
Spherical aberration: Cs

From John Spence: High-resolution electron microscopy



Chromatic aberration: Cc

From John Spence: High-resolution electron microscopy



Astigmatism

From John Spence: High-resolution electron microscopy



Parallel illumination



Coma



influence of beam tilt
- Glaeser, Typke, Tiemeijer, Pulokas and Cheng (2011) Journal of Structural Biology 174, 1-10. Precise beam-
tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution 
cryo-EM



Atomic resolution imaging with TEM

-1.2µm -3.0µm

Electron optic system of a modern electron microscope is of sufficient quality to image 
radiation resistant material (typically inorganic) at atomic resolution (~2Å or better). 

Image of graphene, Nature Mat, 2011, 10, 165



• Envelop function determines the information limit of a 
micrograph; 

• Envelop function itself is shaped by defocus, beam 
spacial coherence, 

~2Å

envelop function

Determinants of resolution



Influence of CTF on image

-3.4%m-2.2%m-0.8%m -2.2%m-0.8%m

~40Å 10Å
~3Å

2.5Å 2Å



Influence of sample thickness



Richard Feynman: There’s plenty of room at the bottom 
(December 29, 1959, lecture to American Physical Society):

“It is very easy to answer many of these fundamental biological questions: you just look at the thing!”

“Unfortunately, the present microscope sees at a scale which is just a bit too crude. Make the 
microscope one hundred times more powerful, and many problems of biology would be made very 
much easier.”

“… the biologists would surely be very thankful to you”

“You just look at the thing!”



Central Section Theorem :
Fourier transform of a 2D projection equals the central 
section through its 3D Fourier transform perpendicular to 
the direction of projection.

DeRosier, D. and Klug, A. (1968) “Reconstruction of three 
dimensional structures from electron micrographs” Nature 
217  130-134

DeRoiser and Klug (1968)

Reconstructing 3D object from 2D projection images

EM images are 2D projections of a 3D object



Molecular electron microscopy of 
biological sample

Strong electron scattering power means two things: 
 1 high vacuum of microscope column; 
 2 strong scattering with protein sample;

Problems:   
 1 dehydration of biological sample; 
 2 radiation damage by high energy beam;



Molecular electron microscopy of biological sample
Strong scattering by high-energy electrons imposes two challenges to biological samples:  

- dehydration caused by high vacuum within electron microscope column destroys biological samples; 
- severe radiation damage caused by high-energy electron beam destroys biological samples;

* Shadow casting (Williams & Wycoff, 1945); 
* Positive staining (Pease & Baker, 1948); 
* Glass knives for microtomy (Hartmann & Latta, 1950); 
* Diamond knives (Fernandez-Moran, 1953); 
* Negative staining (Hall, 1955);

Taylor K and Glaeser RM (1974) “Electron 
diffraction of frozen, hydrated protein crystals” 
Science 186, 1036-1037
Taylor and Glaeser (2008) “Retrospective on the early 
development of cryoelectron microscopy of macromolecules 
and a prospective on opportunities for the future” Journal of 
Structural Biology

Frozen hydration preserve structural integrity to atomic level.



Cryo-electron microscopy

Against dehydration:  
glucose/trehalose embedding: using glucose to substitute  

water, thus maintain hydration in the high vacuum. Only 
used for 2D crystal;  

Frozen hydration: using plunge freezing to avoid crystal ice. 
Mostly for single particle;

• Against radiation damage: 
Low-temperature: LN2 (~80K) or LHe (~10K); Challenges  
to the instrumentations; 
Low-electron dose: Low-dose imaging; Results in  
extremely noisy images, challenges for the data  
processing;



Structure of unstained crystalline specimen 
by electron microscopy

Unwin N and Henderson R (1975) “Molecular structure determination by electron microscopy of 
unstained crystalline specimens” Journal of Molecular Biology 94, 425-440.

- Substituting water with sugar to prevent dehydration; 
- Using crystalline samples to obtain sufficient signals from images recorded with low electron dose; 

Electron diffraction (left) and Fourier transform from image of Bacteriorhodopsin

- Tilting specimen to obtain views of other projections and to calculate 3D reconstruction;

Henderson R and Unwin N (1975) “Three-dimensional model of purple membrane obtained by electron 
microscopy” Nature 257, 28-32.



Single particle EM: 
averaging of low dose image of non-periodic objects

J Frank (1975) “Averaging of low exposure electron micrographs of non-periodic objects” ultramicroscopy 1,  159.
“We will investigate how the average techniques could be extended to this general case. Of all the possible regular specimen …., 
we are interested in those which form identical particles, sufficiently well separated on the microscope grid so as not to overlap.”. 

Frank, J. Goldfarb, W, Eisenberg, D. and Baker, T.S. 
(1978) “Reconstruction of glutamine synthetase using 
computer averaging” ultramicroscopy 3,  283-290.
“A single low-dose micrograph of a maximally tilted specimen will supply 
all the Fourier information contained in a cone up to that tilt angle”. 

Radermacher, M., Wagenknecht, T., Verschoor, A., 
and Frank, J. (1987) “Three-dimensional Structure of 
large ribosomal subunit from Escherichia coli” The 
EMBO Journal 6,  1107-1114.
E. coli 50S ribosome by random conical tilt (RCT)



Frozen hydrated specimen preparation for 
single particle cryo-EM

Adrian M, Dubochet J, Lepault J & McDowall AW (1984) 
Cryo-electron microscopy of viruses. Nature 308, 32-36.

Quantifoil grid The geometry of each particles is defined by 5+1 
parameters: three Euler angles, two in-plane positions 
(x, y) and defocus (z). First 5 are determined and 
refined against a reference model iteratively. Defocus 
is determined separately.



Ethane gas  
bottle

Equipment for cryo-electron microscopy

Ethane gas  





Low-dose imaging technique

To record a good image, one needs to find the sample 
(search), adjust imaging condition (focus) and record image 
(exposure).

Low-dose imaging divide these steps into three different 
modes with different beam setting: 

  * SEARCH: extremely low-dose, ~10-3e-/Å2/sec; 

  * FOCUS: high magnification, away from the imaging area; 

  * Exposure: 10 ~ 30 e-/Å2 dose rate to record image;



Focus

Exp

* Search: lowest possible 
beam intensity; 
* Focus: off-exposure 
area, high magnification; 
* Exposure: desired 
magnification and beam 
intensity;

Three different modes in low dose



SEARCH

Beam shift

Image shift

FOCUS EXPOSURE

Electron optics of Low-Dose imaging



Single particle cryo-EM

Cryo-EM image of frozen hydrated archaeal 20S proteasomeSelecting particle images

20nm



Box out individual particle imagesParticle alignment3D reconstruction (in sub nanometer resolution, 2005)

Single particle cryo-EM

Rabl, Smith, Yu, Chang, Goldberg and Cheng (2008) Molecular Cell



Phase plate: to enhance image contrast

Simulated CTF  
of an ideal phase plate

Objective Lens 
aperture

Objective Lens 
aperture

central 
beam

central 
beam

thin carbon film

Conventional TEM 
CTEM

Volta Phase Plate 
VPP

Thin carbon film (VPP) introduces phase shift,  
but also absorb electron thus reduces signals.



Image taken at close to focus

Mao et al, (2012) NSMB



Image taken at close to focus

Mao et al, (2012) NSMB



Ghost structure of HIV trimer

* Cryo-EM is not a turn-key technology and it is possible to make massive mistakes!



Single particle cryo-EM of membrane proteins

Insoitol 1,4,5-trisphosphate receptor contains multiple cavities 
and L-shaped Ligand-binding domains. JMB 2004, 336, 155-64.

Structure of the type 1 onsoitol 1,4,5-trisphosphate receptor 
revealed by electron cryomicroscopy. JBC 2003, 278, 21319-22.

Insoitol 1,4,5-trisphosphate receptor contains multiple cavities 
and L-shaped Ligand-binding domains. JMB 2004, 336, 155-64.

Structure of the type 1 onsoitol 1,4,5-trisphosphate receptor 
revealed by electron cryomicroscopy. JBC 2003, 278, 21319-22.

4.7Å resolution, Nature 2015



DQE:

Scintillator based camera/photographic film

Scintillator based camera and photographic film are inadequate for high-resolution cryo-
EM.
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CMOS direct detection camera
Direct detection minimizes the point spread function, and improve camera 
performance at both low and high resolution.
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Single electron counting by the K2 Summit

(UCSF, LBNL, Gatan)

* Counting and centroiding primary electron events.
* Counting removes Landau noise and further improves DQE;

with David Agard (HHMI/UCSF)



Single electron counting improves DQE

• Direct detection of single electron remove read out noise
• Rapid read out enabled recording image as movie
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Single electron counting image and 
linear image



Coincidence loss

• When two electron strike the same pixel during one frame, only one is counted - coincidence loss;
• Coincidence loss deteriorate image quality, reduced linearity and DQE of camera;



Coincidence loss



Coincidence loss

• When two electron strike the same pixel during one frame, only one is counted - coincidence loss;
• Coincidence loss deteriorate image quality, reduced linearity and DQE of camera;



Coincidence loss

• Coincidence loss is related to frame rate and camera pixel size;



TVIPS F816 CMOS camera,  
T20S proteasome, 700kDa,  
200kV, -1.6%m (equivalent: 300kV, -2%m);

1/8.0Å

FFT: Thon ring visible to ~8.0 Å;

Xueming Li

Image is further modified by recording devices 



K2 image of frozen hydrated protein 
samples, archaeal 20S proteasome

-1.1µm

•

Li, Zheng, Egami, Agard and Cheng (2013) JSB

300kV, 31kX mag, ~10e-/pixel/sec;  
~1.2Å/pixel, 25e-/Å2, 3.5sec exposure;



Direct electron detection 
improves image quality

perfect FFT corrected imageperfect image perfect FFT

typical image subframespoor FFT

Robust motion correction 
recovers high-resolution information

Dose fractionation enabled motion correction.

Beam-induced image motion
deterioratea image quality

Li, Zheng, Booth, Braunfeld, Gubbens, Agard and Cheng (2013) Nature Methods



Algorithm for motion correction

* Convention method is to use cross-correlation to determine image shift frame-by-frame.

Li et al. (2013) Nature Methods



Algorithm for motion correction

* Convention method is to use cross-correlation to determine image shift frame-by-frame, or against a 
common origin.

Li et al. (2013) Nature Methods



Algorithm for motion correction

* All computations are carried out in GPU, and can be performed on-the-fly during data acquisition.

Li et al. (2013) Nature Methods



Comparisons of different  
subframe tracking algorithms

Li et al. (2013) Nature Methods



Motion correction at sub-pixel accuracy

* Motion correction restored resolution beyond physical Nyquist limit;

Li et al. (2013) Nature Methods



Xueming Li

Frame by frame 3D reconstruction



We achieved resolution comparable 
with X-ray crystallography

• archaeal 20S proteasome at ~3.3Å resolution, comparable to crystal map.

Li, Zheng, Booth, Braunfeld, Gubbens, Agard and Cheng (2013) Nature Methods



Caveat: all significant motion is not global

Axel Brilot (now in the Agard 
lab) discovered that vitrified 
viruses at the periphery of 
the sample hole move more 
than those in the center. 

It was suggested that the 
electron beam causes the 
sample to ‘dome.’ 

Shawn Zheng (also Agard 
lab) wrote a new algorithm 
that takes such motion into 
account.



Correcting local doming motions (interpolating each pixel of the image on the 
left with a time-varying vector field fitted by the trajectories in different patches 
of the image) improves the signal below 3A. 

CTF Oscillations in the radially averaged Fourier Transform

Caveat: all significant motion is not global



Re-process with the algorithm: 
archaeal 20S proteasome at ~2.5Å resolution

2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images2D class averages of motion corrected archaeal 20S proteasome images

Zheng, Palovcak, Armache, Verba, Cheng and Agard (2017) Nature Methods



Single particle cryo-EM

* Basic concepts of single particle cryo-EM: averaging, resolution, iterative refinement and 
reconstruction



Image averaging

Cryo-EM images are very noisy; have extremely low signal-to-noise ratio. Averaging 
of a large number of images are necessary to improve the SNR.



Photographic image 
superposition (averaging) by 
Roy Markham, who shifted 
image and added to the original 
in darkroom. 

The trick is to know decide much 
and which direction to shift the 
image for superposition.

Averaging in darkroom



David DeRosier used 
Markham’s lattice to 
determine how much to shift, 
and performed averaging by 
using Adobe Photoshop.

Averaging in computer.



Averaging in 2D crystals

How much and which direction to ship the image can be determined easily 
from FT of the image of a 2D crystal.



Image averaging in 
2D crystal

In 2D crystal, one can extract amplitudes 
and phases from peaks of FT (contributed 
by the identical repeats of structural motif) 
and ignore everything in between peaks 
(contributed by the random noise). A 
reverse Fourier Transform using extracted 
amplitude and phases will give us an 
averaged features. This is equivalent to the 
averaging. 

It is easy to perform averaging in 2D crystal. 
The molecules in the 2D crystal are identical 
in composition and orientation.



What about single molecules

• judge how similar is the two particles: cross-correlation 
coefficient; 
• shifts/rotates one particle to match another by maximizing 
ccc: alignment; 
• separate different particles for averaging: classification;

A single particle image data set is a collection of images, 
each contains projection images of one molecules. The 
orientations and position of particles in all images are 
different. Before averaging, one needs to: 

Alignment Classification



A digital image is collection of numbers in a grid
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Cross-correlation coefficient

Cross-correlation coefficient is a measure of similarity and 
statistical interdependence between two data sets. The 
mathematic definition of cross-correlation coefficient is:
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Alignment between two images

Cross-correlation function based alignment: 

• In-plane shift can be determined by determine the peak 
position in the translational cross-correlation function 
between two images. 

• Rotation can be determined by different ways: rotational 
cross-correlation function, Radon transform. 

Alignment is a process to search the grids to maximize 
the cross-correlation coefficient between two images. 
Three parameters are used to define alignment of 2D 
images: in-plane shift (x,y) and in-plane rotation angle.



Cross-correlation function

The mathematic definition of cross-correlation is:

€ 

f ∗g= f(t)g(t− τ)dτ
−∞

∞

∫

 
 

CC

The cross-correlation function is the most important tool for 
alignment of two images.

Q: what happens if shift is more than half of the image size?



Calculating the cross-correlation

Cross-correlation theorem:

€ 

f ∗g= f(t)g(t− τ)dτ =
−∞

∞

∫ F F(f)⋅ F −1(g){ }

This formula enable us to calculate the cross-correlation 
between two images easily.



How cross-correlation looks like

-1µm -1.5µm CCF

The image size is 1024X1024. The peak in the CCF is at 
(445,500). How much is the shift?



Radon transform

Radon transform is an efficient 
way for determining angular 
relationship between two 
images, but it only works well 
in images with high SNR.



More about the cross-correlation function

• Peak searching in the cross-correlation function; 
 search for a peak is not just finding the point of   
highest value in the CCF. 
  
• Keep in mind that one can calculate cross correlation 
between any two images, and will always find a point with 
highest value. 

• Cross-correlation based alignment and averaging always 
enhance the features of the reference image.



Demonstration of reference induced bias

100 images 1000 images reference

From Niko Gorigorieff

Note: The averaged image after reference based alignment is 
strongly biased towards the reference.



Multi-reference alignment

For a heterogeneous data set, multiple references are used. 
Each images are aligned again each references, and decide 
which one yields highest cross-correlation coefficient.  



Classification

Classification - a process of dividing a set of images 
into subsets with similar features. 

One can perform classification based on CCC to 
determine if the images are similar with each other; 
But for a very large data set of very noisy images 
(> 50,000 images)?



Hyperspace

An image of m×m pixels can be represented by a vector (or 
end point of a vector) in the hyperspace of m×m dimensions. 
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Where:

Similar to the cross-correlation coefficient, the distance 
between two spots in the hyperspace represents the difference 
between two images.



A data set is represented as a cloud in the hyperspace. The 
center of the cloud is the average of the all images in the data 
set.



A data set is represented as a cloud in the hyperspace. The 
center of the cloud is the average of the all images in the data 
set.

 

An image without any noise is represented by a point.



A data set is represented as a cloud in the hyperspace. The 
center of the cloud is the average of the all images in the data 
set.

   
  

   
 

  

An image without any noise is represented by a point.
Adding random noise to the image expand the point into a cloud.



A data set is represented as a cloud in the hyperspace. The 
center of the cloud is the average of the all images in the data 
set.

   
  

   
 

  

The center of the loud is the average.



Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.



Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.

Class 1

Class 2

Class 3



Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.



Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.



Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.



Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.



Classification
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Classification

   
  

   
 

  
   

  
   

 
  

    
   

Assume images are aligned with each other. The clouds of 
particles can be grouped into different groups - classification.

Class 1

Class 2

K-mean classification



Multivariate statistical analysis

Making patterns emerge from data

Multivariate statistical analysis: 
Principal Component Analysis 
Correspondence Analysis

Pi

Pj
u

Adapted from Joachim Frank

Definition of 
principal axis



Principal component analysis (PCA)

Pi

Pj
u Pi’
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with constraint: u’u = 1 X: coordinate matrix



Eigenvector-eigenvalue equation

Du = λu

where

€ 

D = (X − X )'(X −X )

Solution of this equation generate a set of eigenvectors 
and eigenvalues.

Significant factors:

Classification based on eigenvector/eigenvalue clustering;



Multivariate statistical analysis & classification of images

Principle Component Analysis



Iterative refinement procedure

Iterative refinement procedure, using reference model based projection matching:

3D 
model

Generate a set of projections

Projection matching 
with class averages

3D reconstruction

A better 3D 
model

A least square approach to find the best solution that matches all data. 



Resolution estimation
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In single particle cryoEM the resolution is often estimated by Fourier Shell 
Correlation.

Reconstruction 1 Reconstruction 2
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3D reconstruction of T20S proteasome

-1.1µmFourier Shell Correlation curves and amplitude plot of T20S proteasome reconstruction



Average
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Sjors Scheres

Image averaging
Averaging of a large number of identical images improves the SNR. A complete problem is simple to 
solve. 



But we have an incomplete data set

Observed	data	(X):	images 
Missing	data	(Y):		
Rotations,	translations,	classes	&	conformations 
How	do	we	find	Y?

Sjors Scheres
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Sjors Scheres

Xi = P'Vk!

Xi (Observed  Projection) = P' (Rotations, etc) Vk(Actual Object) 
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Sjors Scheres

Iteratively align and average
How big is the search space? 
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Sjors Scheres

Iteratively align and average
How big is the search space? 
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Sjors Scheres
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Resolution revolution

- Direct detection camera is being used to produce a number of near atomic resolution 
reconstructions: “Resolution Revolution”

- Dose fractionation image acquisition and motion correction become standard procedures. 

Werner Kuhlbrandt  
“The Resolution Revolution”, 

Science (2014)

Yeast mitochondrial 
ribosome, 3.2Å rat TRPV1 ion channel, 3.4Å F420-reducing 

hydrogenase, 3.4Å



Technologies that facilitated resolution revolution

• Direct electron detection camera (since 2012):
- Single electron counting significantly improves detective quantum efficiency (DQE);
- High frame rate enables dose fractionation and correction of beam induced image motion;

• New image processing algorithm based on maximum likelihood approach        
 (first introduced by Fred Sigworth):

- Facilitates better classification of good and “bad” particles;
- Facilitates higher resolution structure determination;

- Automated high-quality data acquisition;
- Pipelined image processing enabled on-the-fly image processing;

• Modernization of electron microscope technologies: 



Use molecular EM in your own research

• exam the quality of your purification 
• verify your hypothesis 
• obtain addition information about your proteins: such as oligomeric status of your protein, 
formation of complex, etc 
• Or if you are really really serious, get a high resolution structure by cryoEM!

Facility at UCSF:  
Keck Advanced Microscopy Laboratory 

Yifan Cheng - S472B (ycheng@ucsf.edu) 
David Agard - S412D (agard@msg.ucsf.edu) 
Adam Frost - S472F (Adam.Frost@ucsf.edu)

mailto:ycheng@ucsf.edu
mailto:agard@msg.ucsf.edu
mailto:Adam.Frost@ucsf.edu
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