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SUMMARY

Today the identification of lead structures for drug
development often starts from small fragment-like
molecules raising the chances to find compounds
that successfully pass clinical trials. At the heart of
the screening for fragments binding to a specific
target, crystallography delivers structural informa-
tion essential for subsequent drug design. While it
is common to search for bound ligands in electron
densities calculated directly after an initial refine-
ment cycle, we raise the important question whether
this strategy is viable for fragments characterized by
low affinities. Here, we describe and provide a collec-
tion of high-quality diffraction data obtained from
364 protein crystals treated with diverse fragments.
Subsequent data analysis showed that �25% of all
hits would have been missed without further refining
the resulting structures. To enable fast and reliable
hit identification, we have designed an automated
refinement pipeline that will inspire the development
of optimized tools facilitating the successful applica-
tion of fragment-based methods.

INTRODUCTION

A major reason for the attrition of new drug candidates during

clinical trials are suboptimal physicochemical properties that

can result in poor pharmacokinetics and an impaired safety pro-

file (Murray and Rees, 2009). Such characteristics often develop

because high-throughput screening (HTS) libraries contain

already relatively large and lipophilic molecules. Since hit-to-

lead-to-drug optimization typically further increases molecular

weight (MW) and lipophilicity, the design of drug-like clinical

candidates is hampered (Hann, 2011; Rees et al., 2004). Frag-

ment-based lead discovery (FBLD), in contrast, builds on much

smaller and predominantly more hydrophilic compounds. It

therefore emerges as an orthogonal approach to HTS and is

now established in most large pharmaceutical companies

(Chessari and Woodhead, 2009; Joseph-McCarthy et al.,
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2014). A recent study published by the company Astex shows

that leads developed via FBLD, compared with HTS, are indeed

significantly smaller and less lipophilic thus holding promise to

increase success rates during clinical trials (Murray et al., 2012).

Another advantage of FBLD is that typical fragment libraries,

consisting of only 102 to 104 molecules, sample the chemical

space much more efficiently compared with HTS libraries, con-

taining up to 106 entries, because each low-MW compound rep-

resents a large number of higher-MW compounds comprising

the same fragment core (Roughley and Hubbard, 2011; Scott

et al., 2012). However, hit detection is considerably more chal-

lenging in the case of FBLD and requires sensitive biophysical

methods since the small size of fragments directly results in

low binding affinities between 0.1 and 10 mM (Murray and

Rees, 2009). Techniques such as nuclear magnetic resonance,

surface plasmon resonance, high-concentration biochemical

screens, mass spectrometry (MS), and thermal shift assays are

often used to filter for promising fragments prior to X-ray crystal-

lographic experiments (Hubbard and Murray, 2011; Joseph-

McCarthy et al., 2014). In particular, the latter method plays a

key role in FBLD because fragment-bound structures are ulti-

mately needed to guide the subsequent chemical optimization

process (Murray and Blundell, 2010; Schiebel et al., 2015).

Analyzing currently applied screening strategies in a case study,

we have recently found that biophysical screening methods are

not able to reliably predict the majority of X-ray binders (Schiebel

et al., 2016). This suggests that X-ray crystallography should be

used as a primary screening tool, since it is more sensitive and

information-rich than any other biophysical approach.

While crystallography had been a resource-intensive and

time-consuming method in the past, current and future develop-

ments such as the miniaturization and automation of crystalliza-

tion trials, brighter synchrotron sources, faster detectors as well

as automatic crystal mounting robots aid in converting crystal-

lography into a high-throughput technique that can be used for

primary screening purposes (Davies and Tickle, 2012; Yin

et al., 2014). In addition, it is essential to analyze the resulting

data in a streamlined and automated manner avoiding laborious

manual data processing, structure solution, and refinement

(Echols et al., 2014; Mooij et al., 2006). In this regard, all fragment

hits must be detected reliably, especially since a lot of resources

are already spent on crystallographic screening and because the

outcome of such an enterprise is of utmost importance for the

mailto:heinea@mailer.uni-marburg.de
http://dx.doi.org/10.1016/j.str.2016.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2016.06.010&domain=pdf


Figure 1. Data Collection Statistics

(A–D) The distributions of (A) the resolution, (B)

Rsym, (C) <I/s(I)>, and (D) Wilson B factor values

are shown for all 348 P21 structures. Cell param-

eters are specified in Figure S1. Analogous results

for the 16 P212121 structures are given in Fig-

ure S2.
following hit-to-lead-to-drug evolution. This is particularly chal-

lenging as the low affinity of fragments frequently leads to only

partial occupation of binding sites and thereby aggravates hit

identification by ambiguous electron density features (Deller

and Rupp, 2015; Echols et al., 2014). Hence, new and improved

methods, which ensure that no X-ray fragment hits are missed,

should be made available to FBLD practitioners and the broad

crystallographic community.

For the development and validation of robust data analysis

and hit identification tools, publicly available crystallographic

data from a typical fragment screening campaign are urgently

needed. Here, we provide and characterize a collection of

364 high-quality X-ray diffraction datasets (mean resolution of

1.35 ± 0.19 Å) obtained from crystals of the aspartic protease en-

dothiapepsin (EP) that were individually soaked with different

fragments from our in-house library (Köster et al., 2011).

Analyzing this unique dataset using an automated refinement

pipeline that was developed for this purpose, we found that

completion of the solvent structure and refinement of each

model prior to the search for fragment hits is critical and enables

exceptionally high hit rates.

RESULTS

Collection and Provision of 364 High-Resolution
Datasets
For the present study, our in-house compound collection that

contains 364 molecules of the size of typical fragments has

been used (for details please see the Experimental Procedures)

(Köster et al., 2011). Applying six different biochemical and bio-
Stru
physical techniques, we screened the

full fragment library for inhibitors of EP, a

pepsin-like aspartic protease that serves

as a surrogate for b-secretase, renin, and

plasmepsins to develop new drugs for

the treatment of Alzheimer’s disease, hy-

pertension, and malaria (Geschwindner

et al., 2007; Schiebel et al., 2015). As

frequently observed in fragment screening

campaigns, the hit lists suggested by the

different methods did not overlap to a

convincing extent. Because crystal struc-

tures are ultimately needed for successful

FBLD, we decided to screen all library

fragments by X-ray crystallography with-

out the application of any pre-filter. This

project generated a wealth of structural

information and allowed a performance

evaluationofdifferent screeningstrategies

and techniques (Schiebel et al., 2016). In
general, almost half of all crystallographic binders had not been

detected by any of the six applied screening techniques. For

instance, the best-performing technique, a reporter-displace-

ment assay (Schiebel et al., 2015), resulted in 50 putative binders,

of which 27 could be confirmed by crystallography. However, 44

fragment-bound structures would have been missed in a crystal-

lographic screen of only those 50 compounds. Filtering fragment

libraries by screening prior to crystallographic experiments can

thus lead to an enrichment but not to an exhaustive identification

of all X-ray hits.

In the crystallographic screening project, we were able to

collect diffraction data for EP crystals that were individually

soaked with each of the 364 fragments. Interestingly, 16 of

the 364 crystals chosen for final data collection belonged to

the orthorhombic P212121 space group instead of the common

monoclinic P21 form. While the mean cell parameters for P21
are a = 45.3 ± 0.1 Å, b = 73.0 ± 0.2 Å, c = 52.7 ± 0.1 Å, and

b = 109.4� ± 0.2� (Figure S1), the P212121 unit cell is closely

related with cell parameters of a = 45.2 ± 0.1 Å, b = 72.6 ±

0.2 Å, c = 104.1 ± 0.3 Å (Figure S2). The rare incidence of

the orthorhombic unit cell might be explained by the impact

of certain chemicals on the crystal lattice during the soaking

process as also observed for other systems (Skarzynski and

Thorpe, 2006).

Crystals used in an FBLD project should usually diffract to at

least 2.5 Å resolution to enable the unambiguous identification

of fragments in the electron density (Scott et al., 2012). Here,

exclusively datasets with resolutions better than 2 Å have been

obtained resulting in a mean resolution of 1.34 ± 0.19 Å for the

348 P21 structures (for the respective histogram, see Figure 1A).
cture 24, 1398–1409, August 2, 2016 1399



Figure 2. Mean I/s(I) Distribution of Hits versus Non-hits

This graph compares the kernel density estimations for the 72 hits (right dis-

tribution) and the 292 non-hits (left distribution; for an explanation of these

numbers, see the Experimental Procedures). Corresponding average <I/s(I)>

values are indicated by vertical black lines (16.8 and 15.8, respectively). The p

values of two different tests are below 0.05 (pt test = 0.021, pMann-Whitney U test =

0.026), suggesting that the observed difference between hits and non-hits is

significant.
Importantly, also the other data collection quality indicators for

these datasets are very convincing with a mean Rsym of

6.1% ± 1.9%, an <I/s(I)> of 15.9 ± 3.1 and Wilson B factors of

10.4 ± 1.5 Å2 (Figure 1). Moreover, sufficiently redundant and

complete data were collected with a mean multiplicity of 3.9 ±

0.4 and an average completeness of 98.0% ± 2.1%, despite

the low monoclinic symmetry. The additional P212121 data are

of similar high quality as shown in Figure S2. Overall, we provide

a collection of exceptionally high-quality datasets to the crystal-

lographic community that can be used for the development and

validation of new methods for streamlined crystallographic frag-

ment screening.

In an attempt to understand which parameters might be

important for fragment binding in soaking experiments, we

compared the diffraction properties of all crystals leading to

fragment-bound structures with those yielding only empty apo

structures of EP. In our study, the impressively high number of

71 fragments were found to bind to EP, corresponding to a hit

rate of 20% (Schiebel et al., 2016). Interestingly, the hit subset

displays a significantly higher mean <I/s(I)> (Figure 2), which

can either suggest that fragment binding improves the crystal

diffraction power, for instance due to the ordering of flexible

parts of the protein, or that crystals with stronger diffraction facil-

itate the detection of fragments in the electron density maps.

Automated Application of an Optimized Refinement
Protocol Yields High-Quality Structures
Early on in the project, we recognized that such an enormous en-

terprise can only be tackled with a proper amount of automation.

This is not only true for data collection but also holds for the pro-

cessing of diffraction data. For this reason, we developed and
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used a script that automatically processes diffraction data

of multiple crystals synchronized with data collection using

XDSAPP (K.R., M.S.W., and U.M., unpublished data; Sparta

et al., 2016) and subsequently performs an initial refinement us-

ing PHENIX (Adams et al., 2010). At this stage, a team of eight

crystallographers was assembled to analyze data quality, to

re-process and re-collect low-quality data, to identify fragment

hits, and to refine ligand-bound crystal structures. Many of these

tasks had to be repeated manually for each of the individual da-

tasets, thus slowing down our progress considerably. In partic-

ular, the manual refinement of fragment-bound structures turned

out to be very inefficient. In order to accelerate the present and

future projects, we developed a standardized refinement

strategy that was subsequently integrated into an automated

refinement pipeline applicable to different systems. In a first

step, molecular replacement (MR) is used to place the model

and to obtain the initial phases. This is then followed by simu-

lated annealing, standard coordinate, and isotropic atomic

displacement parameter (ADP, B factor) refinement and then

TLS refinement within PHENIX. The MR search was included

to account for unit cell variations and to ensure that the pipeline

is independent of the target space group. After the four initial

steps, COOT is used to add water molecules to the model while

taking care that electron density features representing larger li-

gands are rarely populated by water (Emsley et al., 2010). The

four final refinement steps include the anisotropic treatment of

ADPs from the protein and subsequently also from water mole-

cules, the placement of protein-bound hydrogen atoms, as

well as a final round of water update.

The development of this refinement pipeline enabled us to

determine and refine each of the 364 structures in an auto-

mated and identical manner. Based on the wealth of the

thereby generated information, it is particularly interesting to

investigate which refinement protocol is most appropriate at

which resolution (Figures 3 and S3). For instance, the aniso-

tropic treatment of protein ADPs does not significantly change

Rfree values at resolutions between 1.5 and 1.6 Å while the gap

between R and Rfree on average increases by 1.2% ± 0.2%,

clearly indicating over-fitting of the diffraction data. In contrast,

Rfree values decrease by 0.2% ± 0.2% and 0.4% ± 0.2% at

resolutions in the range of 1.4–1.5 and 1.3–1.4 Å, respectively,

highlighting that at least a resolution of 1.5 Å is necessary

before ADPs should be refined anisotropically (cf. Figures

3A–3C). For the additional anisotropic treatment of water

ADPs, a slightly higher resolution of 1.4 Å is usually required,

underscoring that, particularly at resolutions between 1.4 and

1.5 Å, anisotropic refinement of only protein but not water

ADPs might be the most appropriate strategy (Figure S3). In-

dependent of the resolution, the inclusion of riding hydrogen

atoms into the model resulted in a clear drop of Rfree values

(1.2% and 0.9% for resolutions of 1.0–1.2 and 1.6–1.8 Å,

respectively) without a significant increase in the gap between

R and Rfree (Figure 3D). Although each H atom accounts for

only one electron, which usually renders them invisible in

the electron density, their large overall number in the protein

co-determines the diffraction properties of EP crystals. Inter-

estingly, this observation is not limited to EP but extends to

other systems at various resolutions between 1 and 3 Å (Afo-

nine et al., 2010).



Figure 3. Choice of the Appropriate Refinement Strategy Based on Resolution Criteria

(A) Differences in R (red) and Rfree (blue) before and after anisotropic ADP refinement of protein atoms (DR(free) = R(free),before � R(free),after) for all 364 datasets. The

horizontal dashed line subdivides the graph into regions where R factors are improved (upper part) or deteriorated (lower part), respectively. The influence of the

additional anisotropic treatment of water ADPs is visualized in Figure S3.

(B) Cumulative distributions of DRfree values (cf. (A)) in 0.1 Å resolution bins.

(C) Cumulative distributions of DR � DRfree values (cf. (A); equal to D(R � Rfree)) in 0.1 Å resolution bins (color code as defined in the insert of (B)).

(D) Differences in R (red) and Rfree (blue) before and after refinement including hydrogens.
To analyze whether the automated refinement procedure de-

livers reasonable models, a statistical analysis of the most

important refinement parameters was performed for all 364 da-

tasets (Figure 4). The resulting structures, which on average

contain 218 water molecules, are of very high quality as evi-

denced by a mean R value of 13.5% ± 1.0% and a mean Rfree

value of 16.3% ± 2.0%. Moreover, the mean figure of merit

(FOM) obtained is 0.92 ± 0.02, the phase error for the free reflec-

tions is 14.5� ± 2.6�, and the mean B factor is 11.8 ± 1.6 Å2.

Addition of Water Molecules Affects Model Quality Most
Significantly
After validation of our refinement pipeline in general terms, we

investigated the influence of each of the refinement steps on

thequality of the resultingmodels.Clearly, everyadditional refine-

ment step that was included in the pipeline leads, on average, to

an improvement of the most relevant quality indicators that are

mutually correlated (Figure5). Importantly, the twosteps involving

the placement of water molecules account for 68% of the total

phaseerror reductionwith respect to the free reflections.A further

19%originates from the anisotropic treatment of ADPs (including
the TLS refinement step) and 13% from the addition of hydrogen

atoms. Since the anisotropic refinement of ADPs is only appro-

priate at resolutions better than 1.5 Å (Figures 3 and S3), this

partitioning is resolution dependent. For structures with resolu-

tions worse than 1.5 Å, anisotropic refinement deteriorates the

phases by 0.3�. Consequently, the addition of water molecules

to the model is even more important at these resolutions and

accounts for almost 90% of the total phase improvement with

some beneficial effect of hydrogen atom addition. In contrast to

structures with resolutions worse than 1.5 Å, the overall phase

error reduction is �40% larger for structures with resolutions

better than 1.5 Å. Indeed, this can be almost entirely explained

by the positive effect of the anisotropic ADP refinement account-

ing for a phase improvement of 2.1� ± 1.1�. At the same time, the

reduction in phase error due to the addition of water molecules

remains unchanged at 5.7� compared with all structures with

resolutions worse than 1.5 Å and only increases marginally from

1.0� to 1.1� when H atoms are added.

Furthermore, we estimated to what extent the refinement of

the structures had converged using the automated procedure.

For this purpose, we calculated the refinement parameter means
Structure 24, 1398–1409, August 2, 2016 1401



Figure 4. Statistics for the Results from the Automated Refinement

(A–F) Histograms are shown for (A) the R value, (B) the Rfree value, (C) the figure of merit (FOM), (D) the phase error with respect to the free reflections, (E) the mean

B factor, and (F) the number of water molecules in the model. For this analysis, all 364 structures were taken into account after the final step of the refinement

pipeline. The PDB accession numbers of these structures can be found in Table S1.
for all manually finalized fragment-bound crystal structures (our

unpublished data), defining the endpoint of the refinement, and

compared them with the same parameters from the automated

routine (Figure 5). While our refinement pipeline resulted in an

average phase error of 14.9� for the hit subset, the crystallogra-

phers involved in this project deposited models with a mean

phase error of 13.6�. Taking the phase error of 23.1� from the first

refinement step of the pipeline as the starting point, the auto-

mated refinement has thus converged to 87%. The finalization

of a structure including model building remains a predominantly

manual task and, hence, it is not very surprising that the quality of

the automatically generated structures could be further

improved by manual intervention (Echols et al., 2014). In this re-

gard, it is important to note that we have not attempted to auto-

matically fit any ligands into electron density blobs because we

wanted to allow the crystallographer to evaluate whether a

fragment is present or absent in a structure based on unbiased

mFo � DFc maps. Moreover, we decided to place water mole-

cules in a rather conservative fashion to avoid the population

of ligand electron density and to provide a preferably bias-free

model that can be conveniently used for manual improvement.

Consequently, the automatically generated structures contain

on average only 215 water molecules with respect to the hit sub-

set, while 293 waters are present in the final ligand-bound

models. Although a modified version of our pipeline that uses
1402 Structure 24, 1398–1409, August 2, 2016
the more generous PHENIX water placement protocol resulted

in a similar number of 287 water molecules, refinement conver-

gence improved only slightly to 90%.

The Extent of Refinement Influences the Probability of
Hit Detection
Crystallographers often determine a structure and perform only a

crude initial refinement before they inspect the resulting electron

density maps for the presence of a bound ligand. Structures

without any sign of additional bound molecules are usually

discarded, a strategy that is also frequently applied in FBLD

(Drinkwater et al., 2010; Koh et al., 2015; Newman et al., 2012).

However, fragments are characterized by low affinities and

thus often only partially occupy the binding site of the target (Tie-

fenbrunn et al., 2014), which makes it much more difficult to

detect them in difference electron density maps compared

with inhibitors with improved affinity. This intrinsic difference

between fragments and more potent inhibitors suggests that

special procedures will be required to ensure reliable detection

of all hits in a crystallographic fragment screening campaign.

Indeed, during the initial manual treatment of our data, we recog-

nized that more complete refinement of the structures positively

influences fragment detection due to improved electron density

features. Based on this experience, we developed a first version

of an automated refinement pipeline to more exhaustively refine



Figure 5. Development of Quality Indicator

Values during the Refinement Procedure

(A–D) For each refinement step (A) mean R values,

(B) mean Rfree values, (C) the mean FOM, and (D)

the mean phase error with respect to the free re-

flections are plotted. Values for all 364 datasets are

shown as black circles, while those for the crys-

tallographic hits are depicted as gray asterisks. As

a reference, the black dashed lines indicate the

mean values for the manually refined, deposited

fragment-bound structures. Please note that our

automated refinement procedure places initial

water molecules after the TLS refinement. Addi-

tional waters are then added during the final

refinement step. For further details regarding the

refinement protocol, see the Experimental Pro-

cedures.
all structures before inspecting electron density maps for puta-

tively bound fragments. This directly resulted in the identification

of additional hits and, along with the above-described rationali-

zation of our workflow, motivated us to improve and generalize

the pipeline for use in current and future projects.

Applying this automated procedure, it was analyzed whether

and how strongly the refinement process influences the likeli-

hood to detect certain fragments in their electron density. The

correlation coefficient (CC) between the mFo � DFc map after

a certain refinement step (no fragment modeled) and the Fc
map calculated from the fragment molecule in its final binding

position was used as a measure of the quality of fit between a

certain observed electron density feature and the respective

modeled fragment. Relative to the results from the initial stan-

dard refinement that are usually used for the detection of hits,

fragment electron densities are clearly improved after the final

refinement step as indicated by an 8.8% increase in the mean

CC (Figure 6A). This and the following CC analyses refer to the

subset of all crystallographic hits and also include additional

fragment molecules in cases where the occupation of multiple

binding sites could be detected, overall leading to 86 analyzable

fragments (for details, cf. Experimental Procedures). Each of the

individual refinement steps contributes to this positive effect

likely because the phases gradually improve as the refinement

converges (Figures 5 and 6B). Importantly, the most significant

CC enhancement occurs along with the largest phase error

drop during the placement of water molecules. All modeling

steps involving the addition of waters result in 81.6% of the total
Stru
CC increase. Moreover, the anisotropic

treatment of ADPs and the addition of H

atoms to the EP model account for the re-

sidual 13.7% and 4.7%, respectively. As

already observed for the phase error, the

overall CC improvement is higher for

better resolved structures with a more

beneficial effect of anisotropic ADP

refinement. In addition, we estimated

how much further the CC could have

been reduced when manually refining all

364 structures. Based on the above

approximation that the automated refine-
ment has converged to 87%, the putative CC maximum for all

fragments is 0.80 while our pipeline improves the mean CC

from 0.72 to 0.79 (for an explanation of these seemingly low

values, see the Experimental Procedures).

Visually screening all difference electron density maps for the

presence of fragments after the initial standard refinement, and

thereby following the frequently applied crystallographic work-

flow, we would have only identified 74% of our fragment hits

(considering all copies of multiple binders). An additional 22

binders could, from our point of view, only be recognized after

the application of the complete automated refinement procedure

and, thus, would have been missed when relying only on initial

mFo � DFc maps. During the automated refinement of these

structures, a gradual improvement of the fragment electron den-

sities can be observed with the most significant impact of the

addition of water molecules (Figures 7A–7I). Several examples

illustrating the effect of the refinement on the quality of the

map sections surrounding fragment molecules are given in Fig-

ures 7J–7M and S4. Interestingly, all 22 fragments that are hardly

recognizable in the initial maps without prior knowledge of their

binding position and conformation display a CC of less than

0.7 (Figures 6C, 7, and S4A–S4Q). A further 17 fragment copies

also have an initial CC below this cutoff and are likewise charac-

terized by a clear refinement-induced electron density improve-

ment. In contrast, however, they may already be recognized in

the initial maps based on certain electron density features,

such as ring-shaped structures (cf. Figure S4R). This is particu-

larly true when inspecting difference electron density maps at
cture 24, 1398–1409, August 2, 2016 1403



Figure 6. Improvement of Electron Density

for Fragment Identification

Correlation coefficients (CC) were calculated

between mFo � DFc and Fc maps of each crys-

tallographically detected fragment.

(A) Distribution of the CC improvements observed

after the final refinement in comparison with the

initial standard refinement.

(B) Development of the mean CC (black spheres)

andphase error (red triangles) during the automatic

refinement procedure for the hit subset. The mean

phase error for all deposited fragment-bound

structures is highlighted by the red dashed line.

(C) Cumulative distributions of CC values for the

different refinement steps (color code as given in

the legend). As indicated by the gray arrows, the

distributions are shifted toward higher CC values

as the refinement procedure progresses. By far

the most significant shift is caused by the initial

addition of water molecules. The black dashed

lines in the close-up view illustrate CC thresholds

of 0.6 and 0.7, respectively.
a s level of 2.5, which in our experience greatly facilitates the

identification of fragment hits. Even for fragments with an initial

CC above 0.7, further refinement often leads to an improvement

of the map quality enabling a more unambiguous hit identifica-

tion (Figures S4S and S4T).

Furthermore, our analysis shows that, based on the experi-

ence of the eight crystallographers involved in this project, frag-

ment hits should at least display a CC of 0.6 with respect to the

fully refined mFo � DFc map (Figure 6C). This CC threshold re-

sulted automatically since, for each fragment, we decided indi-

vidually whether it had bound to EP based on the respective

maps. Only two of our 86 fragment hits had a final CC below

0.6, which can be easily explained: the refinement pipeline is

currently not able to recognize drastic conformational changes

as observed for the complex between EP and fragment 218

where the flap region comprising residues 78–84 is displaced

by the ligand and obscures the mFo � DFc fragment density in

its original position. On the other hand, fragment 31 can be char-

acterized as a hit despite a CC below 0.6 because the planar

phenyl ring is clearly visible in the density even though the ester

functionality remains undetected.

Finally, the results from displacement isothermal titration

calorimetry experiments were used (Schiebel et al., 2016) to

investigate whether those hits only detected after proper

structural refinement are of any value for hit-to-lead-to-drug

chemistry or whether they only represent extremely weak

binders (Figure S5). While fragments that were detected

without the application of the refinement pipeline are char-

acterized by a mean Kd of 2.7 ± 3.0 mM and a ligand efficiency

(LE) of 1.22 ± 0.26 kJ mol�1 atom�1, the additional hits found

display an average Kd of 5.1 ± 3.8 mM and an LE of 1.21 ±

0.27 kJ mol�1 atom�1. It is well known that an LE above

1.2 kJ mol�1 atom�1, corresponding to �0.3 kcal mol�1 atom�1,
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is particularly important for successful

FBLD and, hence, the additional hits iden-

tified may prove essential during the

chemical optimization process (Scott
et al., 2012). In particular, four of these fragments have LEs

clearly above this threshold, and two fragments are sub-milli-

molar binders (Figure S5). In this regard, it is also important to

note that the strongest binders are not always the best choice

for chemical optimization and that less potent fragments can

provide essential structural knowledge inspiring the medicinal

chemist (Jhoti et al., 2013; Schiebel et al., 2016).

DISCUSSION

Today, FBLD plays an increasingly important role in the develop-

ment of new drugs. Applications of this method can result in clin-

ical candidates even for targets that had long been considered

undruggable based on more classical approaches such as

HTS campaigns (Coyne et al., 2010). The generation of structural

data on fragment-target complexes is one of the key factors

important for the success of an FBLD study (Murray and Blun-

dell, 2010). In particular, X-ray crystallography is applied to

obtain this essential information and was recently suggested to

be most powerful when used as a primary screening technique

(Schiebel et al., 2016). For this reason, new and improved

methods need to be developed that allow the reliable and to a

large degree automated detection of all fragment hits from a

full crystallographic fragment screen.

Here, we provide a very high-quality X-ray diffraction dataset

collected from 364 different fragment-soaked EP crystals that

is ideally suited for the development and validation of such

methods and can be downloaded for this purpose from the

PDB (see Accession Numbers section and Table S1). Im-

portantly, our dataset can also support the development, optimi-

zation, and validation of refinement programs and pipelines.

Moreover, the data can be used for various other purposes

such as the training or validation of ligand placement routines



Figure 7. Improvement of Fragment Electron Densities through Automatic Refinement

(A–I) Gradual density enhancement highlighted for fragment 189. mFo � DFc difference electron density maps are shown around fragment 189 (gray sticks) after

each of the individual refinement steps as gray and redmeshes at the 2.5 and 3.0 s level, respectively. The individual refinement steps are as follows: (A) MR. The

chemical structure of fragment 189, which was modeled in two alternative conformations, is depicted in the blue box. (B) Simulated annealing; (C) standard

refinement; (D) TLS; (E) initial water placement; (F) refinement of anisotropic B factors; (G) refinement of anisotropic B factors including water molecules;

(H) hydrogen addition; (I) additional water placement.

(J–M) Further examples for electron density enhancements. For fragments 17 (J), 35 (K), 73 (L), and 311 (M), mFo�DFcmaps are depicted after the initial standard

refinement (top) and after the final refinement (bottom) as gray and redmeshes at the 2.5 and 3.0 s level, respectively. The fragments are shown as gray sticks and

respective chemical structures are presented in the blue boxes. The azepane ring of fragment 17 is never completely visible in the electron density and thus was

only partially modeled. While the EP-17 and EP-35 complex structures contain the fragment twice, only one of these molecules is shown. Similar cases for which

the electron density only allows ligand identification after the final refinement step are outlined in Figure S4. For information on the fragments’ affinities and ligand

efficiencies, see Figure S5.
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as well as investigation of the conservation of side-chain confor-

mations and water sites.

Within this project, all experiments that did not fulfill our strict

quality criteria were repeated so that all crystals that were finally

chosen diffracted to resolutions better than 2.0 Å and

almost exclusively (96%) yielded Rsym values below 10% (Fig-

ures 1 and S2). This comprehensive crystallographic screening

campaign was only feasible due to sufficient synchrotron beam-

time and a high level of automation during data collection,

processing, and analysis. In this context, we developed an

automated in-house refinement pipeline that produced excellent

models with 95% of all Rfree values below 20%.

Analyzing the difference electron density maps resulting from

this exercise, it was observed that, in contrast to common prac-

tice, elaborate structural refinement and especially water place-

ment is crucial for the reliable detection of all fragment hits. This

can be traced back to the improved phases of a fully refined

model in comparison with a crude initial structure that is typically

used for the search of bound fragments (Figure 6B). In a different

fragment-based project, our refinement pipeline was applied to

nine diffraction datasets and aided in the identification of three,

instead of one, human carbonic anhydrase binders, underlining

that our observations should also hold for other targets (S.G.,

J.S., A.H., and G.K., unpublished data). Although the positive

influence of a more complete refinement may be particularly

prominent in the case of fragments due to their low affinity and

hence partial binding-site occupancy, similar trends have also

been observed for larger ligands.

Based on these findings, we think that there is an urgent need

for robust and efficient methods that are dedicated to FBLD.

Clearly, most pharmaceutical companies have their in-house so-

lutions, but these are not available to the broad crystallographic

community and are, with probably one exception (Mooij et al.,

2006), not well documented (Echols et al., 2014; Oster et al.,

2015). Before we decided to compile our own customized refine-

ment pipeline that satisfied our specific needs such as careful

water placement, we also considered using the PHENIX.ligand_

pipeline that was described previously (Echols et al., 2014).

However, the authors explicitly note that the pipeline was not

optimized for use in fragment-based projects. In contrast, the

AutoDrug software has been developed specifically for this

purpose but rather focuses on data collection and processing

with only a crude initial refinement step (Tsai et al., 2013).

Because the accuracy of phases, however, turned out to be

pivotal for the reliable detection of all crystallographic fragment

hits, strategies need to be developed to automatically refine a

large set of structures to almost complete convergence. Our

pipeline fulfills this requirement already to 87%, and therefore

is responsible for the detection of 22 additional hits, a number

that admittedly can vary slightly depending on the expertise of

the crystallographer. As learned from our study, the reliable iden-

tification of fragment hits primarily requires themodeling of water

molecules with some beneficial effects originating from the addi-

tion of hydrogen atoms and from the anisotropic refinement of

ADPs at resolutions better than 1.5 Å. Ultimately, the refinement

pipeline should be directly coupled to data collection and pro-

cessing software to further accelerate the screening process.

Such methods will permit a broad range of practitioners

across industry and academia to use X-ray crystallography as
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primary fragment screening platform leading to a maximum

of ligand-bound crystal structures of the targeted macromole-

cule. The resulting in-depth structural insights will provide the

framework required to design new and urgently needed drugs

for various indications.

EXPERIMENTAL PROCEDURES

Fragment Library

In a previous study, we described the assembly of a 364-entry fragment library,

which accidentally contained three duplicates (Köster et al., 2011; Schiebel

et al., 2015). The fragments can be divided into 292 molecules not binding

to EP and 72 compounds identified as crystallographic binders (Schiebel

et al., 2016). While the former group contains two of the three duplicates,

the latter includes fragments 39 and 321, which are chemically identical and

both result in fragment-bound crystal structures. Thus, the complete dataset

contains 71 non-redundant crystallographic hits.

Crystallization, Data Collection, and Processing

EP was isolated in 0.1 M sodium acetate buffer at a pH of 4.6 according to our

previously described protocol (Köster et al., 2011). Subsequently, crystals

were grown and soaked with individual fragments prior to data collection as

previously described (Schiebel et al., 2016). In sitting-drop vapor diffusion ex-

periments, 2 ml of a 0.15 mM EP solution was mixed with the same volume of

reservoir solution containing 0.1 M NaAc (pH 4.6), 0.1 M NH4Ac, and 24–30%

(w/v) PEG 4000. After equilibration at 17�C for at least 1 week, individual

crystals were transferred into 11 ml of 70 mM NaAc (pH 4.6), 70 mM NH4Ac,

16%–20% (w/v) PEG 4000, 19%–23% (v/v) glycerol, 9% (v/v) DMSO, and

90 mM of one of the 364 fragments. Crystals were harvested from these

soaking drops after 48 hr and immediately flash-frozen in liquid nitrogen.

Diffraction data were collected at the BESSY MX beamlines 14.1, 14.2, and

14.3 (Mueller et al., 2012, 2015) and processed on site using the beamline

version of XDSAPP in command-line mode (K.R., M.S.W., and U.M., unpub-

lished data; Sparta et al., 2016) for each of the collected datasets, including

a subsequent PHENIX-based refinement step utilizing a user-supplied model

(Adams et al., 2010; Huschmann et al., 2016). The resulting data collection

statistics were reviewed for each of the 364 datasets and, if necessary, manual

re-processing was performed using XDS, XDSAPP, HKL2000, or IMOSFLM/

SCALA (Evans, 2006; Kabsch, 2010; Leslie, 1992; Otwinowski and Minor,

1997; Sparta et al., 2016). In cases where data collection statistics still did

not fulfill our strict quality requirements, the complete crystallographic

experiment was repeated. All datasets can be downloaded from the PDB

(see Accession Numbers section and Table S1) for further use and evaluation.

All final data were statistically analyzed and plotted using R (R Development

Core Team, 2010). Data collection parameters are given in the text as

means ± SD.

Automated Refinement

Our customized refinement pipeline basically consists of nine individual steps

and solely builds on available crystallographic software. The script, written in

bash command language, successively processes all reflection files that are

specified as input. In the initial step, each structure is determined viaMR taking

the user-supplied coordinate file as search model after removal of all alterna-

tive side-chain conformations, hydrogen atoms, and ANISOU records by

PDBCUR of the CCP4 package (Winn et al., 2011). During the MR procedure,

thePHENIX-implemented version ofPHASER searches for asmanymolecules

in the asymmetric unit as suggested by a Matthews coefficient analysis

while testing all alternative space groups (McCoy et al., 2007). If a space group

different from the input has been identified by PHASER, it is updated in

the reflection file using MTZUTILS of the CCP4 suite. All subsequent refine-

ment steps are performed with the command-line version of PHENIX.refine

(PHENIX version dev2006) at the constant number of five macrocycles and

include bulk solvent correction as well as anisotropic scaling of the data

(Adams et al., 2010). The initial Cartesian simulated annealing step allowing

for rearrangements of flexible protein parts is followed by a standard XYZ co-

ordinate refinement with isotropic ADPs. Subsequently, a TLS refinement is

performed based on those TLS groups identified for the search model via



the PHENIX.find_tls_groups routine. In the next step, COOT’s find-waters

routine is used to generate a preliminary water model based on the mFo �
DFc map at the 4 s level (Emsley and Cowtan, 2004; Emsley et al., 2010). Alter-

natively, we also tested water placement via PHENIX but finally decided to

stick to the more conservative COOT-based version as the default. After an

interim refinement applying the same strategy as in the previous step, waters

that are characterized by an mFo � DFc map variance above 2 s are detected

by the check-waters-by-difference-map tool inCOOT. Such waters likely were

placed into ligand electron density and thus are subsequently removed from

the model prior to the actual refinement step (again with the same TLS refine-

ment strategy). In the sixth step, the TLS refinement is replaced by the aniso-

tropic treatment of all ADPs except those of water molecules. In contrast, the

refinement of anisotropic ADPs is switched on for all atoms including water

oxygens starting from the following step. The resulting model is then hydroge-

nated usingPHENIX.ready_set and refinedwith riding hydrogens prior to a final

round of water addition. This is again performed in the above-described

two-step manner with the exception that waters are now placed based on

an mFo � DFc s level of 5.5 in order to avoid over-interpretation of dubious

electron density features. After the water model has been updated, the final

refinement is carried out with anisotropic ADPs and riding hydrogen atoms.

Finally, we would like to note that our pipeline was not only used for EP but

also tested on a number of other proteins where it produced reliable results

(data not shown). The refinement pipeline tool described here was written in

bash command language and is available from the authors upon request.

Based on the original ideas and results reported here, this tool is presently be-

ing developed into a highly sophisticated and robust Python-based structure

refinement workflow with a particular focus on fragment screening campaigns

(K.R., M.S.W., and U.M., unpublished data). Applying a PHENIX- and COOT-

based refinement strategy and additional concepts for robust ligand identifica-

tion, and making use of multi-core processors, the new program will perform a

completely automatic refinement of a PDB model against multiple reflection

datasets in parallel. It is also planned to link this tool to XDSAPP (Sparta

et al., 2016) so that it can be invoked seamlessly after the automated process-

ing of multiple diffraction datasets.

For the present study, all 364 reflection files arising from the above-

described data collection were processed by the current refinement pipeline.

A 0.99 Å resolution structure of the EP apo form lacking all water and ligand

molecules was used as an MR search model (PDB: 4Y5L). To warrant compa-

rability, we consistently used the results from the initial standard refinement

and opposed them to those from the final refinement step because themajority

of structures are characterized by resolutions for which this refinement strat-

egy is most appropriate. All figures displaying structural elements and electron

densities were produced usingPYMOL (DeLano, 2002). Refinement parameter

data were statistically analyzed and plotted within the R environment.

Calculation of Correlation Coefficients

The refinement pipeline adds water molecules in a conservative fashion to the

model and avoids population of densities that might represent larger ligands.

This strategy was successful in 72% of cases, while in the residual cases, on

average 1.6 waters had been placed into individual fragment electron den-

sities. Nevertheless, those fragment hits could still be reliably detected

because the reduction in themFo�DFc signal is compensated by an emerging

2mFo � DFc peak. For the purpose of our study, however, we wanted to

compare unbiasedmFo�DFcmapswith Fcmaps calculated for the respective

fragment in its final binding pose, and therefore ran the refinement pipeline in a

slightly modified version. In particular, water molecules closer than 2.2 Å to the

respective fragment were additionally removed from themodel prior to the two

secondary water refinement steps. Seventy of the 72 diffraction datasets re-

sulting in crystallographic hits were handled in this way. To avoid redundancy,

the duplicate fragment 39 was omitted from the CC analysis. Fragment 177

was detected in the binding pocket of EP but lost its fragment character due

to a reaction (J.S., F.R.E., G.K., and A.H., unpublished data) and thus was like-

wise left out. The 70 datasets finally used for this analysis encompass 86

bound fragment copies for which individual CCs could be calculated (Figure 6).

Similarly, fragments 39 and 177 were omitted from the hit subset used for the

production of the graphs depicted in Figure 5.

For the calculation of CC values, the respective deposited fragment-bound

structure (our unpublished data) was superimposed onto the output models of
every refinement step using the superpose routine as implemented in the

CCP4 package (Krissinel and Henrick, 2004). Subsequently, Fc maps were

calculated for each individual fragment copy using SFALL and MAPMASK of

the CCP4 suite (Agarwal, 1978). Associated mFo � DFc maps were generated

with FFT based on the reflection files produced by the individual refinement

steps (Ten, 1973). Using the CCP4 program OVERLAPMAP (Branden and

Jones, 1990), CCs were then calculated between corresponding Fc and

mFo � DFc maps for every individual fragment copy and refinement step.

The resulting data were finally analyzed using the statistical framework R.

Importantly, we would like to note that our CC values are inevitably lower

compared with ordinary CCs because mFo� DFc maps prior to the placement

of any ligands were used for the correlations to avoid model bias and to better

reflect the fact that crystallographers typically search this map for the pres-

ence of bound ligands. All ordinary real-space CCs (RSCC; Fo versus Fc
map) calculated based on our deposited fragment-bound crystal structures

using PHENIX.real_space_correlation display values above 0.9 with a mean

of 0.97 ± 0.02. In a recent publication, Deller and Rupp (2015) argue that

such ligands with an RSCC >0.9 can be regarded as trustworthy, underlining

that the interpretation of our data is reasonable.

ACCESSION NUMBERS

The structure factor amplitudes of all 364 datasets and their corresponding

structural coordinates have been deposited in the PDB via the newly estab-

lished group deposition tool. For now, the data can be downloaded using

the 364 individual PDB accession numbers given in Table S1, which also in-

cludes instructions for easy download of all structures. However, in the future

it will be possible to retrieve all data via the PDB group ID G_1002001.
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