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ABSTRACT
Motivation: Amino acid sequence alignments are widely
used in the analysis of protein structure, function and
evolutionary relationships. Proteins within a superfamily
usually share the same fold and possess related functions.
These structural and functional constraints are reflected
in the alignment conservation patterns. Positions of
functional and/or structural importance tend to be more
conserved. Conserved positions are usually clustered in
distinct motifs surrounded by sequence segments of low
conservation. Poorly conserved regions might also arise
from the imperfections in multiple alignment algorithms
and thus indicate possible alignment errors. Quantification
of conservation by attributing a conservation index to each
aligned position makes motif detection more convenient.
Mapping these conservation indices onto a protein spatial
structure helps to visualize spatial conservation features of
the molecule and to predict functionally and/or structurally
important sites. Analysis of conservation indices could be
a useful tool in detection of potentially misaligned regions
and will aid in improvement of multiple alignments.
Results: We developed a program to calculate a con-
servation index at each position in a multiple sequence
alignment using several methods. Namely, amino acid
frequencies at each position are estimated and the
conservation index is calculated from these frequencies.
We utilize both unweighted frequencies and frequencies
weighted using two different strategies. Three conceptu-
ally different approaches (entropy-based, variance-based
and matrix score-based) are implemented in the algorithm
to define the conservation index. Calculating conservation
indices for 35 522 positions in 284 alignments from
SMART database we demonstrate that different methods
result in highly correlated (correlation coefficient more
than 0.85) conservation indices. Conservation indices
show statistically significant correlation between sequen-
tially adjacent positions i and i + j , where j < 13, and
averaging of the indices over the window of three positions

∗To whom correspondence should be addressed.

is optimal for motif detection. Positions with gaps display
substantially lower conservation properties. We compare
conservation properties of the SMART alignments or
FSSP structural alignments to those of the ClustalW
alignments. The results suggest that conservation indices
should be a valuable tool of alignment quality assessment
and might be used as an objective function for refinement
of multiple alignments.
Availability: The C code of the AL2CO program and its
pre-compiled versions for several platforms as well as
the details of the analysis are freely available at ftp://iole.
swmed.edu/pub/al2co/.
Contact: grishin@chop.swmed.edu

INTRODUCTION
Homologous proteins tend to form distinct families and
superfamilies that are characterized by specific sequence
motifs, common folds, and related functions. Multiple
sequence alignments are routinely used for structure and
function prediction and analysis, and for phylogenetic
tree reconstruction of protein families. Analysis of posi-
tional conservation in an amino acid sequence alignment
can aid in detection of motifs and functionally and/or
structurally important residues, e.g. at the binding sites
(Zuckerkandl and Pauling, 1965; Villar and Kauvar,
1994; Ouzounis et al., 1998). Mapping the conservation
information onto a protein 3D structure helps to visualize
spatial conservation patterns and to deduce potential
functional surfaces of a protein molecule (Sander and
Schneider, 1991; Lichtarge et al., 1996; Landgraf et
al., 1999; Makarova and Grishin, 1999; Zhang et al.,
2000). Several methods of conservation analysis have
been used previously to extract functional information
from sequence alignments. A vectorial method was
proposed in predicting functionally important residues
(Casari et al., 1995). Another method, called evolutionary
tracing, has been used for defining binding surfaces
(Lichtarge et al., 1996) and for identifying functional
and structural features in protein families (Landgraf et
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al., 1999; Pritchard and Dufton, 1999). Entropy-based
conservation analysis (Sander and Schneider, 1991;
Shenkin et al., 1991) has been utilized extensively for
characterization of protein families (Atchley et al.,
1999; Lowry and Atchley, 2000) and for the analysis
of protein folds (Mirny and Shakhnovich, 1999). Other
methods of measuring conservation deal with amino acid
substitution matrices (Levin and Satir, 1998; Landgraf
et al., 1999) or the deviance of amino acid frequencies
from the mean values (Lockless and Ranganathan, 1999).
However, comprehensive comparison between differ-
ent estimators of positional conservation has not been
done.

Vast numbers of algorithms have been developed to
construct multiple sequence alignments (Barton and
Sternberg, 1987; Feng and Doolittle, 1987; Taylor,
1988; Lipman et al., 1989; Thompson et al., 1994a;
Eddy, 1995; Gotoh, 1996; Notredame et al., 1998;
Morgenstern, 1999; to cite a few). Despite significant
progress in this direction, none of the available alignment
algorithms is perfect (Thompson et al., 1999), leaving
the user to cope with the task of manual adjustment of
automatically generated alignments. Several approaches
have been developed for assessing the quality and re-
liability of sequence alignment (Vingron and Argos,
1990; Mevissen and Vingron, 1996; Notredame et al.,
1998; Thompson et al., 1999; Domingues et al., 2000).
Since alignment construction is based on sequence
conservation, it appears that a positional conserva-
tion estimator is suitable as a measure of alignment
quality.

We developed a program (AL2CO) that performs
conservation analysis in a comprehensive and systematic
way. For a given protein multiple sequence alignment we
calculate a conservation index for each position. Twelve
different strategies of conservation index calculation
have been implemented and their performance has been
tested and compared on the alignments from the SMART
database (Schultz et al., 1998; Ponting et al., 1999).
We analyze the distribution of conservation indices, the
correlation of conservation indices between different
alignment positions, and the effects of gaps and the num-
ber of sequences on the conservation index. By comparing
the SMART alignments and raw ClustalW alignments
(Thompson et al., 1994a), we test which method of
conservation index calculation works best as a measure
of a multiple alignment quality. For highly divergent
sequences, where sequence-based alignment strategies
are likely to fail and cannot be used as a reference, we
make a similar comparison between representative struc-
tural alignments taken from FSSP database (Holm and
Sander, 1996, 1998) and the corresponding raw ClustalW
alignments.

ALGORITHM
The algorithm of AL2CO program performs calculations
in two steps. First, amino acid frequencies at each position
are estimated. The conservation index is then calculated
from these frequencies. An optional third step allows the
user to average the conservation indices over a window
covering a selected number of positions.

Various methods to estimate position-specific amino
acid frequencies have been developed. We divide them
into three groups:

1.1. Unweighted amino acid frequencies: f u
a (i) =

na(i)/n(i), where na(i) is the number of sequences in
which position i is occupied by amino acid a, and n(i) is
the total number of aligned sequences in which position i
is present (no gap at this position): n(i) = ∑20

a=1 na(i).

1.2. Weighted amino acid frequencies: f w
a (i) =∑n(i)

k=1 δ(a, k, i)wk/
∑n(i)

k=1 wk , where wk is a given
weight of a sequence k, and we put δ(a, k, i) = 1 if amino
acid a is in sequence k at position i , and δ(a, k, i) = 0
otherwise. Setting equal weights wk = wl for all se-
quences k and l results in unweighted frequencies. The
idea behind the weights is to correct for unequal distances
between different sequence pairs in the alignment. It ap-
pears logical that two close sequences with high similarity
should influence amino acid frequencies less than a pair
of divergent sequences. Thus, the weight attributed to
each of a large family of similar sequences is less than
the weight of a single divergent sequence. A wide variety
of different methods have been proposed to calculate
weights wk (Altschul et al., 1989; Sander and Schneider,
1991; Gerstein et al., 1994; Henikoff and Henikoff,
1994; Thompson et al., 1994b; Eddy et al., 1995; Gotoh,
1995; Krogh and Mitchison, 1995). We used a modified
method of Henikoff and Henikoff that is implemented
in PSI-BLAST (Henikoff and Henikoff, 1994; Altschul
et al., 1997). In sequence weight calculation, we ignore
positions with gaps present in more than 50% of the
sequences and invariant positions.

1.3. Estimated independent counts: f ic
a (i) = nic

a (i)/nic(i)
where nic

a (i) is an estimate of the number of independent
observations of amino acid a at position i and nic(i) =∑20

a=1 nic
a (i). The idea behind this approach is to correct

for the correlation between aligned sequences. We use
a modified method proposed by Sunyaev et al. (1999).
The number of independent observations (= counts) of
amino acid a at a position i is equal to the effective
number of sequences that contain amino acid a at this
position. The effective number of sequences in a sample
is calculated in the following way. Given a sequence
alignment, we define a function F whose value depends
on the number of sequences in the alignment. For a given
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alignment, we can calculate the value of Freal (Sunyaev
et al., 1999). For a random alignment consisting of N
random sequences we calculate F(Nrandom). The value of
Nrandom for which Freal = F(Nrandom) corresponds to the
effective number of sequences. Sunyaev et al. (1999) uses
the number of invariant positions as the function F . This
number can be easily calculated for a given alignment.
Since the number of invariant positions is usually small in
divergent sequence alignments, the estimate of F is often
imprecise. We choose a more effective F , which is the
average number of different amino acids per position. For
a random alignment of N random sequences composed of
equifrequent amino acids one gets F = 20(1 − 0.95N )

(see appendix for the proof) which allows us to estimate
the effective number of sequences as Neff = ln(1 −
F/20)/ ln 0.95. For any F , if amino acid a is present in
a single sequence at a position i , its count is nic

a (i) = 1. If
amino acid a is present in na(i) sequences at a position
i , its count is 1 ≤ nic

a (i) ≤ na(i); nic
a (i) = 1 if all

sequences with amino acid a at the position i are identical,
and nic

a (i) = na(i) if all sequences are independent.
Weighted frequencies have been used extensively in

sequence analysis. However, we realize that sometimes
researchers are particularly interested in a group of highly
similar sequences that might be present in the alignment,
and would like to see the conservation within that group
not being influenced by divergent sequences. In this case,
unweighted frequencies should be used. The presence of
an amino acid a at a position i indicates that it is an
admissible amino acid at this position, even if it is present
in a single sequence only. If this sequence happens to be
highly similar to other sequences, then the frequency of
amino acid a will be reduced due to the weighting scheme.
The strategy of independent counts can avoid this negative
effect.

The conservation index is calculated in the next step
from amino acid frequencies by one of the following
strategies.

2.1. Entropy-based measure: Ce(i) = ∑20
a=1 fa(i) ln fa(i).

Traditionally, the order of a system is measured by its
entropy. Consequently, it can be used in particular for
measuring sequence variability, as was proposed for ex-
ample by Shenkin et al. (1991) and has been implemented
in a number of studies (Sander and Schneider, 1991;
Atchley et al., 1999; Mirny and Shakhnovich, 1999;
Lowry and Atchley, 2000). Entropy for a position i is
maximal if all 20 amino acids at this position have equal
frequencies. We use entropy with the reverse sign defined
on position-specific frequencies fa(i) to estimate the
conservation index. Entropy does not take into account
possible bias in amino acid composition or similarities
among amino acids. The latter defect can be partially
corrected for by forming groups of amino acids with

similar properties and calculating frequencies for these
groups (Atchley et al., 1999; Mirny and Shakhnovich,
1999).

2.2. Variance-based measure:

Cv(i) =
√∑20

a=1 ( fa(i) − fa)2, where fa is the
overall frequency for amino acid a in the alignment,
i.e. fa = ∑l

i=1 na(i)/
∑l

i=1 n(i) if fa(i) were esti-
mated using the methods 1.1 and 1.3 (see above), and
f w
a = ∑l

i=1
∑n(i)

k=1 δ(a, k, i)wk/
∑l

i=1
∑n(i)

k=1 wk for the
method 1.2, and l is the total number of aligned positions.
A similar method has been employed in the estimation
of evolutionary conservation and coupling parameters
(Lockless and Ranganathan, 1999). The position with
amino acid frequencies fa(i) equal to the overall amino
acid frequencies fa in the aligned sequences will result in
Cv(i) = 0. Alternatively, Cv(i) reaches its maximum for
the position occupied by an invariant amino acid whose
frequency in the alignment is minimal. The advantage of
this method is the use of overall amino acid frequencies,
which differ for different protein families. This measure
does not take into account similarities among amino acids.
To utilize such information, usually presented as a scoring
matrix, we opt for using

2.3. Sum of pairs measure:
C p(i) = ∑20

a=1
∑20

b=1 fa(i) fb(i)Sab, where Sab is an
amino acid scoring matrix. This conservation index will
be higher for the positions occupied by more similar
amino acids. Since the diagonal scores might differ for
different amino acids, conservation indices for invariant
positions will depend on the amino acid type. For example,
positions with invariant Trp will have the highest index if
BLOSUM62 matrix is utilized. If the user wants to make
conservation indices equal to each other for all invariant
positions, the scoring matrix can be normalized: S

′
ab =

Sab/
√

Saa Sbb. We also allow the user to modify the scores

according to the formula: S
′′
ab = 2Sab − (Saa + Sbb)/2.

This adjustment makes C p(i) equal to the original matrix
score Sab for the alignment of two sequences with amino
acids a and b at a position i ( fa(i) = fb(i) = 0.5,
C p(i) = 0.5 ∗ 0.5 ∗ S

′′
ab + 0.5 ∗ 0.5 ∗ S

′′
ba + 0.5 ∗ 0.5 ∗

S
′′
aa + 0.5 ∗ 0.5 ∗ S

′′
bb = Sab).

Despite the fact that conserved positions tend to cluster
to form motifs, conservation indices for adjacent sequence
positions usually show large variation. Averaging the
indices over a window can smoothen the conservation
profile along a sequence and facilitate sequence motif
detection. For a given window of size w at position i , we
average the indices from position i −(w−1)/2 to position
i+(w−1)/2 if w is odd, and from position i−(w−2)/2 to
position i+w/2 if w is even. The average value is assigned
as a new index to position i . When averaging is applied to
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the positions near N-(C-) terminus (N terminus: i < w/2
if w is even and i < (w+1)/2 if w is odd; analogously for
C terminus), the window sizes are reduced to completely
cover the sequence at the N-(C-) terminus and the target
position is placed in the middle of the window: e.g. for
the N-terminus, the new window size is w′ = 2i − 1
for positions i if w′ < w − 1. To compensate for the
increase of the index variance caused by the decrease of
the window size, we also adjust the index as C ′(i) =
C + (C(i) − C)

√
w′/w where C(i) is the conservation

for position i near the alignment termini averaged over a
smaller window of size w′, w is the given window size, C
is the mean conservation index with window size 1.

Calculated conservation indices can then be normalized
to make comparisons possible among sets of indices
calculated for different alignments or using different
methods: Cn(i) = (C(i) − C)/σC , C = ∑l

i=1 C(i)/ l,

σC =
√∑l

i=1 (C(i) − C)2/(l − 1), where l is the number
of positions in the alignment.

IMPLEMENTATION AND DISCUSSION
Multiple sequence alignments taken from SMART
database (Schultz et al., 1998; Ponting et al., 1999) were
used to compare different estimation methods of positional
conservation. SMART database is well curated and in our
opinion represents a large sample of alignments with high
quality that are adjusted manually according to structural
and/or functional considerations (Schultz et al., 1998;
Ponting et al., 1999). Alignments that contain less than
20 sequences or less than 40 positions with gap fraction
less than 0.5 were not considered in this analysis, resulting
in 284 alignments that were used for conservation index
calculation (for the information on the alignments see
ftp://iole.swmed.edu/pub/al2co/SMART list/). A total of
4 ∗ 3 = 12 methods that differ in weighting schemes and
conservation–calculation strategies as discussed above
were used. We designate the methods by two numbers
with an underscore in between. The first number refers to
the conservation–calculation strategy: 1, entropy-based
measure; 2, variance-base measure; 3, sum-of-pairs
measure using identity matrix; 4, sum-of-pairs measure
using BLOSUM62 matrix. The second number refers to
frequency estimation strategy: 1, unweighted frequencies;
2, Henikoff-weighted frequencies; 3, independent-count
based frequencies.

Correlation between methods
For each of the 284 SMART alignments, positions with
gaps in no less than 50% of sequences were discarded
and conservation indices were calculated for the remaining
positions (35 522 total) using all the 4 ∗ 3 = 12 proposed
methods. The resulting conservation indices were then
normalized to zero mean and unity variance for each
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Fig. 1. Correlation plot between two methods that show the lowest
correlation coefficient. The two methods are: 2 1 (variance based
measure with no weighting) and 4 3 (sum-of-pairs measure with the
BLOSUM62 matrix and independent count weights). 35 522 data
points are shown. The correlation coefficient is 0.85.
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∑lk
i=1 Cs

k(i)
2




for all pairs of the 12 methods are presented in Table 1.
All correlation coefficients are no less than 0.85, showing
good correspondence among methods. For the four
conservation–calculation strategies, strategy number 4,
the one applying the BLOSUM62 matrix shows smallest
correlation coefficients with the other three strategies.
Calculations using the BLOSUM62 matrix take into
account similarities among amino acids, while the re-
maining three methods do not. Figure 1 shows the plot
of conservation indices of the two methods with the
lowest correlation (Methods 2 1 and 4 3). These two
methods differ in schemes for frequency calculation
and in strategies for conservation–calculation: method
2 1 is a variance-based measure with no weighting and
Method 4 3 is a sum-of-pairs BLOSUM62 measure with
independent counts weighting scheme.
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Table 1. Correlation between conservation indices calculated by different methods1

1 1 100
1 2 99 100
1 3 97 98 100
2 1 97 96 92 100
2 2 97 98 94 99 100
2 3 96 97 97 96 97 100
3 1 97 96 93 97 97 96 100
3 2 96 97 94 96 97 96 99 100
3 3 92 94 96 90 92 97 95 97 100
4 1 93 93 92 93 93 93 93 93 91 100
4 2 92 93 92 91 93 94 92 93 92 99 100
4 3 89 90 93 85 87 93 87 89 93 95 97 100

Method 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 4 1 4 2 4 3

1Correlation coefficients are shown in percent. See text for method abbreviations.

We paid special attention to the matrix-based sum-of-
pairs method since it is the only one that can take into
account similarities among amino acids. To evaluate the
effects of different scoring matrices on the conservation
index, we performed correlation analysis of conser-
vation indices obtained using eight different scoring
matrices: 30, 45, 62, and 80 from the BLOSUM series
(Henikoff and Henikoff, 1992), PAM250 (Dayhoff et al.,
1978), GONNET (Gonnet et al., 1992), and two recent
structure-derived matrices, namely Structure-Derived
Matrix (SDM) and Homologous Structure-Derived Ma-
trix (HSDM) (Prlic et al., 2000). Independent counts
scheme was used to estimate amino acid frequencies.
All correlation coefficients are no less than 0.93 (data
not shown), suggesting that different matrices perform
in a similar way. PAM250 matrix shows the smallest
correlation coefficients to the others (data not shown).
PAM250 is the oldest one and is derived by matrix
multiplication from the mutation rates estimated using
very similar sequences (Dayhoff et al., 1978), while other
matrices are obtained from direct statistical estimation of
frequencies of aligned amino acid pairs in more divergent
sequences. The highest correlation coefficient (99.7%)
is found between the two structure-derived matrices
SDM and HSDM. HSDM is obtained from a subset (77
presumably homologous proteins pairs out of the 122
structurally aligned pairs that might contain analogs) of a
database that is used to derive SDM (Prlic et al., 2000).

Correlation between positions
It is well known that alignments contain regions of
high conservation (sequence signatures or motifs) with
variable regions between them (Henikoff et al., 1999).
To clarify applicability of conservation indices calculated
by different methods for motif detection, we calculated
correlation of conservation indices at positions i and i + j
( j = 1, . . . , 20) for all of the 284 SMART alignments

using 12 methods. All 12 methods show rather similar
traits in positional correlation (four of them are shown
in Figure 2). For j ≤ 12, the corresponding positions
i and i + j display significant positive correlation (P-
value <0.05). This correlation pattern shows that the
positions that are sequentially close to each other tend to
have the same conservation properties (high conservation
or low conservation), for stretches on average up to
12 residues in length. Directly adjacent positions (i and
i + 1) have, on average, the highest correlation. The
correlation drops when the positions get further apart in
sequence. All correlation coefficients do not differ from
0 significantly for j larger than 12, indicating that long-
range sequential coupling between positions are not the
same in different protein families. Interestingly, the four
peaks ( j = 1, 4, 7, 11) show periodicity that is consistent
with that of an α-helix where residues in positions i , i +1,
i +4, i +7, and i +11 are spatially close. It appears that the
medium-range coupling (3 ≤ j ≤ 12) is mainly caused by
α-helices. β-strands, on the other hand, tend to contribute
to short-range coupling (1 ≤ j ≤ 4) since they are usually
short and adopt extended conformation.

Despite statistically significant correlation between
conservation indices for positions close in sequence, the
smoothness of the conservation index versus position
number is low. Averaging of conservation indices over
a window of w positions smoothens the indices. We
calculated correlation coefficients between conservation
indices at positions i and i + j ( j = 1, . . . , 21) for
different window sizes (w = 1, . . . , 20) and different
methods of conservation index estimation. Again all 12
methods show similar properties. One example is shown
in Table 2 for method 1 3 of window size w up to 5
and position difference j up to 15. If window size w is
larger than j , then correlation between i and i + j is
biased (and always significant) since the two windows for
i and i + j overlap (Table 2, shown in italic numbers).
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Fig. 2. Correlation between conservation indices at positions i and i + j for different methods. The two gray lines parallel to the horizontal
axis mark the area of insignificant difference from zero correlation (P > 0.05) in between. Methods are designated by two numbers with
an underscore in between (x 2). The first number refers to the conservation–calculation strategy: 1, entropy-based measure; 2, variance-base
measure; 3, sum-of-pairs measure using identity matrix; 4, sum-of-pairs measure using BLOSUM62 matrix. The second number (2) refers
to Henikoff weighting scheme.

Diagonal elements (w = j , in bold) mark the start of
an unbiased correlation along each row in Table 2. For
all window sizes, statistically significant correlation lasts
for about 11–12 residues beyond the window size. For
each method, the first unbiased correlation (diagonal
elements) increases to its maximum value at a window
size of 3 (underlined, in bold), and then gradually drops
with the increase of window size. The increase is due to
the increase of smoothness, and the drop is caused by the
averaging effect and the increased window size. Thus we
propose that window size 3 should be ideal for smoothing
of conservation indices and optimal for motif detection.

Distribution of conservation indices
The histogram of the normalized (to zero mean and unit
variance) conservation indices for the 35 522 positions in
284 alignments is shown as discrete points in Figure 3
(bin size 0.2σ ). It exhibits a single sharp mode at about
−0.7σ , drops fast at its left side and has a shoulder at
its right side. Such shape indicates a mixed distribution
that is likely to have several distinct components. We
use the sum of two Gaussian distributions to fit the data
(Figure 3). The two Gaussians may serve as a rough
approximation of low-conservation and high-conservation
components respectively, although the overall fit is far

from perfect. The low-conservation component (on the
left) contributes mostly to the sharp peak. The high
conservation component (on the right) gives rise to the
shoulder. It has a larger variance than the low conservation
component and may actually be further decomposed into
several sub-components. The low and high conservation
components cover almost equal areas, indicating that
about 50% of all positions display significant conservation
while the remaining positions are not conserved.

The effect of gaps
A question remains regarding the treatment of gaps in
conservation-index calculation. In the former analysis,
gaps were ignored and only positions with gaps present
in no more than 50% of sequences were considered. It
is clear that a gap should not be treated as a 21st letter
for calculating frequencies since in that case the positions
containing mostly (or entirely) gaps will be described as
highly (or completely) conserved. However, the presence
of a gap character at a position means the absence of the
corresponding amino acid in the protein structure. This
indicates a lack in the backbone chain and, thus, seems to
be ‘less conserved’ than the mere change of an amino acid
side chain corresponding to the substitution of one amino
acid by another. In any case, deletion should represent
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Table 2. Correlation coefficients between positions in alignments for different window sizes1

Window Position difference ( j)
size (w) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.23 0.19 0.21 0.23 0.08 0.04 0.10 0.08 0.02 0.02 0.04 0.03 0.00 0.00 0.00
0 0 0 0 0 0 0 0 1.13 0.28 1e−8 2e−3 47.9 61.1 55.1

2 0.67 0.34 0.35 0.31 0.18 0.11 0.13 0.11 0.05 0.04 0.06 0.04 0.02 0.01 0.00
0 0 0 0 0 0 0 0 0 2e−8 0 6e−8 0.93 24.8 59.2

3 0.82 0.63 0.42 0.36 0.26 0.19 0.15 0.13 0.09 0.07 0.06 0.05 0.03 0.02 0.01
0 0 0 0 0 0 0 0 0 0 0 0 3e−4 1.78 15.4

4 0.88 0.74 0.58 0.41 0.32 0.25 0.20 0.15 0.12 0.10 0.08 0.06 0.04 0.03 0.01
0 0 0 0 0 0 0 0 0 0 0 0 7e−7 7e−3 4.33

5 0.90 0.78 0.66 0.52 0.36 0.28 0.23 0.18 0.14 0.11 0.09 0.07 0.05 0.04 0.03
0 0 0 0 0 0 0 0 0 0 0 0 0 2e−5 2e−2

Method 1 3 (entropy-based measure with independent counts frequencies) was used. For each element in the table, the upper number is the
correlation coefficient between the sites i and i + j for the window size w, the lower number is its significance (P-value, in percent) of
difference from zero correlation. P-value in percent is shown as 0 if it is less than 10−8.
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software: 0.2σ N
(

p1√
2πσ1

exp
[
− (x−µ1)

2

2σ 2
1

]
+ p2√

2πσ2
exp

[
− (x−µ2)

2

2σ 2
2

])
, where N is the total number of data points (35 522), p1 and p2 are

the fractions of the two Gaussians. The best-fit parameters are shown in the upper right corner.

an event different from a substitution. It is also clear
that ignoring gaps is not appropriate. For example, when
at a given position only a few sequences contain amino
acids and most have gaps, estimation of conservation that
ignores sequences with gaps in that position will be on
average higher, and the position would be completely
conserved if only one sequence contains an amino acid.

To study the conservation properties at positions with

varying fractions of gaps, we employed the following
strategy. Conservation indices were calculated for every
position in each of the 284 SMART alignments without
considering the effects of gaps. However, the mean (µ)
and standard deviation (σ ) for normalization was calcu-
lated only using the positions that do not contain gaps at
all. Then the positions containing amino acids in less than
20 sequences were discarded and the remaining positions
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with gaps were binned by the fraction of gaps with each
bin containing the same number of data points. For each
bin, the average of conservation indices was calculated
and plotted as shown in Figure 4 for method 1 2. Positions
with gaps indeed show lower average conservation than
positions without gaps (mean value 0). The average
conservation index drops sharply to about −0.8σ when
the gap percentage increases from 0 to about 5% . The
reasons for the decrease are two-fold. On the one hand,
structurally or functionally important positions with high
conservation tend to contain no gaps. On the other hand,
the presence of gaps means that this position is to some
extent unnecessary, so the conservation should be lower.
Average conservation index stays about −1.0σ with gap
percentage ranging from 10 to 70%, suggesting that there
is little effect of gap percentage on positional conservation
within this range. For gap percentages larger than 70%,
the average conservation index gradually increases. Two
reasons may account for this increase: the small number
of the effective sequences for conservation calculation at
positions with high gap fraction and, secondly, the fact
that when a gap is present in most of the sequences, the
remaining ungapped sequences tend to form subfamilies
with distinct conservation features at that position. Since
these subfamilies are not representative for the whole
set of sequences, it seems reasonable to consider such
positions as less conserved even if the apparent conserva-
tion indices calculated by ignoring gaps are high. Based
on this analysis, we recommend to treat positions with
gaps in the following way: (1) calculate conservation
indices for all positions with gap percentage less than a
given threshold (e.g. 50%) and estimate the mean (µ) and
standard error (σ ); (2) set the conservation indices for all
positions with gap percentage higher than the threshold to
µ − 1.0σ .

The effect of the number of sequences
All 284 SMART alignments used in this study contain at
least 20 sequences to ensure appropriate sampling from
sequence space. Here we address the effect of the number
of sequences on the estimation of conservation properties.
Of the 284 SMART alignments, those containing from
60 to 300 sequences were selected for this study. For
each of these 107 alignments, sets of sub-alignments
with various numbers of sequences (2, 4, 6, etc.) were
generated by random sampling of sequences from the
original complete alignment. Conservation indices were
calculated for each sub-alignment and compared to those
calculated for the complete alignment by calculating
correlation coefficient between the two vectors of indices.
The correlation coefficient increased rapidly with the
increase of the number of sequences in sub-alignments.
For most of alignments, less than 30 randomly selected
sequences were enough to bring the correlation coefficient
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Fig. 4. Distribution of conservation indices at positions with
gaps. The conservation indices generated by the method 1 2 were
normalized using the mean and the variance of the conservation
indices at positions without gaps. The conservation indices at
positions with no less than 20 ungapped sequences and with at least
one gap were binned into ten sets with equal number of data points
in each set. The average conservation indices in each set are plotted
against the average gap percentage in that set.

above 0.85. The number of sequences required to reach
the correlation coefficient of 0.85 has a mean of 13.7
and a standard deviation of 5.6 for the 107 selected
alignments. Based on this observation, we conclude that
about 20 representative sequences are usually enough for
estimating the conservation patterns in a protein family.

Conservation as a measure of alignment quality
Comparison between SMART and ClustalW alignments.
To probe if conservation indices can aid in evaluation
of alignment quality, we generated alignments from
the sequences for each of the 284 SMART domains by
ClustalW program (version 1.7) with default parameters
(BLOSUM series matrices, gap open penalty 10, gap
extension penalties for pairwise/multiple alignments
0.1/0.05) (Thompson et al., 1994a; Jeanmougin et al.,
1998). Curated and manually adjusted SMART align-
ments are expected to be of higher quality than the
raw ClustalW alignments. We compared the average
values of conservation indices (without normalization)
for positions with gap percentage less than 50% for
SMART alignments and ClustalW alignments of SMART
domains. In all 12 methods, the average conservation
of SMART alignments is significantly higher than that
of ClustalW alignments (P-value<0.05, Table 3). The
difference is small, suggesting that ClustalW performs
fairly well for sequences from SMART database. Higher
conservation in SMART alignments versus ClustalW
alignments illustrates well that it is possible to improve a
multiple alignment algorithm, and a conservation index is

707



J.Pei and N.V.Grishin

Table 3. Differences between SMART alignments and ClustalW alignments1

Method
1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 4 1 4 2 4 3

SMART average −1.73 −1.79 −1.97 0.433 0.412 0.344 0.297 0.275 0.214 1.18 1.02 0.609
conservation
ClustalW average −1.75 −1.80 −1.99 0.429 0.407 0.339 0.293 0.272 0.211 1.14 0.978 0.571
conservation
P-value of the 0.005 0.001 0.001 0.012 0.002 0.001 0.046 0.022 0.021 0.008 0.004 0.002
difference
SMART correlation 0.423 0.422 0.425 0.402 0.402 0.415 0.366 0.364 0.361 0.355 0.356 0.359
for j = 3 and w = 3
ClustalW correlation 0.440 0.439 0.444 0.415 0.416 0.432 0.380 0.378 0.375 0.370 0.371 0.378
for j = 3 and w = 3
P-value of the 0.005 0.05 0.002 0.037 0.025 0.006 0.030 0.030 0.030 0.021 0.021 0.003
difference

1Correlation coefficients are calculated between the sites i and i + j for the window size w.

Table 4. Differences between FSSP structural alignments and ClustalW alignments1

Method
1 2 2 2 3 2 4 2(B62) BLOSUM30 BLOSUM45 BLOSUM80 PAM250 GONNET SDM HSDM

FSSP average −2.13 0.287 0.158 −0.040 0.436 0.213 −0.548 0.134 0.260 0.413 0.420
conservation
ClustalW average −2.18 0.269 0.146 −0.218 0.318 0.026 −0.843 −0.046 0.070 0.149 0.076
conservation
P-value of the 4e−4 5e−5 0.001 2e−8 0.001 2e−7 2e−8 2e−7 1e−8 2e−9 3e−9
difference
FSSP correlation 0.337 0.382 0.362 0.331 0.280 0.329 0.338 0.300 0.322 0.336 0.331
for j = 3 and w = 3
ClustalW correlation 0.253 0.259 0.245 0.215 0.191 0.212 0.225 0.129 0.184 0.209 0.214
for j = 3 and w = 3
P-value of the 0.020 5e−4 0.001 0.002 0.017 0.001 0.002 6e−6 2e−4 5e−4 0.001
difference

1Correlation coefficients are calculated between the sites i and i + j for the window size w.

a reasonable indicator of the alignment quality. It is also
apparent that given an index calculation method, using
unweighted frequencies gives less significant differences
between SMART and ClustalW alignments than weighted
frequencies. The entropy-based scheme produces the
lowest P-value of the difference between SMART and
ClustalW alignments (Table 3).

Further, we compared the correlation between positions
for normalized conservation indices in SMART and
ClustalW alignments. The largest unbiased correlation
coefficients (window size w = 3, positional difference
j = 3) are shown in Table 3. For all 12 methods, The
SMART correlation is slightly but significantly smaller
than the ClustalW correlation. The lowest P-value results
from the comparison of the entropy-based estimates.
Additionally, the weighting scheme based on independent
counts (Methods x 3) shows the smallest P-values for all
strategies.

The results of comparisons between SMART and
ClustalW alignments show that conservation index should
be a valuable tool for alignment quality assessment. It
appears that a weighting scheme is necessary and inde-
pendent counts might be better than the Henikoff weights.
Additionally, the usage of the simple entropy-based
conservation measure does not seem to be inferior to that
of the BLOSUM62-based measure.

Comparison between FSSP and ClustalW alignments.
The protein families from the SMART database usually
consist of close homologues characterized by relatively
high sequence similarity. To compare the performance of
conservation indices in highly divergent but structurally
similar proteins, where sequence-based alignment strate-
gies are likely to fail (Vogt et al., 1995; Jaroszewski et al.,
2000), we compared the structural-based alignments taken
from the FSSP database (Holm and Sander, 1996, 1998)
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Fig. 5. Conservation mapping onto 3D-structures. The figures were drawn by BOBSCRIPT (Esnouf, 1997). Red and blue correspond to the
highest and the lowest conservation respectively. Two examples are shown. (a) The YBAK family protein of unkown function. The alignment
for conservation calculation and the structure (PDB entry 1DBU) are according to Zhang et al. (2000). (b) The Rab family of small G
proteins. Conservation indices are calculated using the alignment from the SMART database and the structure template (PDB entry 3RAB)
is according to Dumas et al. (1999). GppNHp is displayed in red lines; the Mg2+ is shown as an orange ball.

and the corresponding ClustalW alignments. Despite the
rapidly increasing number of determined structures, 3D-
structure database is still small compared to the protein
sequence database. Conservation index calculation usually
requires no less than 15 aligned sequences. Due to these
restrictions, we selected the eight largest representative
FSSP structural alignments, in which most of pairwise
identities are in the ‘twilight zone’ (less than 25%) and
the number of sequences is no less than 18 (the list is
available at ftp://iole.swmed.edu/pub/al2co/FSSP list/).
Five of these alignments cover the proteins with the
most widely spread folds, such as immunoglobin, OB,
Rossmann, ferrodoxin-like, and TIM barrel, and have
been studied previously by Mirny and Shakhnovich
(1999). Three additional alignments were of globin-like
superfamily, trypsin-like serine proteases, and P-loop
nucleotide triphosphate hydolases (Murzin et al., 1995).
Structurally non-equivalent extensions at N-(C-) terminus
were removed from the original FSSP alignments.

The procedures described above for comparing SMART
and ClustalW alignments were carried out to compare the
FSSP structural alignments and the ClustalW alignments
(Table 4). Since the structure-based alignments were
selected to contain very divergent sequences, results

obtained with different weighting schemes do not differ
significantly and are not shown. Implementation of the
Henikoff weights is illustrated in Table 4. Both the aver-
age conservation values and the correlation coefficients
are lower in Table 4 compared to Table 3 (methods 1 2,
2 2, 3 2, and 4 2), due to the lower sequence conser-
vation in FSSP alignments than in SMART alignment.
However, despite a much smaller dataset (about 1000
positions) from FSSP than that from SMART (about
35 000 positions), the P-values of the differences are
more significant in FSSP-ClustalW comparison than
those in SMART-ClustalW comparison. This observation
suggests that conservation properties are still strong in
structure-based alignments of divergent sequences, and
ClustalW performs poorly when the sequences display
low similarity with each other (Thompson et al., 1999).

It is clear that for divergent sequences from FSSP, BLO-
SUM62 matrix sum-of-pairs measure (Table 4, method
4 2) shows the most significant differences between
FSSP and ClustalW alignments (among methods 1 2,
2 2, 3 2, and 4 2), and sum-of-pairs measure based on
identity matrix (Table 4, methods 3 2) offers the poorest
discrimination. This is consistent with the notion that
identity between divergent sequences is very low, but
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similarity still exists. Thus we also compared the conser-
vation indices calculated with eight different amino acid
scoring matrices: 30, 45, 62, and 80 from the BLOSUM
series (Henikoff and Henikoff, 1992), PAM250 (Dayhoff
et al., 1978), GONNET (Gonnet et al., 1992), and two
structure-derived matrices, namely Structure-Derived
Matrix (SDM) and Homologous Structure-Derived Ma-
trix (HSDM) (Prlic et al., 2000) (Table 4). Among these
matrices, SDM and HSDM show the most significant
differences in average conservation indices. This can be
explained by the facts that SDM and HSDM are derived
from 3D-structure comparisons similarly to the align-
ments in FSSP database, and all the protein pairs used to
obtain these matrices had sequence identity below 30%
(Prlic et al., 2000). On the contrary, the BLOSUM30 ma-
trix, which is derived from the sequence-based alignments
of lower identity between sequences, offers the poorest
discrimination between FSSP and ClustalW alignments.

The differences in positional correlation show different
tendencies in FSSP–ClustalW and SMART–ClustalW
comparisons (Tables 3 and 4). The FSSP correlation is sig-
nificantly higher than the ClustalW correlation (Table 4),
while the SMART correlation is lower than the ClustalW
correlation (Table 3). This apparent contradiction can be
easily explained. The observed behavior of correlation
coefficients appears to be similar to the first-rise-then-fall
phenomenon for the correlation coefficients depending on
different window sizes (Table 2, bold numbers, discussed
above). For the SMART–ClustalW case, the differences
between SMART alignments and ClustalW alignments are
small. However, ClustalW could misalign a few positions
with relatively small shifts, resulting in a smoothing effect
of the conservation indices. This may account for the
slightly higher correlation between positions in ClustalW
alignments than in SMART alignments. For more di-
vergent sequences, such as the ones taken from FSSP,
ClustalW alignments are significantly inferior, which
results in much lower correlation between positions.

Comparing the curated (SMART) or structural (FSSP)
alignments with those that are automatically generated by
ClustalW (Version 1.7), we conclude that conservation
properties should be a valuable tool for alignment quality
assessment and might be used as an objective function for
alignment refinement. The independent-count weighting
scheme combined with the entropy-based indices seem
to be a more sensitive measure to judge the quality of
the alignments constructed from rather similar sequences
(SMART), while the sum-of-pairs index using structurally
derived amino acid scoring matrices appears to be superior
for very divergent sequences.

Mapping conservation onto protein spatial
structure
Mapping the conservation information onto the 3D-
structure helps visualizing the conservation in three-
dimensional space and facilitates prediction of struc-
turally and/or functionally important sites (Sander and
Schneider, 1991). Such an approach has already been
applied in a number of cases (Lichtarge et al., 1996;
Landgraf et al., 1999; Makarova and Grishin, 1999;
Zhang et al., 2000). The AL2CO program can be used
to assist in mapping conservation indices onto a spatial
structure. If the structure of a protein from a multiple
alignment is available, the user has an option to specify
the coordinate file in PDB format. B-factors in that file
will be substituted by conservation indices. Bobscript or
Molscript (Kraulis, 1991; Esnouf, 1997) can be used to
draw a structure diagram colored by the B-factor (line in
the Molscript/Bobscript input file: colour ss from blue via
green to red by b-factor from X to Y, values X = −1.0
and Y = 2.0 are usually good for normalized indices),
which in our case corresponds to the conservation index.
We illustrate an application of this procedure to a domain
of unknown function (YBAK, Figure 5a) (Zhang et al.,
2000). The conservation is maximal around a cavity on
this structure showing the potential location of the ligand
or substrate binding or catalytic site. Another example
(Figure 5b) is for the alignment of the Rab family of small
G proteins (Figure 3) (Dumas et al., 1999). The mapping
clearly shows that the regions of high conservation are
clustered around the catalytic site and hydrophobic core
of the molecule.

APPENDIX
The average number of different amino acids per
position
For N random sequences of equifrequent amino acids
(20 amino acids with frequency 1/20 each), average
number of different amino acids in a position is given
by the formula F = 20(1 − 0.95N ). The formula can
be proven by induction. If N = 1, then F = 1 and the
formula is true. Assume that the formula is true for N = n.
Let f (n, i) be the probability of i different amino acids to

occur at the position: F =
20∑

i=1
f (n, i)i = 20(1 − 0.95n).

When the number of sequences increases by 1 (N =
n + 1), the number of different amino acids at the position
either remains to be i with probability i/20 (by adding an
amino acid of the same type to one of the existing i amino
acids), or becomes i + 1 with probability (20 − i)/20 (by
adding an amino acid different from any of the i amino
acids). Thus the average number of different amino acids
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in the position for n + 1 random sequences is:

F =
20∑

i=1

[i(i/20) + (i + 1)(20 − i)/20] f (n, i)

=
20∑

i=1

(1 + 0.95i) f (n, i)

= 1 + 0.95 ∗ 20(1 − 0.95n) = 20(1 − 0.95n+1)

which shows that the formula holds for n + 1.
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