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A multi-crystal method for extracting obscured
crystallographic states from conventionally
uninterpretable electron density
Nicholas M. Pearce1, Tobias Krojer1, Anthony R. Bradley1, Patrick Collins2, Radosław P. Nowak1, Romain Talon1,

Brian D. Marsden1,3, Sebastian Kelm4, Jiye Shi4, Charlotte M. Deane5 & Frank von Delft1,2,6

In macromolecular crystallography, the rigorous detection of changed states (for example,

ligand binding) is difficult unless signal is strong. Ambiguous (‘weak’ or ‘noisy’) density is

experimentally common, since molecular states are generally only fractionally present in the

crystal. Existing methodologies focus on generating maximally accurate maps whereby minor

states become discernible; in practice, such map interpretation is disappointingly subjective,

time-consuming and methodologically unsound. Here we report the PanDDA method, which

automatically reveals clear electron density for the changed state—even from inaccurate

maps—by subtracting a proportion of the confounding ‘ground state’; changed states are

objectively identified from statistical analysis of density distributions. The method is

completely general, implying new best practice for all changed-state studies, including the

routine collection of multiple ground-state crystals. More generally, these results

demonstrate: the incompleteness of atomic models; that single data sets contain insufficient

information to model them fully; and that accuracy requires further map-deconvolution

approaches.
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B
esides its use for resolving the overall three-dimensional
(3D) structure of bio-molecules, macromolecular X-ray
crystallography (MX) is deployed extensively to observe

small changes to known structures, especially compound binding
in ligand-discovery and -development projects. Arriving at the
final model once initial electron density estimates are available
(after ‘phasing’), relies on a long-established and rarely
questioned paradigm: cycling between building atoms into the
current density estimate and computationally optimizing the
model against the measured data (‘refinement’). The latter
improves the calculated phases and yields more detailed density
that should reveal additional model omissions and errors;
the process is assumed to converge on a model that fully
describes the crystal’s content.

In practice, convergence is never convincingly achieved. Much
density both strong and weak invariably remains unexplained
(‘noisy’), hence the aphorism that ‘refinement [y] is never
finished, only abandoned’1, and hence too the ‘R-factor gap’2,
which has obdurately resisted all methodology advances. More
recent work has shown that conventional single-conformation
models are too simplistic to describe the crystal3–5; and that
electron density features far weaker than the conventional cut-off
reflect model deficiencies rather than measurement error6,7.

Evidently then, near convergence, conventionally calculated
(sigmaA-weighted8) density derived from a single data set is
necessary but insufficient to complete the model, as it shows
a superposition of states that is currently impossible to
de-convolute algorithmically. Nearly complete models with
discrete yet uninterpretable superpositions are common in
systematic studies of perturbations involving few atoms, such as
ligand binding, photochemical changes or radiation damage.
Since even strong biophysical effects are contingent on crystal
packing or integrity, only a subset of the crystal may transition
away from the ground state, even after extensive optimization of
the experiment. Finally, all current modelling approaches
ultimately rely on shape matching, and density superpositions
are susceptible to interpretation errors and bias9–11 (such as the
problem of the ‘Ligand of Desire’9).

Existing methods to auto-generate multi-conformer models4,5

are not relevant when changes are chemical, and moreover have
had little take-up, presumably because neither is explicit
modelling involved nor have robust validation criteria emerged
to allay long-cultivated fears of over-fitting12. Approaches from
time-resolved crystallography13 apply only to specialized
experiments.

In this work, we show that unencumbered views of the
changed, non-ground state can be obtained by recasting the
problem as a multi-data set, 3D background-correction problem
(Fig. 1), which allows the relevant signal to be extracted from
conventional single-data set density. An accurate estimate of the
background can be obtained by averaging near-convergence
density, in real space and after local alignment, from dozens
(430) of independently measured but approximately identical
ground-state crystals. Subtraction of a suitable fraction of this
background estimate from the near-convergence density of a data
set containing a putative changed state, yields a residual partial-
difference map that we call an event map, which is in general fully
interpretable:

eventmap½ �¼ datasetmap½ � � BDC� ground statemap½ �: ð1Þ

Identifying the optimal Background Density Correction factor
(BDC) is essential for extracting the best signal, as illustrated
schematically in Fig. 2, which also illustrates the problems
with using conventional maps for the identification of minor
crystallographic states.

Results
The PanDDA algorithm. Our new method—Pan-Dataset
Density Analysis (PanDDA)—comprises: the characterization of
a set of related crystallographic data sets of the same crystal form;
the identification of (binding) events; and the subtraction of
ground state density to reveal clear density for events.

The method builds on the principle of isomorphous difference
(Fo–Fo) maps14, but analyses many maps simultaneously by first
locally aligning maps in real space to bypass the requirement of
strict isomorphism, and then directly comparing the best estimate
of true electron density, namely sigmaA-weighted (2mFo–DFc)
maps from late-stage refinement, which ensures that maps are
correctly scaled.

Using multiple maps allows a Z-score measure to be calculated
at each point in every data set, that reflects how significantly the
data set deviates from the ensemble of data sets at that point in
space. Z-scores are assembled into spatial Z-maps, and clusters of
large Z-scores are an objective and statistically meaningful
measure for potentially interesting crystallographic signal—
events—such as a binding ligand. Using Z-maps addresses the
common pitfall of over-interpreting density that is in fact ground
state density, since in such cases, Z-scores will be small. Equally
importantly, Z-maps also make it possible to identify weak
changed states (for example, low-occupancy ligands) that do not
yield strong difference (mFo–DFc) density.

Finally, the precise localization of each change enables reliable
background subtraction at that site, where the optimal BDC is
estimated as the value for which the ground state-subtracted map
is locally least correlated to the ground-state map, relative to
a normalizing global correlation across the unit cell (see Methods
section). Using an averaged ground-state map for subtraction, as
opposed to a single ground-state map, reduces experimental noise
in the ground-state estimate and thereby also in the event map.
Furthermore, averaging over multiple data sets minimizes the
influence of stochastic variation between the data sets15

(characterized and discussed in Supplementary Methods).
Finally, the averaging generates an estimate of the ground state
that can be used directly as density, bypassing the need for any
subjective modelling and map interpretation. The BDC is
determined algorithmically and objectively, and results in event
map density approximating only the changed configuration of the
site, including protein backbone and side-chain conformations
induced by the change.

Application to crystallographic fragment screening data. We
demonstrate the power of the method by applying it to the most
demanding type of changed-state study, namely crystallographic
fragment screening16,17, which attempts to observe in electron
density the rare and often low occupancy binding events that
occur when a relatively large (200–1,000) library of weak-binding
‘fragment’ compounds (150–300Da, 100 mM–10mM)18,19 are
added individually or as cocktails to a series of equivalent crystals.
Conventionally, the analysis is challenging as it involves
inspecting a lot of 3D space—the whole unit cell in each data
set—for convincing evidence of bound fragments (‘hits’). In
contrast, PanDDA directly eliminates the thousands of strong
electron density blobs with no statistical significance, objectively
identifying only regions that are unique to each data set; the
ground-state data sets are provided by the many hit-free crystals.

Applied to a series of fragment screens (Table 1), PanDDA
yielded markedly more hits than manual inspection of density, far
more quickly and all with high confidence (Figs 3 and 4;
Supplementary Figs 1–6), in both known binding sites and new
allosteric sites (Fig. 4d). Several fragments induced significant
reordering of sections of the protein that could only be modelled
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Figure 1 | Schematic of how outlier identification and background subtraction reveals changed-state density. (a) Analysis of the aligned electron

density distribution for the same voxel (yellow dots) identifies data sets which differ from the ensemble—outliers—such as those containing a bound ligand

or other ‘changed state’, for example the changed state in c. (b) Averaging over multiple ‘ground-state’ data sets further provides an accurate estimate of

the ground-state density, leading to d. With pixel intensity representing electron density strength, (c) shows an identified location, at which the density

is a superposition of changed-state (20%) and ground-state (80%) densities; the changed state is obscured by the superposed ground state. (d) shows

only the ground-state density, adjusted by applying a weighting (BDC¼0.8). (e) The density that remains after subtracting the background yields an

estimate of the changed state which is in general fully interpretable.
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Figure 2 | Minor conformations are obscured in conventional maps but are revealed by background correction. 1D simulations are used to illustrate

3D electron density. (a) The actual crystal contains 80% major (black) and 20% minor (orange) states, which are largely dissimilar (correlation: 0.42).

(b) Conventional (2mFo–DFc) maps (blue) show only the superposition, which resembles the major far more than the interesting minor state (correlations:

0.98 and 0.59; in practice, the scale is arbitrary). Isomorphous difference (Fo–Fo) maps (green) show the subtraction of the full-occupancy major state from

the observed data set, and do not resemble the minor state either, except where the major state has low density (right side). (c) ‘Event maps’ (scaled for

comparison), generated as in equation (1) for different values of BDC, reveal the minor state optimally for only one value of BDC (0.8, indicated in red).

BDC¼0.0 corresponds to the observed density, and BDC¼ 1.0 to a Fo–Fo map.

Table 1 | Hit rates from fragment screens before and after use of PanDDA.

Protein JMJD2D BAZ2B SP100 BRD1

Data sets 226 200 116 292
Resolution range (Å) 1.1–2.6 1.5–2.5 1.3–2.7 1.5–3.6
Identified hits (Human/PanDDA) 2/24 3/9 0/2 29/40
Identified hit rate (%) (Human/PanDDA) 0.9/10.6 1.5/4.5 0/1.7 9.9/13.7
Identified sites (Human/PanDDA) 1/5 1/1 0/1 1/2

PanDDA, Pan-Data set Density Analysis.
All fragment screens consisted of a single soaked compound per data set. An identified site comprises more than two binding ligands that are not heavily interacting with crystal contacts. Number of hits
was determined as number of data sets containing a bound ligand. Hit rate was calculated as percentage of data sets containing bound ligands.
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with PanDDA event maps (Fig. 4a–c, Supplementary Fig. 1a–c),
whilst also enabling the identification of mislabelled ligands and the
discovery of experimental errors (Supplementary Figs 1d–f and
3d–f). Models erroneously built into misleading conventional
density could be discarded with statistical confidence, and the
binding of chemically elaborated hit compounds could be analysed
more reliably. Full experimental details and complete descriptions
are provided in Supplementary Note 1. The method also effectively
disambiguates density in conventional ligand-binding studies with
ligands co-crystallized and a sub-optimal number of ground-state
data sets (Supplementary Note 2).

Strikingly, detection of weak binding events is simple even
when phases are far from convergence (Fig. 5).

Model validation. Model validation is a long-established bedrock
of crystallographic analysis12, and crucially requires a model
that is numerically stable in refinement. As ligands—but
especially fragments—invariably bind at sub-unitary occupancy,
we generate an atomic ensemble model that reflects the
crystal content implied by the density correction: the changed
state modelled from event maps is combined with the ground-
state model, with initial occupancy of the changed state set to
2*(1-BDC) (discussed in Supplementary Methods). Incorporation
of the ground state into the model enforces our Bayesian
prior knowledge of the crystal, that the ligand is most likely not
bound to all copies of the protein in the crystal, and
a superposition of the two states is thus the most likely
situation. These ensemble models are indeed well-behaved in
refinement, provided the ground state can be easily represented
by an atomic model.

After refinement, some ligands built into strong event
density would be considered invalid by comparison of the
model and the refined density (Supplementary Fig. 7), or the
subjective but best-practice criterion9 of visual assessment
of agreement between model and conventional OMIT maps.
As this is counterintuitive, given the clarity of the event maps,
we instead formulated the following strong objective validation
principles:

1. The changed-state partial model must conform to calculable
numerical criteria (Table 2). We adopt established require-
ments: a strong correlation between the model and the
observed density (real-space correlation coefficient,
RSCC40.7) and that ligand B-factors must be comparable
to those of surrounding residues. We also apply a new metric,
that modelling and refinement should result in negligible
difference density around the site (real-space Z-difference
score, RSZDo3)20, and further require that the model must
not move under refinement (low heavy-atom root-mean-
squared deviation before versus after). These metrics are fully
defined in Methods and shown for all models in
Supplementary Tables 1–4.

2. The ground state partial model is considered an immutable
component of the crystal, with a status similar to common
restraints (for example, geometry or non-crystallographic
symmetry), as in general there is not enough diffraction
information to propose otherwise. Thus, the ground state
model needs to be fully complete before incorporation into the
ensemble, and during further cycles of model building, it may
not be altered, as it is a strong Bayesian prior. To stabilize
refinement, it may need to be strongly restrained to the

Standard maps,
standard contour (1�)

Standard maps,
low contour (0.5�) PanDDA maps

a b c

Figure 3 | PanDDA maps clearly show detail obscured by conventional maps. JMJD2D fragment screening data set x401 at 1.48Å. (a,b) Conventional

maps (2mFo–DFc, blue, contour as indicated; mFo–DFc, green/red, ±3s) are dominated by the NOG co-factor analogue bound in the majority fraction of

the crystal, whereas (c) the event map (blue, 2s, BDC¼0.9) and the Z-map (green/red, ±4) unambiguously reveal both ligand and associated changes in

protein conformations.

a b c d

Standard maps,
standard contour

PanDDA maps
Bound and unbound

conformations
Binding fragments

for JMJD2D

Figure 4 | PanDDA maps reveal complex minor conformations and identify allosteric binders. In JMJD2D data set x402, at 1.45Å, (a) conventional

maps (contoured as in Fig. 3a) show a complex superposition of bound and unbound states that make it impossible to identify the bound state (the known

unbound state is shown). (b) However, in PanDDA maps (contoured as in Fig. 3c, BDC¼0.8) the bound conformation can be modelled easily (as shown).

(c) Final models for the unbound (yellow) and bound (magenta) conformations highlight the large conformational change. (d) Fragments are detected to

bind all over the surface of JMJD2D, revealing potential allosteric sites, including the peptide-binding groove (site A) and the large helix reordering (site B).
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original ground state model (by external restraints using, for
example, PROSMART21).

3. The primary event density must always be available when
disseminating such models. All crystallographic data used for
the PanDDA analysis must also be made available so that the
analysis may be reproduced.

The group deposition feature recently added by the PDB22

makes it realistic to deposit all the many changed- and
ground-state structures, as well as event maps (see Data
Availability). On the other hand, standard mechanisms for
presenting the validation evidence described above are yet to be
finalized. Refinement programs do not yet support some external
restraints that we predict will be important for numerical stability
at low resolution or for very low occupancy at high resolution,
in particular restraining relative B-factors to stabilize occupancy
refinement; this is the subject of future work.

In general, only the changed state will be of primary scientific
interest in the refined model, with the ground state essentially an
experimental artefact. Unlike the artefacts inherent in any crystal
structure, here they are explicitly declared and need not be
inferred by further analysis. Structure repositories, whether public
(PDB) or internal, would ideally support this by removing the
ground state for normal use; this is only possible when states are
logically labelled, as discussed in Methods.

Discussion
The PanDDA algorithm fundamentally revises current methods
through a more correct treatment of the crystallographic data, not
only yielding dramatically improved signal-to-noise, but also
providing rigorous measures of confidence in identified signal.
This allows far more subtle changes to be modelled, whose
importance will be experiment- and context-dependent: in ligand
development, evidence of weak binding is now known to be
productive for optimizing binding potency23. More generally,
occupancy is subject to diffusion- and other solid-state effects
inherent to the crystalline state, and will be an imperfect proxy for
the scientific import of a change of interest. What matters most is
that any changed state can be viewed as objectively and modelled as
accurately as possible, which is what the PanDDA approach allows.

We thus propose a new standard practice for ligand binding
and other changed-state studies, namely the collection of a series
of ground state data sets before proceeding with the putative
changed-state data sets, to provide the contrast necessary to
identify the changes of interest.

Retrospective analysis indicates thatB30 data sets are required
for full convergence of the statistical model (Supplementary
Methods), an experiment that can be completed within hours at
modern synchrotron beamlines with fast pixel detectors24 and
sample automation25, and that needs to be performed only once
per crystal form. To address such an experiment’s other
bottleneck, the logistics of analysing large numbers of data sets,
the PanDDA implementation includes graphical tools and
various command-line options.

This number of data sets is required for identification of subtle
changes from the ground state to be sensitive and robust, by
ensuring that the Z-map represents a true statistical measure of
changed-state signal. However, the background correction
itself still works when fewer than 30 data sets are available
(Supplementary Note 2), the trade-off being potentially reduced
quality of the event maps. Future work will address whether
the number of required data sets can be identified a priori for
a given crystal system.

The PanDDA method is applicable and effective at any
resolution, though at lower resolutions, as maps become less
precise, higher occupancies of changed states will in general be
required for them to be detected by Z-score. What matters most is
the consistency of ground-state data sets so that they can be
represented well by an average; therefore, in regions of crystals
that vary considerably, such as crystal contacts, statistical
confidence is reduced similarly to low resolutions.

As the algorithm currently uses a contrast-maximization
approach to estimate BDC, event map density for changes
appears somewhat stronger than density for unchanged atoms
(typically, surrounding protein). In practice, this is not proble-
matic, as the density for the changed states is generally clear, and
unchanged conformations do not require modelling anyway.
Establishing a BDC procedure that evens out this difference will
require accounting for phase bias in the event maps, but falls
outside the scope of this work.

Table 2 | Acceptable values of ligand validation scores.

Metric ‘Good’ range

RSCC 40.7
RSZD o3
B-factor ratio B1
RMSD o1

RMSD, Coordinate root-mean-squared deviation; RSCC, real-space correlation coefficient;
RSZD, real-space Z-difference score. Scores are defined as in the Methods section.

Standard maps
best phases

Standard maps
degraded phases

PanDDA maps
best phases

PanDDA Maps
degraded phases

a b c d

Figure 5 | Weak ligand identification remains straightforward when phases are degraded. BAZ2B data sets were re-analysed using a deliberately

sabotaged reference model, introducing a B30� phase error and increasing Rwork and Rfree by B12% for all dimple-refined data sets. Shown here is the

weak hit (refined occupancy: 0.64) in data set x492, contoured for different maps as labelled: (a,b) 1.78Å 2mFo–DFc (blue, 1s) and mFo–DFc (green/red,
±3s). (c,d) 1.79Å event (blue, 2s) and Z-maps (green/red, ±3). Rwork/Rfree are 0.18/0.21 and 0.30/0.32 for best and degraded phases, respectively.

BDCs for best and degraded phases are 0.77 and 0.73, respectively. Whereas with standard maps, degraded phases remove all evidence of an unmodelled

change, in PanDDA maps, ligand identification is no more difficult, even if the quality of the density is predictably reduced.
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In principle, the PanDDA approach will allow comparisons
between different crystal forms of the same protein. However,
since functionally important conformational changes are not only
common in such cases but by their nature affect the functionally
interesting regions, algorithmic treatment of the local alignment
is complex and the topic of future work.

Our results upend a long-held tenet in macromolecular
crystallographic model building, that to visualize subtle features
requires optimal phase estimates and thus a model as complete
and globally error-free as possible26. Conscientiously observed,
this places a heavy time burden on the analysing scientist as
it demands multiple iterations of modelling for each data set.
The PanDDA approach makes this both practically and
theoretically unnecessary: a single local modelling step fully
validates an interpretation, even when the model retains minor
problems elsewhere.

More generally, we submit that a qualitative shift in approaches
to generating crystallographic models is now due. PanDDA
addresses one class of experiments, those involving induced local
changes, but all problems of uninterpretable density, and indeed
some of the R-factor gap2, should be addressable by analogous
map deconvolution methods. Multi-data set experiments are no
longer difficult; nevertheless, existing tools for treating them focus
on pursuing a single, representative data set through averaging27.
Instead, what now appears key is to establish methods for
targeted perturbations of poorly ordered regions, along with
rigorous algorithms for reconstructing and visualizing discrete
states, and for subsequent model validation.

Methods
The PanDDA algorithm is schematically outlined in Supplementary Fig. 9
(Supplementary Methods).

Data set preparation. The input to PanDDA is a series of refined crystallographic
data sets, each consisting of a refined structure and associated diffraction data,
including 2mFo–DFc structure factors. These can come from any refinement
program, as long as all data sets are refined using the same initial atomic model and
the same protocol. All models of the protein must be identical, up to the
numbering and labelling of atoms. All data sets used in this paper were
prepared using the Dimple pipeline (part of CCP4 (ref. 28)), from reference
models including solvent molecules; there is no requirement to remove solvent
atoms from known binding sites.

Structure and map alignment. To allow map voxels to be compared between
crystals that are not exactly isomorphous, maps are aligned using the refined
models as reference points.

The input protein structures are aligned using a flexible alignment algorithm
(Supplementary Methods). Sections of the protein are aligned separately, to give
alignment matrices for that section. The alignments generated from the structures
are stored and are used to transform and thereby align the electron density maps.

Handling variations of map resolutions. To allow map voxels to be compared
between crystals, maps have to be calculated at the same level of detail, even though
crystals can diffract to a wide range of resolutions. For analysing a specific data set,
its full resolution is used; but for contributing to the analysis of a different data set,
higher resolution data sets are truncated to the resolution of the target data set,
while lower resolution data sets are ignored. Therefore, we analyse the collection of
data sets at a number of resolutions, and high resolution data sets are used multiple
times for characterization at lower resolutions, but will only be analysed once, at
their highest possible resolution. Maps are recalculated using truncated diffraction
data at each different resolution limit. Thus, if processing in resolution bins of 1.0,
1.5, 2, and 2.5 Å, a 1.2 Å data set would be analysed at 1.5 Å, but also be used to
build distributions at 2Å and 2.5 Å.

Fourier terms omitted in a given map, as happens when reflections are
unobserved and then effectively set to zero, lead to systematic changes in electron
density throughout the unit cell that strongly affect the outlier analysis; strong
low-resolution terms are particularly problematic. Therefore, reflections in all data
sets are truncated to the set of miller indices common to all data sets; and for map
calculation, all missing Fourier terms are estimated as DFc, which refinement
programs perform automatically as long as the indices are correctly included in the
reflection files.

Truncated 2mFo–DFc structure factors are Fourier-transformed to generate
maps. These maps are aligned using the alignment transformations from the
flexible alignment.

Statistical model. Once maps for a particular resolution have been aligned,
a statistical model is parameterized using the electron density of the ground-state
data sets. The aligned maps are placed on an isotropic Cartesian grid, and the
electron density is sampled at each grid point of each data set. The model treats the
observed value of the electron density in data set i, at grid point m, as being
sampled from a distribution

robservedi;m ¼rtruem þ ei; ð2Þ

where rtruem models the natural variation in the electron density at point m,
independent of data set, and ei represents the experimental uncertainty in the
electron density in data set i. The variability of the rtruem term accounts for the fact
that the crystals are not identical, and that small local fluctuations may exist
between the crystals. These areas are most likely to be in the crystal contacts,
or flexible areas of the protein. rtruem represents the ‘true’ (unmeasurable) electron
density for this crystal form, of which each crystal (and associated data set) is
a sample.

The simplest model is to assume that both the uncertainty in electron density
values as well as variation in electron density at a point arising from differences
between the crystals, can be modelled by a normal distribution. Therefore, if

rtruem �N mm; s
2
m

� �
; and ei¼N 0;s2i

� �
; ð3Þ

then

robservedi;m �N mm;s
2
i þ s2m

� �
; ð4Þ

where mm is the mean value of the electron density at point m, sm is the variance of
the ‘true’ electron density at point m, and si is the uncertainty in data set i. Under
this model, the parameters mm are estimated by taking the un-weighted average of
all of the ground state densities.

The mean ground state map is used to estimate the data set uncertainty, si, for
all data sets as follows. Subtracting the mean map from each data set map we
obtain a mean difference map. By assuming that the experimental and model
uncertainty in the electron density map are the major contributors to deviations
from the mean map, the histogram of the mean-difference map values is used to
estimate the total uncertainty of the data set. Calculating the quantiles of a
theoretical normal distribution N 0; 1ð Þ and plotting them against the quantiles
from the mean-difference map, yields a Q-Q plot where the slope of the central
portion of the map (between the ±1.5 theoretical quantiles) gives an estimate
of the uncertainty of the data set (Supplementary Fig. 11a). This is equivalent
to the method used in Tickle (2012) for calculating the uncertainty of an
electron density map20.

To estimate sm, a maximum likelihood method is applied on our model in (4),
using the observed values robservedi;m , as well as estimates for si and mm for the
ground-state data sets (Supplementary Methods). An example comparison of the
‘raw’ standard deviations of the grid points (simple s.d. of electron density values,
not accounting for observation error) and the ‘adjusted’ values is shown in
Supplementary Fig. 12. This adjustment results in the majority of points having no
variation that is not accounted for by the data set uncertainties; the remaining
points have non-negligible variation, with non-zero sm, and these indicate naturally
variable regions.

Calculation of Z-maps. The parameterized statistical model allows the identifi-
cation of areas of individual data set maps that deviate significantly from the mean
map: ‘events’. Z-scores are calculated by

Zi;m¼
robservedi;m �mmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2i þ s2m
p ; ð5Þ

where large Z-scores indicate significant deviations from the mean map. The
distributions of Z-scores for a particular data set have improved normality com-
pared to the simple differences from the mean (Supplementary Fig. 11b), as
expected.

Regions of individual data sets are identified as significant by contouring
Z-maps at Z¼ 2.5, and filtering remaining blobs by a minimum peak value of
Z¼ 3 and a minimum volume of 10Å3 (volume of a water molecule is B30Å3).
Neighbouring blobs are grouped together if the minimum distance between them is
o5Å. These parameters were identified on the BAZ2B data set, and found
appropriate in subsequent studies and are therefore the current program defaults.

Calculation of event maps. For identified events, the background density
correction (BDC) factor is estimated as follows. Different fractions of the mean
map are subtracted from the data set map, and the correlation between the
resulting map and the mean map is calculated both globally and for the area
around the event, defined by the blob identified in the Z-map expanded by 1Å.

Globally, the data set map looks similar to the mean map, so plotting the global
correlation against the subtracted fraction yields a signal-to-noise curve, dropping
off at a speed related to the noise in the data set (green dashed line, Supplementary
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Fig. 15). Locally to the identified site, however, the data set map is a superposition
between something similar to the mean map and something that is unrelated
(for example, density of bound ligand). As more of the mean map is subtracted, the
local correlation between the mean map and the resulting map (black dashed line,
Supplementary Fig. 15) will decrease faster than the global correlation. Subtracting
the local correlation curve from the global correlation curve, BDC is estimated
where the difference between these two correlation curves is maximized (blue solid
line, Supplementary Fig. 15). The final event map is calculated as in equation (1).

Model building and refinement. Interesting sites are identified by Z-maps and
modelling is performed using a combination of Z-maps and event maps, similarly
to the way that mFo–DFc maps may be used to guide the modelling of 2mFo–DFc
maps. Modelling takes place in the aligned reference frame, as defined in
Supplementary Methods.

After modelling of the changed state, the new conformations of the protein are
merged with the ground state model. Atoms in the ground state that are not
present or have moved in the changed state are assigned to a previously unused
conformer (for example, C). Similarly, atoms in the changed state model that are
not present in the ground state, or have moved, are assigned another unused
conformer (for example, D). Atoms that are not changed between the two states
remain unaltered. The resulting ensemble models are then back-transformed, using
the flexible alignments, to the original crystallographic frame for refinement.

The models in Table 1 have then been refined as an ensemble using
phenix.refine29,30, under conventional resolution-dependant refinement protocols,
with constrained occupancy groups corresponding to the bound and unbound
structures to ensure that the occupancies of the bound and unbound states sum
to unity.

Because of the methodical way in which the ensembles are generated, the
changed state model can be extracted simply by removing the atoms corresponding
to the changed ground state atoms (that is, conformer C in the above example).

Validation. The atomic model of the changed state is validated by four quality
metrics (Table 2). Two are electron density scores, generated by EDSTATS20: real-
space correlation coefficient (RSCC) reflects the fit of the atoms to the experimental
density, and should typically be greater than 0.7; while real-space Z-difference score
(RSZD) measures the amount of difference density that is found around these
atoms, and should be below 3. The B-factor ratio measures the consistency of the
model with surrounding protein, and is calculated from the B-factors of the
changed atoms and all side-chain atoms within 4 Å, respectively. Large values (43)
reflect poor evidence for the model, and intermediate values (1.5þ ) indicate errors
in refinement or modelling; for weakly-binding ligands, systematically large ratios
may be justifiable. Coordinate root-mean-squared deviation (RMSD) compares the
positions of all atoms built into event density, with their positions after final
refinement, and should be below 1Å.

Implementation. PanDDA is implemented in Python and relies heavily on the
CCTBX31. It has been tested extensively for robustness and usability by users of
Diamond’s XChem fragment screening facility. Source code is available on
bitbucket (https://bitbucket.org/pandda/pandda) or as part of CCP4 (ref. 28).
A manual and tutorial are available at https://pandda.bitbucket.io. Processing
200–500 data sets on a 3.7 GHz Quad-Core Intel Xeon with 32GB of RAM
takesB3–10þ hours depending on resolution binning and size of crystallographic
unit cell.

Data availability. Models were built and refined for those ligands that could be
uniquely identified in the event maps, except for those that interact extensively with
the crystal contacts and are therefore unlikely to be biologically relevant. Modelled
data sets (those in Table 1) and unmodelled data sets have been deposited in the
PDB using the new group deposition system (PDB codes for each data set are
stated in Supplementary Table 5); structure factors for event maps are included
within each mmCIF file downloadable from the PDB. PDB group deposition IDs
for the ligand-bound structures are G_1002018 (BAZ2B), G_1002020 (JMJD2D),
G_1002022 (BRD1), and G_1002024 (SP100); group IDs for the automatically
refined structures are G_1002019 (BAZ2B), G_1002021 (JMJD2D), G_1002023
(BRD1), and G_1002025 (SP100). However, since navigation of this large numbers
of structures and event maps remains an obstacle to interpretation, interactive
summary pages32–35 for each fragment screen have been uploaded to Zenodo
(https://zenodo.org); zip files of all of the crystallographic data have also been
uploaded36–39 (Supplementary Table 5). All other data are available from the
corresponding author upon reasonable request.
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