Integrative biophysics for drug discovery

Aashish Manglik Aashish.Manglik@ucsf.edu

Outline

- Drug discovery finding needles in haystacks
- Hitchhiker's guide to chemical space
- Theory of fragment-based drug discovery
- Integrative biophysics enabling drug discovery

Drug discovery

Nwaka S and Ridley RG *Nature Reviews Drug Discovery* 2, 919-928 (2003)

Drug discovery

Outline

- Drug discovery finding needles in haystacks
- Hitchhiker's guide to chemical space
- Theory of fragment-based drug discovery
- Integrative biophysics enabling drug discovery

Chemical space

Bohacek RS et al Molecular Research Reviews 1,3-50 (1996)

Chemical space is Y(h)uge!

Mullard A Nature 549,445 (2017)

Chemical space is Y(h)uge!

Needles in enormous haystacks

Finding that rare needle...

High throughput screening

Candidate

Lead

Hit

Library 30 heavy atoms ~10⁶-10⁸

STAUBLI

High throughput screening

Outline

- Drug discovery finding needles in haystacks
- Hitchhiker's guide to chemical space
- Theory of fragment-based drug discovery
- Integrative biophysics enabling drug discovery

Fragment based drug discovery

Fragment based drug discovery

HTS vs Fragment based

	High-throughput screening	Fragment-based
Library size	1,000,000 - 10,000,000	<10,000
Molecular weight	>300 kDa	<300 kDa
Screening	More flexible	Well characterized targets
Affinities	μM	mM
Optimization	Fixing problems, improving affinity	Iterative improvement
Main downside	Attrition, can't solve "challenging" targets	Biophysical methods are hard!

Fragment based drug discovery

Library 15 heavy atoms ~10⁵

> Evaluate WEAK binding

> > Rationally optimize

Assessing drug-target interaction

High resolution X-ray (or Cryo-EM) structure

Renaud JP et al. Nature Reviews Drug Discovery 15,679-698 (2016)

Assessing drug-target interaction

Renaud JP et al. Nature Reviews Drug Discovery 15,679-698 (2016)

Assessing drug-target interaction

Fragment based drug discovery

Library 15 heavy atoms ~10⁵

> Evaluate WEAK binding

> > Rationally optimize

Increasing fragment potency

Rees DC et al Nature Reviews Drug Discovery 3, 660-672 (2004).

Thermodynamics of binding

$\Delta G = \Delta H - T\Delta S$

Fragments primarily exploit enthalpy

Outline

- Drug discovery finding needles in haystacks
- Hitchhiker's guide to chemical space
- Theory of fragment-based drug discovery
- Integrative biophysics enabling drug discovery

Discovery of vemurafenib

Bollag G et al. Nature Reviews Drug Discovery 11, 873-886 (2012)

Vemurafenib (<u>V</u>600<u>E</u> <u>mu</u>tated B-<u>raf</u> <u>inhib</u>itor)

Vemurafenib (<u>V</u>600<u>E</u> <u>mu</u>tated B-<u>raf</u> inhibitor)

Compound 1

- IC₅₀ in mM range
- Low affinity: ~200 μM
- Low specificity
- Crystallized with PIM1

Bollag G et al. Nature Reviews Drug Discovery 11, 873-886 (2012)

Vemurafenib (<u>V</u>600<u>E</u> <u>mu</u>tated B-<u>raf</u> inhib</u>itor)

Bollag G et al. Nature Reviews Drug Discovery 11, 873-886 (2012)

Vemurafenib (<u>V</u>600<u>E</u> <u>mu</u>tated B-<u>raf</u> inhibitor)

Bollag G et al. Nature Reviews Drug Discovery 11, 873-886 (2012)

And it works!

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

N ENGL J MED 364;26 NEJM.ORG JUNE 30, 2011

Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation

Vemurafenib improves overall survival

But nothing is ever easy...

After ipilimumab, dacarbazine, carboplatin/paclitaxel/ interferon/IL2

+ 15 weeks of vemurafenib

+ 23 weeks of vemurafenib

But nothing is ever easy...

Vol 464 18 March 2010 doi:10.1038/nature08902

nature

RAF inhibitors transactivate **RAF** dimers and **ERK** signalling in cells with wild-type **BRAF**

Poulikos I. Poulikakos¹, Chao Zhang², Gideon Bollag³, Kevan M. Shokat² & Neal Rosen¹

=> ~30% squamous cell-carcinomas

But nothing is ever easy...

But what about "challenging" targets?

Discovery of venetoclax

Nature Reviews | Molecular Cell Biology

BCL-xl is a classic "challenging" target

Nature Reviews | Molecular Cell Biology

"SAR by NMR"

BCL-X_L protein alone

+ Fragment 1 F→C→C

+ Fragment 2

Outline

- Drug discovery finding needles in haystacks
- Hitchhiker's guide to chemical space
- Theory of fragment-based drug discovery
- Integrative biophysics enabling drug discovery

Integrative biophyiscs in drug discovery

Questions?

Aashish.Manglik@ucsf.edu