
 

Figure Legends 

 
Figure 1. Gene expression control by VVD, TIP-LITer1.0, & Deg-LITer1.0 gene circuits with 
constant illumination at increasing intensities. (A) Schematic illustration of VVD, TIP-LITer1.0, 
& Deg-LITer1.0 gene circuits stably integrated within Flp-In 293 cell genome. ‘V’ is the VVD 
protein, ‘T’ is the TetR regulator with either TIP or Degron, and ‘G’ is the Reporter output. (B) 
Schematic illustration of experimental design with cells exposed to varying blue light intensities. 
(C) Fluorescence histogram distributions for flow cytometry performed for each corresponding 
gene circuit under light intensity titration. (D) Fluorescence microscopy of cells with corresponding 
gene circuits over light intensity titration. (E) Flow cytometry mean fluorescence expression 
versus light intensity titration for the three gene circuits. (F) Normalized mean fluorescence values 
to max light intensity level for each gene circuit. Error bars are standard deviation, N=3. (G) 
Coefficient of variation (CV) over light intensity titration for the three gene circuits. Two-sample t-
test was performed on maximum and minimum mean fluorescence data values. TIP-LITer1.0 
ON/OFF had a p-value of 3.21E-06, Deg-LITer1.0 ON/OFF had a p-value of 5.40E-10, and VVD 
ON/OFF had a p-value of 1.28E-04. Kruskal-Wallis test was performed on CV data set 
differences. TIP-LITer1.0 vs VVD had a p-value of 2.87E-09 and Deg-LITer1.0 vs VVD had a p-
value of 2.88E-09. 
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Figure 2. Gene expression control by VVD, TIP-LITer1.0, & Deg-LITer1.0 gene circuits with 
pulsed illumination. (A) Schematic illustration of single pulse experiment. (B) Fluorescence 
histogram distributions for single light pulse titration. (C) Flow cytometry mean fluorescence 
expression for single pulse experiment. (D) Normalized mean fluorescence values for single pulse 
experiment. (E) Coefficient of variation (CV) for single pulse experiment.  (F) Schematic illustration 
of duty cycle experiment. (G) Fluorescence histogram distributions for duty cycle experiment. (H) 
Flow cytometry mean fluorescence for duty cycle experiment. (I) Normalized mean fluorescence 
values for duty cycle experiment (J) CV over duty cycle experiment. Error bars are standard 
deviation, N=3. Two-sample t-test was performed on maximum and minimum mean fluorescence 
data values for pulse and duty-cycle experiments. TIP-LITer1.0 ON/OFF had a p-value of 1.76E-
06, Deg-LITer1.0 ON/OFF had a p-value of 7.77E-06, and VVD ON/OFF had a p-value of 7.03E-
05 for pulse experiment. TIP-LITer1.0 ON/OFF had a p-value of 3.17E-06, Deg-LITer1.0 ON/OFF 
had a p-value of 0.0083, and VVD ON/OFF had a p-value of 0.0092 for duty-cycle experiment. 
Kruskal-Wallis test was performed on CV data set differences. TIP-LITer1.0 vs VVD and Deg-
LITer1.0 vs VVD had a p-value of 2.88E-09 for the pulse experiment. TIP-LITer1.0 vs VVD had a 
p-value of 2.88E-09 and Deg-LITer1.0 vs VVD had a p-value of 2.87E-09 for the duty-cycle 
experiment. 
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Figure 3. Deterministic & Stochastic Model for exploring parameters to lower basal 
expression (A) Schematic illustration of relevant gene circuit reactions used for deterministic and 
stochastic computational model for two promoter LITer system and (B) one promoter LITer 
system. The deterministic and stochastic model did not distinguish between degradation or TIP 
mechanism for controlling TetR. See the Supplement for the notation of rates and chemical 
species. (C) Bar plot representing deterministic and stochastic model predictions for setting equal 
parameters between the LITer1.0 & LITer2.0 model for basal expression (no induction). (D) Bar 
plot representing deterministic and stochastic model predictions for changing the translational 
parameter between the LITer1.0 & LITer2.0 model for basal expression (no induction). (E) Bar 
plot representing deterministic and stochastic model predictions for changing the transcriptional 
parameters (synthesis & leakage) between the LITer1.0 & LITer2.0 model for basal expression 
(no induction). (F) Bar plot representing deterministic and stochastic model predictions for 
changing both parameters (transcription & translation) between the LITer1.0 & LITer2.0 model for 
basal expression (no induction) and accompanying experimental data.  10,000 stochastic 
simulations were run per condition, and experimental results show 3 replicates for each condition. 
Bars are means and error bars are standard deviation. 
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Figure 4. Gene expression control by VVD, TIP-LITer2.0, & Deg-LITer2.0 gene circuits with 
constant illumination at increasing intensities. (A) Schematic illustration of TIP-LITer1.0 & 
Deg-LITer1.0 gene circuits stably integrated within Flp-In 293 cell genome. ‘T’ is the TetR 
regulator with either TIP or Degron and ‘G’ is the Reporter output. (B) Fluorescence histogram 
distributions from flow cytometry performed on cells with corresponding gene circuit under light 
intensity titration. (C) Fluorescence microscopy of cells with corresponding gene circuits over light 
intensity titration. (D) Flow cytometry mean fluorescence expression over light intensity titration 
for the three gene circuits. (E) Normalized mean fluorescence values to max light intensity level 
for each gene circuit. (F) Coefficient of variation (CV) over light intensity titration for the three gene 
circuits. Error bars are standard deviation, N=3. Two-sample t-test was performed on maximum 
and minimum mean fluorescence data values. TIP-LITer2.0 ON/OFF had a p-value of 2.55E-07 
and Deg-LITer2.0 ON/OFF had a p-value of 1.02E-08. Kruskal-Wallis test was performed on CV 
data set differences. TIP-LITer1.0 vs VVD had a p-value of 2.88E-09 and Deg-LITer1.0 vs VVD 
had a p-value of 2.87E-09.  
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Figure 5. Gene expression control by VVD, TIP-LITer2.0, & Deg-LITer2.0 gene circuits 
with pulsed illumination. (A) Fluorescence histogram distributions for single light pulse 
titration. (B) Flow cytometry mean fluorescence expression for single pulse experiment. (C) 
Normalized mean fluorescence values for single pulse experiment. (D) Coefficient of variation 
(CV) for single pulse experiment.  (E) Fluorescence histogram distributions for duty cycle 
experiment. (F) Flow cytometry mean fluorescence for duty cycle experiment. (G) Normalized 
mean fluorescence values for duty cycle experiment (H) CV over duty cycle experiment. Error 
bars are standard deviation, N=3. Two-sample t-test was performed on maximum and minimum 
mean fluorescence data values for pulse and duty-cycle experiments. TIP-LITer2.0 ON/OFF 
had a p-value of 7.72E-06 and Deg-LITer2.0 ON/OFF had a p-value of 3.68E-06 for pulse 
experiment. TIP- LITer2.0 ON/OFF had a p-value of 1.01E-06 and Deg-LITer1.0 ON/OFF had a 
p-value of 1.15E-05 for duty-cycle experiment. Kruskal-Wallis test was performed on CV data 
set differences. TIP-LITer2.0 vs VVD and Deg-LITer2.0 vs VVD had a p-value of 2.88E-09 for 
the pulse experiment. TIP-LITer2.0 vs VVD had a p-value of 2.88E-09 and Deg-LITer2.0 vs 
VVD had a p-value of 2.87E-09 for the duty-cycle experiment. 
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Figure 6. Gene expression control by LITer2.0-KRAS (A) Schematic illustration of LITer2.0-
KRAS(G12V) gene circuit. ‘T’ is the TetR regulator with TIP, ‘K’ is the KRAS(G12V) protein, and 
‘G’ is the Reporter output. (B) Mean fluorescence intensity for dose-response. (C) CV for flow 
cytometry data intensity dose-response. (D)  Fluorescence histogram distributions of different 
light doses. (E) qPCR fold change of KRAS gene circuit induced with varying doses of light 
expressed on a log(y) axis. (F) KRAS levels measured by flow cytometry with fluorescence-
labeled secondary antibody. (G) Phosphorylated-ERK levels measured by flow cytometry with 
fluorescence-labeled secondary antibody. (H) Growth assay measured by cell number on 
parental (Flp-In 293) cell line and LITer2.0-KRAS cells 72h after induction. Light causes 
statistically significant reduction in cell growth compared to basal expression of KRAS cells 
while light has insignificant effects on the parental cell line. Cells seeded at ~1200 cells per well. 
(I) Growth assay measured by doubling time on parental (Flp-In 293) cell line and LITer2.0-
KRAS cells 72h after induction. Light causes statistically significant increase in cell doubling 
time compared to basal expression of KRAS cells while light has insignificant effects on the 
parental cell line. Experiments are performed with three or four technical replicates. Error bars 
are the standard deviation of replicates. Stars indicate statistical significance. Two-sample t-test 
was performed on maximum and minimum mean fluorescence data values. LITer2.0-KRAS 
ON/OFF had a p-value of 3.79E-05. Kruskal-Wallis test was performed on CV data set 
differences. LITer2.0-KRAS vs VVD had a p-value of 2.88E-09. Two-sample t-test was 
performed on maximum and minimum KRAS and ERK levels giving a p-value of p-value 0.0071 
and 0.014 respectively. Two-sample t-test was performed on cell growth (6H) yielding a p-value 
of 0.0048. 
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