
Fourier transforms in 
digital signal processing



Real space: numbers at points in time or space



How fast is the signal decaying?
How fast is the signal oscillating?
How many oscillators make up the signal? 

Where are the particles located?
What is the shape of the particles?
Is this image blurred and distorted?

How does this image relate to the structure?

Real space is an intuitive representation of data 

...but some questions are harder to pose



Main ideas of today’s lecture

(1) There many ways of representing numerical data

(2) Fourier space is an alternative representation 
based on waves of different frequency

(3) Many find Fourier space initially unintuitive

(4) Many hard problems become easier to understand 
and solve in Fourier space 



Linear combinations 

Most functions can be represented as weighted sums of other functions.

Some function of 
the variable x Basis functions:

a set of functions that can be combined 
to form other functions. 

A.k.a. components, dimensions



Linear combinations 

Most functions can be represented as weighted sums of other functions.

Some function of 
the variable x Basis functions:

a set of functions that can be combined 
to form other functions. 

A.k.a. components, dimensionsCoefficients: how much Fi(x) is in S(x)?
A.k.a. weights or coordinates



Reminder of dot product and inner product

Example:
x = [ 1 4 1 ]
y = [ 7 2 6 ]

dot_product(x,y) = 1*7 + 4*2 + 1*6 = 21



Orthonormal linear basis functions
Orthonormality conditions
Dot product of F1 and F2 in a basis is always zero.
Dot product of F1 and F1 is always one’
ex. x=[1 0 0], y=[0 1 0], and z=[0 0 1]

dot_product(x,y) = 1*0 + 0*1 + 0*0 = 0
dot_product(x,z) = 1*0 + 0*0 + 0*1 = 0
dot_product(y,z) = 0*0 + 1*0 + 0*1 = 0
dot_product(x,x) = 1*1 + 0*0 + 0*0 = 1

If basis vectors are mutually orthonormal, we can determine 
the coefficients for a function S simply by taking the dot 
product of the function and the basis functions:

ex. S = [3 2 6]
wx = dot_product(S,x) = 3*1 + 2*0 + 6*0 = 3
wy = dot_product(S,y) = 3*0 + 2*1 + 6*0 = 2
wz = dot_product(S,z) = 3*0 + 2*0 + 6*1 = 6
S = wx*x + wy*y + wz*z = [3 0 0] + [0 2 0] + [0 0 6] = [3 2 6]

Geometric interpretation:
dot_product(x,y) = 0 means
arccos(x,y) = pi / 2 = 90o 
“a right angle between x and y”



The linear orthogonal basis for Fourier space: 
Waves with different frequencies

x

S(x)

Square wave function



The linear orthogonal basis for Fourier space: 
Waves with different frequencies

coefficients

basis functions: Wave 
frequency

Wave phase 
(offset)

x

S(x)

Square wave function



Properties of waves
Waves are represented with sine and cosine functions over time or space.

Wave 
frequency

Multiplying the argument of 
the sine function changes 
the frequency of the wave



Properties of waves

Sine waves can have different phases

Wave phase 
(offset)

ϕ
Adding to the argument of the 
sine function adds an offset 

to the wave called the ‘phase’



Properties of waves

Sines and cosines are related 
by a 90o (π/2) phase shift

Phase shifts are less than 2π



Properties of waves

Sine waves can have different amplitudes: 
these will be coefficients of our combination linear combinations

Wave amplitude 
(scale)



Properties of waves

Polar coordinates
‘Amplitude - phase’ coordinates

Rectangular coordinates
‘Sine - cosine’ coordinates

M*cos(x + θ) A*cos(x) + B*sin(x)

Convenient identities
M = (A2 + B2)½

θ = arctan(B/A)
A = M*cos(θ)
B = M*sin(θ) 

 =

θ A

B
M

Scientists prefer to think in 
polar coordinates

Computer programs typically 
output rectangular coordinates. 



Euler’s formula

Waves are also commonly represented by exponential 
functions using Euler’s formula. 



Waves of different frequency form an orthonormal basis

In words: “The inner product 
(dot product) of two sine or 
cosine functions is zero if they 
have different frequencies.”



Fourier’s big idea

Any periodic function can be represented by a linear 
combination of sine and cosine wave functions.

x

S(x)

Continuous functions may require infinite waves.
Discrete functions (real-world data) can be exactly represented 

with a finite sum of waves. (N/2+1 sines and N/2+1 cosines)



The Fourier synthesis equation 

x

S(x)

Rectangular coordinates Exponential coordinates

The function S(x) is equal to a weighted sum of sines and cosines of 
increasing frequency, k. The weights are the coefficients ak and bk 



The Fourier analysis equation 

X(k) is a frequency-domain representation of the real-space function S(x)
You might also hear Fourier-space or reciprocal space representation

We can solve for the coefficients ak and bk by calculating the dot 
product of S(x) with a wavefunction at the frequency k 



Shannon’s sampling theorem

For a discrete FT, what are the frequencies k?

First we need the real-space sampling rate, d
examples
d = 1 second / sample (temporal signal, like a sound) 
d = 1 angstrom / pixel (spatial signal, like an image)

We also need the number of samples, N

The FT will have N/2+1 frequencies, k.  The units will be 1/d and they will run 
linearly from 0 to 1/2d. 

The frequency k=1/(2d) is the Nyquist frequency. It is the highest possible 
frequency sinusoid that can be correctly represented at sampling rate d. 



Examples of discrete wavefunctions

cos(k=0) is a constant value. It’s coefficient is the 
mean of the real-space data. Sometimes it’s called 
the DC component. 
 
sin(k=0) is always zero. 

The component at the nyquist frequency, 
cos(k=1/(2d)) is a function that alternates each 
pixel between -1 and 1.  

sin(k=1/(2d)) is always zero.



Real-space representation of data
Values at points in time/space

Fourier-space representation of data:
Coefficients of waves of different 
frequencies.

The Fourier analysis equation,
aka. The Fourier Transform

The Fourier synthesis equation,
aka. The Inverse Fourier Transform



Fourier transforms can also be calculated for 2D functions like images: S(x,y)

Fourier transform of images



Usually when we represent a 2D Fourier transform, we put
 low spatial frequencies near the center, high spatial frequencies farther away

Fourier transform of images



Amplitudes of Fourier transform

Higher frequency waves 
Higher resolution details

Real-space image

FT

Fourier transform of images



Amplitudes of Fourier transform

Same frequency waves
but different directions

Fourier transform of images



Amplitudes of Fourier transform

Higher frequency waves
in different directions

Fourier transform of images



Fourier transform of images



Fourier transform of images



Fourier transform of images



John Tukey’s Fast Fourier Transform (FFT) algorithm
One of the greatest algorithm of all time

For the discrete Fourier transform, we convert an array with N elements to N/2+1 sines and cosines. 
Each sine/cosine pair requires the dot product over all N elements, we require N*(N/2) operations.
The FFT solves the same problem in N*log(N) operations, making it ‘cheap’ even for very large N.   



Scientific computing libraries have highly 
optimized implementations of the FFT

real FFT:
Produces N/2-1 coefficients

complex FFT:
Produces N coefficients, but one 
side of the FFT is exactly the 
same as the other side. 



Spectral analysis: which waves are in a signal?

The fastest wave that can be 
represented with 500 samples has 250 
oscillations. 

Nyquist frequency = 0.5 = 250

The frequency of each plotted wave is:

wave1 = 100/500 = 0.2 
wave2 = 50/500  = 0.1
wave3 = 80/500 =  0.16

Can we determine these values from the 
data itself using the FFT?



Spectral analysis: which waves are in a signal?

In a realistic case, we’ll also have noise 
or other processes occuring. 

We can thus add random noise to our 
wave sum to simulate these processes.

Now there’s no way you could guess the 
frequencies from just looking!



Spectral analysis: which waves are in a signal?
Power of a signal at frequency k = 
squared amplitude at frequency k

The power spectrum is the power as a function of k

Calculate the power of a Fourier coefficient by 
multiplying a+ib by its complex conjugate a-ib:

Welch’s algorithm for estimating the power spectrum:
1. Divide signal up into overlapping patches.
2. Calculate the FT of each patch
3. Calculate PS = FT*FT.conj() (python syntax) 
4. Average all the PS together

Using python’s implementation of Welch’s algorithm,
we see peaks at 0.1, 0.16, and 0.2 as expected!

k=0.1
k=0.16

k=0.2



Why would we want 
to do all this work?

FT applications 
in cryo-EM



Linear systems and convolution

Real-space signal f(x) of three 
events/objects at sharp points

Point-spread function p(x)

Describes how a point is 
transformed by a linear 
system. Also called the 
impulse-response function 
or the convolution kernel

Convolution of f(x) with p(x):
Each point is multiplied by the 
point-spread function:

f(x)*p(x) = y(x)
* stands for convolution,
not multiplication



The Fourier convolution theorem

f(x)*p(x) = y(x)

F(k) = FT(f(x))
P(k) = FT(f(x))

F(k)P(k) = Y(k)

IFT(Y(k)) = y(x) 

Convolution in real-space is 
computationally challenging. 

However, in Fourier space, convolution 
is an elementwise multiplication of the 
FT of the signal and FT of the PSF.

In cryo-EM, the FT of the PSF is called 
the Contrast Transfer Function (CTF).

The CTF corresponds to the way the 
electron optical system distorts 



Fourier transforms let us do efficient convolutions

=*



Fourier transforms let us do efficient convolutions

=

=*

x

FT FT FT-1



Scattering and lensing are like Fourier transforms

Y(k) = F(k)CTF(k) + noise(k)

f(x) = projection image 
of electrons through the 
specimen

F(k) = FT( f(x) )

y(x) = IFT( Y(k) )

y(x) = image we record 
on our electron cameras

The linear Fourier imaging model



The 2D Fourier transform lets us separate 
information at different scales in images



The 2D Fourier transform lets us separate 
information at different scales in images

x

FT-1



The 2D Fourier transform lets us separate 
information at different scales in images



The 2D Fourier transform lets us separate 
information at different scales in images



The 2D Fourier transform lets us separate 
information at different scales in images



Fourier transforms let us align noisy images 

M: a noisy, off-center 
particle image

T: a clean, centered 
template image

The cross-correlation map
with localization peak

The better the match, the larger the peak

The matched-filter or cross-correlation algorithm:
FT-1[ FT(M) x FT(T)* ] = cross-correlation map



We can divide an image into resolution shells  
and compute cross-correlation for each shell

If we have two images, we can use the Fourier Shell Correlation (FSC) curve 
to find the resolution where they become inconsistent with each other

FSC curves: 
- resolution-dependent cross-correlation
- resolution-dependent consistency metric for structures
- commonly used as measure of resolution



Fourier transforms let us average 2D images in 3D
In electron microscopy, we want to average 2D projection images 

together to form a 3D volumetric (‘density’) image… but how? 

Forward process: e- beam forms projection 
image from 3D structure

Inverse problem: Can we recover 3D 
structure from projection images?



Fourier transforms let us average 2D images in 3D

Images can be averaged in real-space or averaged in 
reciprocal space and then inverse Fourier transformed



Fourier transforms let us average 2D images in 3D
The projection-slice theorem:

If I take a 2D projection through a 3D object and fourier transform it,
I get a 2D slice of the object’s 3D fourier transform. 

If we project from a different viewpoint, the slice we get is from that viewpoint



Fourier transforms let us average 2D images in 3D

This gives leads to a reconstruction algorithm for solving EM structures:

1. Project an initial 3D density from many views 
use the projection-slice theorem

2. Match experimental images to projections 
use the cross-correlation algorithm

3. Calculate a new 3D density from aligned images
use the projection-slice theorem

4. Iterate this process until 3D density stops improving



Fourier transforms let us average 2D images in 3D


