Using NMR to study Macromolecular Interactions

John Gross, BP204A UCSF

Nov 27, 2017

Outline

- Review of basic NMR experiment
- Multidimensional NMR
- Monitoring ligand binding
- •Structure Determination

Magnetic moment $\vec{\mu} = \gamma \vec{S}$ Angular Momentum

The proportionality constant γ : strength of bar magnet

Equation of Motion

$$\frac{d\vec{\mu}}{dt} = \gamma \vec{B} \times \vec{\mu}$$

Based on magnetic torque:

$$\frac{d\vec{L}}{dt} = \vec{B} \times \vec{L}$$

Spin Precession

Magnetic Field, Bo

Precession frequency: $\gamma B_0 = \omega_0$

Driving Forces for Precession

Precessional Orbits

Spinning Top

Spinning Nucleus

Nuclear Spins Report Local Environment

 $B_{applied}$ + B_{local} = B_{total} determines precession

Net Magnetization

$$M_{x} = \sum_{j} \mu_{x}^{j} = 0$$

$$M_{y} = \sum_{j} \mu_{y}^{j} = 0$$

No Transverse Magnetization at equilibrium

Magnetic Energy B E m $\longrightarrow E = -\mu_z B_z$ S Static Magnetic Field Oriented Along Z-Axis

Energy States (spin-1/2 nucleus)

Net Magnetization along Z Axis

Thought experiment: apply 2nd field along Y Axis

Bo

If $B_1 >> B_0$, M_Z would rotate about B_1 .

Leave B_1 on until X axis reached ----> transverse magnetization Approach is not practical.

Same effect achieved with weak, resonant oscillating field

Bo

Turn B_1 on and off with a frequency matching the precessional frequency

Resonance

Ensemble of Nuclear Spins

Random Phase No NMR Signal Phase Synchronization NMR Signal!

Magnetization Vector Model

100 90y: Resonant 90 Degree Pulse

R.F. Field (applied at precession frequency)

Net magnetization rotated into transverse plane Rotates due to static and local fields

Summary of 1D Experiment

The J Coupling

Consider two spin-1/2 nuclei (ie, ¹H and ¹⁵N):

Effect transmitted through electrons in intervening bonds

(After 90y pulse)

Components rotate faster or slower than rotating frame by +-J/2

Spectrum with J coupling

¹⁵N Detected Spectrum

J couplings contain information on structure

 $J(\phi) = A\cos^2\phi + B\cos\phi + C$

Important Observables

Chemical shift is a reporter of magnetic environment

The J coupling can inform torsion angles

Protein NMR Spectroscopy

Periodic Table of NMR active Nuclei

Isotopic Labeling Proteins for NMR

Bacterial expression: Minimal media, ¹⁵N NH₄Cl or ¹³C glucose as sole nitrogen and carbon source

Amino acid-type labeling Auxotrophic or standard strains (ei, BL21(DE3) depending on scheme

Labeling post purification ; reductive methylation of lysines

Results in additional spin-1/2 nuclei which can be used as probes

Encode ¹⁵N chemical shift for time t₁

Bodenhausen & Ruben

2D Time-Domain Data

Some data shuffling then 2D FT = the HSQC Spectrum

Re
$$[S'(v_1, v_2)] = A_1^N A_2^H$$

3D Dimensional NMR

Resonance Assignments from Triple Resonance Experiments

The 3D HNCA Experiment

Backbone Resonance Assignments from HNCA

Triple Resonance Pairs

THE RANGE OF ¹³C CHEMICAL SHIFTS OBSERVED FOR EIGHT DIFFERENT PROTEINS

Res.	α	β	γ	δ	3
Gly	42-48				
Ala	49-56	18-24			
Ser	55-62	61-67			
Thr	58-68	66-73	19-26		
Val	57-67	30-37	16-25		
Leu	51-60	39-48	22-29	21-28	
Ile	55-66	34-47	25-31 14-22	9-16	
Lys	52-61	29-37	21-26	27-34	40-43
Arg	50-60	28-35	25-30	41-45	
Pro	60-67	27-35	24-29	49-53	
Glu	52-62	27-34	32-38		

WAGNER AND BRUHWILER, 1986...et al.

. . .

Or http://www.bmrb.wisc.edu/ref_info/statsel.htm

Part II: Macromolecular Interactions Detected by NMR
Binding of nucleotide to protein

Dose dependent resonance shifts can be fit to obtain Kd

Shifts may be color coded onto surface to identify ligand binding site

Caveats?

Fraction bound of labeled protein

$$P_{b} = \frac{\omega - \omega_{f}}{\omega_{b} - \omega_{f}} = \frac{[L]}{[L] + K_{d}}$$

 $\overline{\boldsymbol{\mathcal{O}}}$: observed chemical shift

Monitoring Protein/Protein Interactions by HSQC

Sparse Labeling to Simplify Spectra

Selectively label R group methyls with C-13 (NMR visible)

(add alpha-ketoacid precursors to ILV 30 minutes prior to induction)

Measuring pKa by NMR

Aglietti et al, Structure 2013

1136

Identification of titratable residue by site-directed mutagenesis and NMR

Example of slow exchange: monomer-dimer equilibrium

Methionine specific labeling simplifies analysis

Marnett A. B. et.al. PNAS 2004;101:6870-6875

Part III: Structure by NMR

Calculating 3D structures: we need distance measurements & assignments

$$NOE = f(z_c) \cdot \frac{1}{r^6}$$

WITH ASSIGNMENTS

A Real 2D NOE Experiment of a Small Peptide

Interpretation of 2D NMR Spectra

Higher Dimensionality 3 and 4D Heteronuclear Experiments on Isotopically Labeled (15N-13C) Proteins

2D NOESY of a 76 residue protein homodimer (effectively 18kD) in D₂O

In practice, even small proteins have very crowded 2D spectra making assignment very difficult. In this case the fact that it is in D2O simplifies the spectra because the amide protons exchange for deuterium and are not visible.

Benefit of C13 and N15 labeling of Proteins for NMR

Higher Dimensionality (3 and 4D) Experiments Reduce Overlap Compared to 2D Experiments

Many More Types of Experiments Can be Done on Isotopically Labeled Protein

nOes between Protons Attached to N15 and Protons Attached to 13C

nOes between Protons Attached to 13C and Protons and Attached to 13C

Examples of 15N and 13C dispersed NOESY

15N NOESY-HSQC

13C NOESY-HSQC

Side-chain protein assignments H(CCO)NH-TOCSY R H-C-H i - 1 res. All Carbon's H's at i-1 to H-C-H Ŗ N-H pair. Н Н О Н Н О R 15N-TOCSY i res. H-C-H All H's at i to N-H pair. H-C-H Ŗ --N--C--C----N---C---C---

ННО Н Н О

TOCSY methods relies on through-bond J Couplings

Close interatomic distances in secondary structures

alpha-helix

parallel beta-sheet

type I turn

antiparallel beta-sheet

type II turn

H^a chemical shifts and secondary structure

- the figure at right shows distributions of H^a chemical shifts observed in sheets (lighter bars) and helices (darker bars).
- H^a chemical shifts in a-helices are on average 0.39 ppm below "random coil" values, while b-sheet values are 0.37 ppm above random coil values.

		6 5 ptm	n. 	` T
Ala	A	REGERENCE BREAKING		
Cys	c			<u> </u>
Asp	D			
Glu	E		a : a :	
Phe	F		4	
Gly	G		50 53	
His	н	92752777 19727		
lle	I	(1997) (1997) (1997)	28 1 2000 2000 2000000	1
Lys	κ	Statist state		
Leu	L	2000000 60000		
Met	м	185534 67532		
Asn	N			
Pro	P	100000 1000000 1	3	:
Gln	Q	20150000 0000000		_
Arg	R	Concern concern		
Ser	s		200000000	
Thr	т	20000000 800000 1833		-
Val	v	100000 400		1
Τrp	W			
Tyr	Y	2003000 0000		

Wishart, Sykes & Richards *J Mol Biol* (1991) **222**, 311.

Secondary Shift vs Sequence

Reveals secondary structure !

Chemical shift index (CSI)

- trends like these led to the development of the concept of the *chemical shift index** as a tool for assigning secondary structure using chemical shift values.
- one starts with a table of reference values for each aminoacid type, which is essentially a table of "random coil" H^a values
- CSI's are then assigned as follows:

exp' tl H ^a shift rel. to reference	assigned CSI
within ± 0.1 ppm	0
>0.1 ppm lower	-1
>0.1 ppm higher	+1

*Wishart, Sykes & Richards *Biochemistry* (1992) **31**, 1647-51.

Chemical shift indices

- any "dense" grouping of four or more "-1's", uninterrupted by "1's" is assigned as a helix, while any "dense" grouping of three or more "1's", uninterrupted by "-1's", is assigned as a sheet.
- a "dense" grouping means at least 70% nonzero CSI's.
- other one regions are assigned as "coil"
- this simple technique assigns 2ndary structure w/90-95% accuracy
- similar useful relationships exist for ¹³C^a, ¹³C^{C=O} shifts

3D structure calculation

- NMR provides information about structure
 - chemical shifts <=> local electronic environment
 - coupling constants <=> torsion angles
 - NOE, ROE <=> interproton distances
 - residual dipolar couplings <=> bond orientation
- and dynamics
 - relaxation times
 - NOE, ROE
- Most of the data describe
 - local environment of the protons
 - relative to each other
 - not the global conformation of the molecule

• Distance

NOE: The distance between i and j is a function of the NOE intensity $D_{ij} \sim C(NOE_{ij})^{-6}$

H-bonds: Identified by slowly exchanging amide H_N protons

•Angles

Side Chain ? and backbone torsion identified from J-coupling experiments

Chemical Shift also gives Angular Information

• Residual Dipolar Couplings

Bond Orientations Relative to an Alignment Tensor

Experimental data from NMR

3D structure calculation

• Goal is to minimize the hybrid energy function

E-ForceField **E-NOEs E-Angles** E-H_bonds E-Chemical_shift E-Dipolar_couplings

The hybrid energy function

- Structure calculation = minimization of hybrid energy function (target function) which combines
 - 1. different experimental data
 - 2. a priori information (force field)

$$\begin{split} E_{hybrid} &= \sum_{l} w_{l} E_{l} = \\ & w_{bond} E_{bond} \\ &+ w_{angle} E_{angle} \\ &+ w_{improper} E_{improper} \\ &+ w_{nonbonded} E_{nonbonded} \\ &+ w_{unambig} E_{unambig} + w_{ambig} E_{ambig} + \dots \\ &+ w_{torsion} E_{torsion} \\ &+ w_{Jcoup} E_{Jcoup} \\ &+ w_{RDC} E_{RDC} + \dots \end{split}$$

Minimization by molecular dynamics

• MD solves Newton's eqns. of motion:

$$\frac{d^2 \vec{r_i}}{dt^2} = -\frac{c}{m_i} \frac{\partial}{\vec{r_i}} E_{hybrid}$$

 Molecular dynamics can overcome local energy barriers

• Temperature control and variation: minimization by simulated annealing

- Key problem is ambiguity in NOE assignments
- Need for higher dimensional data: 3D & 4D
- Need for heteronuclear data
- Need for better calculational strategies that can deal with ambiguous data

Errors in data: error bounds

- Cumulative error in D_{ij} is treated by using loose error bounds $L \dots U$
- Precise value not (too) critical: loose bounds restrict conformational space

- However, consequences for:
 - precision of structure

residues # restraints/residue

Solution Structure of the Core NFATC1/DNA Complex

Zhou et al, Cell, 1998

Need to evaluate restraint numbers, violations and precision

Table 1. Structural Statistics for NFATC1-DBD*/DNA Complex

Protein		
Amino acids residues sequentially assigne	d (nonproline)	162 of 167
Effective distance constraints		1050
Intraresidue		236
Sequential (li – jl = 1)		374
Medium-range (li – jl ≤4)		86
Long-range (li −jl ≥5)	How were restraints m	neasured ⁷²⁷²
H bonds		82
Dihedral angle constraints		363
DNA		
Effective distance constraints		276
Intraresidue		146
Sequential		131
Interstrand		1
H bond		58
Protein–DNA interface		
Effective distance constraints		56
Distance constraint violations > 0.2 A (per si	tructure)	1.81 ± 2.07
Dihedral constraint violations > 3.0° (per stru	icture)	1.44 ± 0.96
X-PLOR potential energy (E _{L-J} , Kcal/mol, avg	per structure)	-501 ± 28.9
R.m.s.d. to the mean for backbone heavy at	oms of all β strands	
(residues 428–432, 460–464, 472–479, 493-	-495, 506–510, 515–521, 528–538, 559–568, 578–583)	0.62 ± 0.07
R.m.s.d. to the mean for heavy atoms of all	3 strands	1 00 1 0 11
(residues 428–432, 460–464, 472–479, 493-	-495, 506-510, 515-521, 528-538, 559-568, 578-583)	1.20 ± 0.14
R.m.s.d. to the mean for backbone heavy at	oms	111 + 011
(residues 425–590)		1.14 ± 0.11
R.m.s.d. to the mean for neavy atoms		1 50 + 0 10
(residues 425–590)		1.58 ± 0.10
R.m.s.d. to the mean for DNA heavy atoms		0.02 ± 0.21
(superposition of all DNA neavy atoms)	n, stome	0.83 ± 0.21
R.m.s.d. to the mean for protein + DNA hear	and DNA heavy stome)	1.20 ± 0.10
(superposition of all β strand neavy atoms	and DINA neavy atoms)	1.20 ± 0.16
Ramachandran piot	Dosiduos 425-590	Secondary Structures
Most favorable region	60.4%	83.7%
Additionally allowed region	28 0%	14.0%
Generously allowed region	0.7%	2 3%
Disallowed region	0.0%	0.0%
	0.070	0.070
^a Laskowski et al., 1996.		

Analysis of Table

Table 1. Structural Statistics for NFATC1-DBD*/DNA Complex

Protein			
Amino acids residues sequentially assigned	d (nonproline)	162 of 167	
Effective distance constraints		1050	
Intraresidue	How mony NOE posterie	236	
Sequential (li – jl = 1)	now many NOE restran	ILS . 374	
Medium-range (li – jl ≤4)	•	86	
Long-range (li −jl ≥5)		272	
H bonds		82	
Dihedral angle constraints		363	
DNA			
Effective distance constraints		276	
Intraresidue		146	
Sequential		131	
Interstrand >0	per residue is acceptable	1	
H bond	1 1	58	
Protein–DNA interface			
Effective distance constraints		56	
Distance constraint violations > 0.2 Å (per structure)			
Dihedral constraint violations > 3.0° (per structure)	cture)	1.44 ± 0.96	
X-PLOR potential energy (E _{L-J} , Kcal/mol, avg.	per structure)	-501 ± 28.9	
R.m.s.d. to the mean for backbone heavy ato	oms of all β strands		
(residues 428-432, 460-464, 472-479, 493-	495, 506–510, 515–521, 528–538, 559–568, 578–583)	0.62 ± 0.07	
R.m.s.d. to the mean for heavy atoms of all β	strands		
(residues 428-432, 460-464, 472-479, 493-	495, 506–510, 515–521, 528–538, 559–568, 578–583)	1.20 ± 0.14	
R.m.s.d. to the mean for backbone heavy ato	oms		
(residues 425–590)		1.14 ± 0.11	
R.m.s.d. to the mean for heavy atoms			
(residues 425–590)		1.58 ± 0.10	
R.m.s.d. to the mean for DNA neavy atoms			
(superposition of all DNA heavy atoms) (
R.m.s.d. to the mean for protein + DNA neav	y atoms	1.00 ± 0.10	
(superposition of all β strand neavy atoms)	and DNA neavy atoms)	1.20 ± 0.16	
Ramachandran piot	Desidues 425 E00	acondary Structures	
Most favorable region	<u>Residues 425-550</u> <u>5</u>	a 7%	
Additionally allowed region	38.0% 1	4.0%	
Generously allowed region	2.3%		
Disallowed region	0.0%		
	0.078	0.070	
^a Laskowski et al., 1996.			

Analysis of Table

Table 1. Structural Statistics for NFATC1-DBD*/DNA Complex

Protein Amino acids residues sequentially assigned (nonprolin	e)	162 of 167
Effective distance constraints	-,	1050
Intraresidue		236
Sequential (li – jl = 1)		10 374
Medium-range (li – jl ≤4) HOW are	NOE restraints di	stributed? 86
Long-range (li –jl ≥5)		272
H bonds		82
Dihedral angle constraints		363
DNA		
Effective distance constraints		276
Intraresidue		146
Sequential		131
Interstrand		1
H bond		58
Protein–DNA interface		
Effective distance constraints		56
Distance constraint violations > 0.2 Å (per structure)	1.81 ± 2.07	
Dihedral constraint violations $> 3.0^{\circ}$ (per structure)		1.44 ± 0.96
X-PLOR potential energy (EL-J, Kcal/mol, avg. per structu	re)	-501 ± 28.9
R.m.s.d. to the mean for backbone heavy atoms of all $\boldsymbol{\beta}$	strands	
(residues 428-432, 460-464, 472-479, 493-495, 506-5	10, 515–521, 528–538, 559–568, 578–583) 0.62 ± 0.07
R.m.s.d. to the mean for heavy atoms of all β strands		
(residues 428-432, 460-464, 472-479, 493-495, 506-5	10, 515–521, 528–538, 559–568, 578–583) 1.20 ± 0.14
R.m.s.d. to the mean for backbone heavy atoms		
(residues 425–590)		1.14 ± 0.11
R.m.s.d. to the mean for heavy atoms		
(residues 425–590)		1.58 ± 0.10
R.m.s.d. to the mean for DNA heavy atoms		
(superposition of all DNA heavy atoms)		0.83 ± 0.21
R.m.s.d. to the mean for protein + DNA heavy atoms		
(superposition of all β strand heavy atoms and DNA he	eavy atoms)	1.20 ± 0.16
Ramachandran plot ^a		
	Residues 425–590	Secondary Structures
Most favorable region	60.4%	83.7%
Additionally allowed region	38.9%	14.0%
Generously allowed region	0.7%	2.3%
Disallowed region	0.0%	0.0%
Reading the NMR Statistics Structure Table

Table 1. Structural Statistics for NFATC1-DBD*/DNA	Complex	
Protein		
Amino acids residues sequentially assigned (nonpro	oline)	162 of 167
Effective distance constraints		1050
Intraresidue		236
Sequential (li – jl = 1)		374
Medium-range (li – jl ≤4)		86
Long-range (li −jl ≥5)		272
H bonds		82
Dihedral angle constraints		363
DNA		
Effective distance constraints		276
Intraresidue		146
Sequential		131
Interstrand	II Donda Datamaina	19
H bond HOW WEIE	H Bonds Determine	U . 58
Protein–DNA interface		
Effective distance constraints		56
Distance constraint violations $>$ 0.2 A (per structure)		1.81 ± 2.07
Dihedral constraint violations $> 3.0^{\circ}$ (per structure)		1.44 ± 0.96
X-PLOR potential energy (E _{L-J} , Kcal/mol, avg. per structure)		-501 ± 28.9
R.m.s.d. to the mean for backbone heavy atoms of al	I β strands	
(residues 428-432, 460-464, 472-479, 493-495, 506	6–510, 515–521, 528–538, 559–568, 578–583)	0.62 ± 0.07
R.m.s.d. to the mean for heavy atoms of all β strands		
(residues 428–432, 460–464, 472–479, 493–495, 506	5–510, 515–521, 528–538, 559–568, 578–583)	1.20 ± 0.14
R.m.s.d. to the mean for backbone heavy atoms		
(residues 425–590)		1.14 ± 0.11
R.m.s.d. to the mean for heavy atoms		
(residues 425–590)		1.58 ± 0.10
R.m.s.d. to the mean for DNA heavy atoms		
(superposition of all DNA heavy atoms)		0.83 ± 0.21
R.m.s.d. to the mean for protein + DNA heavy atoms		4.00
(superposition of all β strand heavy atoms and DNA	A neavy atoms)	1.20 ± 0.16
Ramachandran plot ^a	Desidues 405 500	Conservations Structures
Mast favorable ragion	Residues 425-590	Secondary Structures
Nost ravorable region	bU.4%	03.170
Additionally allowed region	38.9%	14.0%
Generously allowed region	0.7%	2.3%
Disallowed region	0.0%	0.0%
^a Laskowski et al., 1996.		

Reading the NMR Statistics Structure Table

Table 1. Structural Statistics for NFATC1-DBD*/DNA Complex

Protein			
Amino acids residues sequentially assigned (nonproline)		162 of 167	
Effective distance constraints		1050	
Intraresidue		236	
Sequential (li – jl = 1)		374	
Medium-range (li – jl ≤4)		86	
Long-range (li −jl ≥5)		272	
H bonds		82	
Dihedral angle constraints		363	
DNA			
Effective distance constraints		276	
Intraresidue		146	
Sequential		131	
Interstrand			
How many 1n	termolecular N) HS 7 58	
Protein–DNA interface			
Effective distance constraints		56	
Distance constraint violations > 0.2 A (per structure)		1.81 ± 2.07	
Dihedral constraint violations $>$ 3.0° (per structure)		1.44 ± 0.96	
X-PLOR potential energy (E _{L-J} , Kcal/mol, avg. per structure)		-501 ± 28.9	
R.m.s.d. to the mean for backbone heavy atoms of all β strands			
(residues 428–432, 460–464, 472–479, 493–495, 506–510, 515–521, 528–538, 559–568, 578–583) 0.62 ± 0.07			
R.m.s.d. to the mean for heavy atoms of all β strands			
(residues 428–432, 460–464, 472–479, 493–495, 506–510, 515–521, 528–538, 559–568, 578–583) 1.20 ± 0.14			
R.m.s.d. to the mean for backbone heavy atoms			
(residues 425–590)		1.14 ± 0.11	
R.m.s.d. to the mean for heavy atoms			
(residues 425–590)		1.58 ± 0.10	
R.m.s.d. to the mean for DNA heavy atoms			
(superposition of all DNA heavy atoms)		0.83 ± 0.21	
R.m.s.d. to the mean for protein + DNA heavy atoms			
(superposition of all β strand heavy atoms and DNA heavy atom	ns)	1.20 ± 0.16	
Ramachandran plot ^a	B	a b b b	
Mark forward la sanian	Residues 425–590	Secondary Structures	
Niosi lavorable region	DU.4%	03.1%	
Additionally allowed region	38.9%	14.0%	
Generously allowed region	0.7%	2.3%	
Disallowed region	0.0%	0.0%	
^a Laskowski et al., 1996.			

Reading the NMR Statistics Structure Table

Table 1. Structural Statistics for NFATC1-DBD*/DNA Complex

Protein				
Amino acids residues sequentially assign	ned (nonproline)	162 of 167		
Effective distance constraints		1050		
Intraresidue		236		
Sequential (li – jl = 1)		374		
Medium-range (li – jl ≤4)	teria for publication:	86		
Long-range (li −jl ≥5)	I	o 272		
H bonds No	distance violations >0.5	A 82		
Dihedral angle constraints		363		
DNA	11 1 1 1 1 1 1	50		
Effective distance constraints	dinedral angle violation	S > 3 276		
Intraresidue	\mathcal{O}	146		
Sequential		131		
Interstrand		1		
H bond		58		
	TT	50		
Effective distance constraints	HOW many	191 ± 207		
Distance constraint violations > 0.2 A (per Dibodral constraint violations $> 2.0^{\circ}$ (per		1.01 ± 2.07		
Y-DLOD potontial operav (F K cal/mol a)	va par structure) Violations ?	-501 ± 28.9		
D m s d to the mean for backbone beau	atoms of all 0 strands	-501 ± 20.5		
(residues $428-432$ $460-464$ $472-479$ $493-495$ $506-510$ $515-521$ $528-538$ $559-568$ $578-583$) 0.62 + 0.07				
R = 300 + 320 + 320 + 320 + 300 +				
(residues 428-432, 460-464, 472-479, 49	93-495, 506-510, 515-521, 528-538, 559-568, 578-583)	1.20 + 0.14		
R.m.s.d. to the mean for backbone heavy	atoms			
(residues 425–590)		1.14 ± 0.11		
R.m.s.d. to the mean for heavy atoms				
(residues 425–590)		1.58 ± 0.10		
R.m.s.d. to the mean for DNA heavy atoms	S			
(superposition of all DNA heavy atoms)		0.83 ± 0.21		
R.m.s.d. to the mean for protein + DNA he	eavy atoms			
(superposition of all β strand heavy aton	ns and DNA heavy atoms)	1.20 ± 0.16		
Ramachandran plot ^a				
-	Residues 425–590	Secondary Structures		
Most favorable region	60.4%	83.7%		
Additionally allowed region	38.9%	14.0%		
Generously allowed region	0.7%	2.3%		
Disallowed region	0.0%	0.0%		
^a Laskowski et al., 1996.				

Read methods section to evaluate table

Resonance Assignments

1-HNCA/HN(CO)CA2-Amino-acid specific labeling3-NOESY experiments:Homonuclear and heteronuclear

Distance Restraints

1-2D and 3D NOESY at longer mixing times to get weak NOEs2-HD exchange to get hydrogen bonds

Many of these experiments performed with a specific labeling scheme to facilitate NOEs assignment

Side chain assignments from NOESY, caveats?

Assymetric isotope labelling to get intermolecular NOEs

Protein is deuterated, DNA protonated experiment done in D2O solvent Caveats?

Structures of larger proteins and complexes

Sample Deuteration Increases Sensitivity and Resolution

Figure 14. Comparative 1D spectra of fully protonated (a) and \sim 70% deuterated (b) ¹⁵N, ¹³C trpR using the HN(CA)CB scheme (Figure 2c). A total of 1024 transients were recorded for the ²H sample and 6928 transients (1024 × 2.6²) for the ³H sample which is a factor of 2.6 more dilute. The rms noise levels are normalized in the plots.

ń

Why does deuteration help?

Dipolar coupling for CH spin pair 6.5 times stronger than for CD--->roughly 50 fold reduction in linewidth with increase in S:N.

Need methods for measuring distance restraints in sparse ¹H environment

Grow E. coli in D2O and deuterated glucose, add precursors to introduce 1H/13C methyl labels

Measurement of Intermolecular NOEs using Asymmetric Deuteration with ILV Labeling

Aromatic/methyl NOEs are unambiguously identified Gross , Gelev and Wagner, J Biomol NMR 2003

Determining Long Range Distances through Paramagnetic Relaxation Enhancements

Dipolar broadening between unpaired electron and ¹H: 1/r⁶ dependence.

Provides long range distance information (15-20 angstroms)

Site-Directed Spin Labeling for PRE

Cysteine mutation in surface loop or helix

Record HSQC In absence and presence of reductant

Battiste and Wagner, Biochemistry, 2000

Paramagnet Relaxation Enhancement from Site-Directed Spin Labelling

Intensity reduction from dipolar coupling (1/r⁶), so distances can be extracted

Impact of PRE restraints for structure determination

ALL NOEsm (2014)

ONLY HN-HN NOEs (403)

HN-HN NOEs + PRE (515)

Battiste and Wagner , Biochemistry, 2000

Residual Dipolar Couplings

Impact of RDCs on Precision and Accuracy: MBP, a 42 kDa test Case

Precision: 5.5Å Accuracy: 5.1Å

2.2 Å 3.3 Å

From Mueller et. Al. JMB 300(1) 197-212 2000

Prospects for even Larger Proteins

requires ¹⁵N, ¹³C labeling

requires 15N, 13C, 2H labeling

X-ray

- crystal
- single structure-best fit to electron density

NMR

• solution

VS

• ensemble of 20-50 structures that equally fit experimental data

Limitations of NMR

- small proteins (20-30 kD max, although this is changing)
- must be soluble and nonaggregating at 1-3 mM conc
- lots of protein needed

Advantages of NMR

- don't need crystal
- observe protein in solution
- more than a method for determining structure

dynamics ligand binding (drug/protein/DNA/etc) protein folding conformational change chemistry, chemical reactions, protonation states......

TROSY

Turgarinov et al, JACS 2002

Same info as ¹⁵N HSQC

Methyl-group labeling

Methyl-TROSY

doi:10.1038/nature05512

nature

ARTICLES

Quantitative dynamics and binding studies of the 20S proteasome by NMR

Remco Sprangers¹ & Lewis E. Kay¹

ILV METHYL ASSIGNMENTS OF 670 KDA COMPLEX

11S ACTIVATOR BINDING

11S BINDING CURVES

Applications for NMR

- Mapping protein interactions
- Fragment based drug discovery, SAR-by-NMR
- Structure of macromolecules (\leq 40KDa is practical limit)
- TROSY , deuteration and ILV labeling for large systems
- Protein folding
- Protein dynamics