
have better LE and LLE values in FIG. 5 are 22% for 
kinase inhibitors and 2.7% for the other target classes. 
An example is vascular endothelial growth factor recep-
tor 2 (VEGFR2) kinase, for which three drugs (sunitinib, 
sorafenib and pazopanib) are non-optimal but the new-
est drug (axitinib) is highly optimized. A recent study 
of clinical VEGFR inhibitors emphasizes the value of 
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ligand efficiency analysis, showing that LLE correlates 
with kinase selectivity as well as clinical efficacy62, with 
the latter probably driven by relative exposure levels.  
In the case of epidermal growth factor receptor (EGFR) 
kinase, all four drugs have non-optimal LE and LLE val-
ues. The difference between kinase inhibitors and other 
drug classes with respect the extent to which LE and LLE 
are optimized may be due to the primary pursuit in the  

Figure 7 | Explicit use of lipophilic ligand efficiency in optimizing compounds acting 
at the cannabinoid receptor CB1. For the cannabinoid 1 (CB

1
) receptor, high affinity 

is often associated with high lipophilicity. In the ChEMBL database there are 3,606 
p(Activity) values (negative logarithmic values of the half‑maximal inhibitory 
concentration (pIC

50
), effector concentration for half‑maximum response (pEC

50
) or 

inhibition constant (pK
i
)) reported for the CB

1
 receptor, with the following median values: 

p(Activity) = 7.1, cLogP = 5.8, lipophilic ligand efficiency (LLE; based on cLogP) = 1.2; 
only 2.7% of the compounds have LLE values >5. The optimization examples illustrate 
that increases in LLE of up to 5 units are possible, even when starting with unpromising 
leads (LLE <2), without reducing ligand efficiency (LE). Highlighted areas indicate the 
design approaches used: namely, the conversion of carbon atoms to non‑carbon atoms, 
addition of new polar substituents and removal of lipophilic substituents. a | Candidate 
antagonist 15 from optimization of lead compound 14 (REF. 76). b | Agonist 17 with low 
central nervous system penetration, derived from screening hit 16 (REF. 77).

discovery phase of selectivity63 versus other kinases, and  
the acceptance of higher safety risk–benefit profiles  
for the treatment of cancer. Only one kinase inhibitor 
drug, the JAK3 inhibitor tofacitinib64, is aimed at a non-
cancer indication, and it has the best combined LE and 
LLE values of all reported JAK3 ligands. Among drug 
families (FIG. 5), highly optimal LE and LLE values are 
seen for all three factor Xa inhibitors65, rivaroxaban, 
apixaban and edoxaban (only 0.2%, 0.9% and 1.1%, 
respectively, of reported molecules have better LE and 
LLE values), as well as for the non-prodrug parent mol-
ecules of the thrombin inhibitors melagatran and dabi-
gatran (only 1.1% and 6.5%, respectively, of reported 
molecules have better LE and LLE values). For dipep-
tidyl peptidase 4 (DPP4) inhibitors, improvements in 
the most recently approved molecule (saxagliptin) are 
seen compared to the first–in-class molecule (sitaglip-
tin); a similar trend is seen for endothelin A receptor 
antagonists.

Application of efficiency metrics in optimization
The analysis of oral drugs in FIG. 5 indicates that plotting 
LE versus LLE values could be useful for analysing and 
tracking the progress of hit-to-lead and lead optimization 
projects, as well as for evaluating the relative properties of 
clinical candidates. In LE versus LLE plots, there is some 
level of redundancy as a potency-related term appears on 
both axes, but the purpose of using LE and LLE together 
is for data visualization rather than establishing quan-
titative correlations. In addition to assessing LE versus 
LLE, it is essential to separately examine the independent 
component parameters by constructing plots of potency 
versus both heavy atom count (or molecular mass) and 
lipophilicity (cLogP or LogD). The correlation between 
LE and LLE will increase when both size and lipophil-
icity influence potency to a similar extent. However, 
potency versus property relationships often have low 
correlation coefficients and vary according to the target 
and ligand chemotype (FIG. 4c, 4d). 

An example of a plot of LE versus LLE is shown in 
FIG. 6a for CCR5 (REF. 66), for which there has been an 
intensive effort to find antagonists for the treatment of 
HIV and rheumatoid arthritis. CCR5 also proved to be a 
useful target for assessing different drug design practices 
in the pharmaceutical industry7. The only molecule to be 
approved for HIV so far is maraviroc, and its combined 
LE and LLE values are better than those of the other 
CCR5 antagonists that have been clinical candidates for 
HIV treatment (FIG. 6a). A major challenge associated 
with CCR5 ligands has been reducing unwanted cardio-
vascular risk due to inhibition of the hERG ion channel. 
This can be accomplished by reducing lipophilicity in 
combination with structure–activity optimization67.

One of the most challenging targets, in terms of 
obtaining compounds with drug-like physicochemical  
properties, is the cholesteryl ester transfer protein 
(CETP)68, which is a target for atherosclerosis as its 
inhibition raises high-density lipoprotein (HDL) chol-
esterol levels69. The co-substrates of CETP are the 
highly lipophilic cholesteryl ester and triglycerides, and 
inhibitors of this target — including four molecules 
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that have reached late-stage clinical trials — have low 
LE and very low LLE values (FIG. 6b shows LE versus 
LLE, and the negative logarithmic value of the half-
maximal inhibitory concentration (pIC50) versus cLogP, 
for CETP inhibitors). Nevertheless, HTS has identified 
a class of benzoxazoles70–73, which are apparently not yet 
fully optimized, with markedly improved LE and LLE 
values compared to the clinical candidates. In addition, 
further optimization of the highly lipophilic candidate 
torcetrapib (which was discontinued in Phase III) has 
resulted in analogues that have a significantly lowered 
lipophilicity yet equal potency74, and that increase LLE 
by ~4 units without having an adverse effect on LE (com-
pare compounds 7 and 13 in FIG. 6b). In this example, a 
stated strategy was to “mitigate lipophilicity”74, which 
was successfully achieved, although no LogP or LogD or 
LLE values were actually cited. Explicit use of quantita-
tive LE and LLE measures during optimization, assisted 
by visualizations of LE versus LLE and potency versus 
lipophilicity and size, is the approach we recommend. 
By contrast, optimization of a class of diphenylpyridyl-
ethanamine CETP inhibitors75, which was conducted 
without the obvious consideration of LE or lipophilicity, 
resulted in a lead compound, compound 20 in REF. 75, 
with an unfavourable negative LLE value (pIC50 = 7.44, 
cLogP = 8.96, LLE = –1.52).

The cannabinoid receptor CB1 is another target with 
highly lipophilic endogenous ligands, where it has been 
challenging to control physicochemical properties. 
Specific application of the LLE concept has been suc-
cessfully used in the optimization of both CB1 receptor 
antagonists76 and agonists77 (FIG. 7). In these examples, 
unpromising LLE values (of close to zero) in the lead 
compounds were impressively increased by ~5 units 
while retaining constant LE values.

To conclude, even for the least tractable targets that 
appear to have highly lipophilic small-molecule binding 
sites, the search for compounds with improved proper-
ties is facilitated when the focus is placed on improving 
ligand efficiency values. The direction of optimiza-
tion in LE versus LLE plots is towards the ‘north east’, 
whereas in potency versus lipophilicity (cLogP or LogD) 
or size plots the direction of optimization should pro-
ceed towards the ‘north west’. In either case, property-
based design should seek to extend the boundaries of 
these plots to new, unoccupied territory. In addition to 
LE versus LLE and potency versus size and lipophilicity,  
other visualizations that are useful for optimization 
purposes include potency versus LE, LLE, LELP and 
LLEAT; LE versus cLogP or LogD; LLE versus heavy 
atom count or molecular mass; and the property forecast 
index3 (PFI = LogP or LogD + aromatic ring count) ver-
sus LLEAT (REF. 65). Lipophilic efficiency parameters for 
agonists can be adjusted if required to take into account 
intrinsic activity78.

Overall, the retrospective analysis of successful drugs 
indicates that optimizing LE and LLE in concert is an 
important success factor for hit and lead optimization 
in drug discovery projects. Controlling lipophilicity is at 
the heart of successful optimization. Most of the medici-
nal chemistry designs used in the examples shown in 

FIG. 2 that led to increases in LLE did not require radical  
structural changes such as new core scaffolds. The 
examples of compound 7 to compound 13 in FIG. 6b, 
and those in FIG. 7, are typical. Tactics (FIG. 7) include 
replacing carbon atoms with oxygen or nitrogen atoms, 
especially converting phenyl rings to heteroaromatic 
rings, polar substitution, removing or replacing lipo-
philic substituents and templates and controlling the 
increase in the heavy atom count. Incorporation of 
polar functional groups that both lower lipophilicity and 
increase or retain binding affinity is probably due to new 
polar ligand–receptor contacts79 (for example, hydrogen 
bonds), which will radically alter structure–affinity rela-
tionships and consequently provide new optimization 
opportunities. That said, finding the appropriate regions 
of a lead molecule that can be changed in these ways 
may be the biggest challenge; highly lipophilic hits or 
leads that are resistant to this approach should be quickly 
dropped. Finally, LLE correlates positively with the drug 
efficiency index (DEI)80. DEI is a very useful metric for 
application in lead optimization projects, as it combines 
the estimated fraction of the dose that is available freely 
in plasma with in vitro potency.

Conclusion
Ligand efficiency metrics provide an estimate of the 
price paid in terms of physicochemical property alter-
ations when optimizing compounds to increase their 
affinity for a drug target. The use of efficiency metrics 
in optimization instead of potency alone is recom-
mended at all stages of drug discovery, starting with the 
selection of a fragment or a screening hit. Oral drugs, 
especially those that are first-in-class in therapy areas 
with stringent risk–benefit requirements, frequently 
have highly optimized ligand efficiency values for 
their target.

A key consideration for drug designers is an aware-
ness of the changes in potency that are required to keep 
ligand efficiency values at least constant when altering 
a lead structure. When all published molecules with 
activity at specific targets are considered, high correla-
tions between affinity and size or lipophilicity are not 
frequent and so it is not always necessary to increase 
these physicochemical properties to increase affinity.  
The tendency to increase lipophilicity during the 
optimization of individual series of molecules can be 
countered by focusing on lipophilic efficiency. This is 
becoming recognized as a key strategy in lead optimiza-
tion43,81 and has been successfully used on many different 
targets.

We consider that the application of ligand efficiency 
principles, together with the synthesis of compounds 
with acceptable drug-like physicochemical properties, 
are key elements of best practice in drug design. We also 
believe this approach is applicable to any target con-
taining a bona fide small-molecule binding site. Finally, 
we note that the hypothesis proposed by Hansch and 
co-workers45 25 years ago embraced the concept of LLE, 
and is withstanding the test of time: “Without convinc-
ing evidence to the contrary, drugs should be made as 
hydrophilic as possible without loss of efficacy.”
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