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ADAPTIVE IMMUNITY

Virus infects and replicates @ Dendritic cell activation T and B cell priming @ Adaptive immunity
within the epithelium

in the lymph node
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ADAPTIVE IMMUNITY

B cells Plasma cells and antibodies
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ADAPTIVE IMMUNITY — ANTIBODY STRUCTURE
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ADAPTIVE IMMUNITY — ANTIBODY STRUCTURE
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JUNCTIONAL DIVERSITY CREATES ENORMOUS DIVERSITY
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SOMATIC HYPERMUTATION TUNES DIVERSITY
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SOMATIC HYPERMUTATION TUNES DIVERSITY
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SOMATIC HYPERMUTATION TUNES DIVERSITY
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ADAPTIVE IMMUNITY

Virus infects and replicates @ Dendritic cell activation T and B cell priming @ Adaptive immunity
within the epithelium in the lymph node

Antibodies and T cells
attack viruses and
virus-infected cells

JTSpecial delivery

Two apparently successful coronavirus vaccines use fat
bubbles called lipid nanoparticles to deliver messenger
RNA (mRNA) to cells. Once there, the mRNA directs
cells to produce the virus’ spike protein, provoking
animmune response to that foreign protein.
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PASSIVE IMMUNITY FOR SARS-COV-2
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- FDA EUA (8/23) for hospitalized patients with COVID-19
- NIH panel: insufficient data to recommend use

- Unclear safety, non-standardized protocols for titer

- Need prospective randomized trials

Monoclonal antibodies
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Neutralizing Antibodies

- Multiple candidates in clinical trials

- Intravenous dosing for treatment or prophylaxis

- Require large doses for prophylactic use (50 mg/kg)
- Expensive production



Patients with

Advantages:
COVID-19

- Self administered
- Direct delivery to site
of early infection

s
Challenges:

- Ultrastable protein
required
- Pharmacokinetics?




NANOBODIES VS. MONOCLONAL ANTIBODIES

Conventional Antibody Nanobody

————————————
—

- Small (15 kDa), single chain protein

- Ultra-stable

- Non-glycosylated

- Similar to human antibody heavy chains

- Ease and low expense of rapid mass
production

Constant
(Fc)




NANOBODIES — MINIMIZED ANTIBODIES FROM CAMELIDS
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A RAPID PLATFORM FOR NANOBODY DISCOVERY
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FULL SPIKE ECTODOMAIN FOR NANGBODY DISCOVERY
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R binds L fo make RL

At equilibrium (Ka), forward
and reverse reactions are equal

Ifthings bind tight: more RL,
less Rand L.

Rate forward (k,,) Is faster than
rate backward (k



PROTEIN INTERACTIONS BY SURFACE PLASMON RESONANCE
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PROTEIN INTERACTIONS BY SURFACE PLASMON RESONANCE
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FINDING NANOBODIES THAT BLOCK ACE2

Synthetic library with
2x109 variants
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STRUCTURES OF ANTI-SPIKE NANOBODIES

Live-virus Neutralization
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AFFINITY MATURATION OF NB6
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AFFINITY MATURATION OF NB6
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NEUTRALIZATION ACTIIVTY OF DESIGNED NANOBODIES
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LOOP CONFORMATIONAL PLASTICITY

Bound vs unbound mNbé: The usual case with antibodies:

mNb6 (Spike*) mNDbG6 (free)

Somatic Hypermutation
and
Affinity Maturation

—

Unmutated FAb Mature FAb
Davenport TM et al Structure 2016

2 different conformations! Maturation rigidifies loops
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Normally, antibody affinity maturation leads to conformational
rigidification of loops (decreased entropic penalty for binding)

We engineered an initial nanobody against Spike (Nbé)
- Failed to get good quality crystals (maybe too flexible?)
- Got cryo-EM structure with Spike

We affinity matured to get mNbé (500x increase in potency with only 2
mutations!)
- Cryo-EM structure shows some improved contacts, probably not
sufficient to explain 500x gain
- Crystal structure of unbound mNbé shows huge loop conformational
differences, contrary to "conventional wisdom™ for affinity maturation
of antibodies

Question: Are loop conformational dynamics a key driver of exceptional
potency gain from Nbé to mNbé?
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Question: Are loop conformational dynamics a key driver of exceptional potency gain
from Nbé to mNbé?

1) How “rigidified” are these loops in the bound state?
* Refine our EM structures — how confident are we in the loop conformations
modeled?
* Use NMR to see if Nbé and mNbbé really bind in the same way in solution.

2) How much disorder is there in the unbound states?
* How confident are we in our X-ray structure of mNbé — are there regions that are
dynamic? How can we estimate disorder?
* Can we see other conformation of mNbé loops in other X-ray structures?
* Are there differences in loop conformations between Nb6 and mNbé by NMR?
Can we quantify these motions?



