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Efficient analysis of very large amounts of raw data for peptide identification and protein quantification is a principal challenge

in mass spectrometry (MS)-based proteomics. Here we describe MaxQuant, an integrated suite of algorithms specifically

developed for high-resolution, quantitative MS data. Using correlation analysis and graph theory, MaxQuant detects peaks,

isotope clusters and stable amino acid isotope–labeled (SILAC) peptide pairs as three-dimensional objects in m/z, elution time

and signal intensity space. By integrating multiple mass measurements and correcting for linear and nonlinear mass offsets, we

achieve mass accuracy in the p.p.b. range, a sixfold increase over standard techniques. We increase the proportion of identified

fragmentation spectra to 73% for SILAC peptide pairs via unambiguous assignment of isotope and missed-cleavage state and

individual mass precision. MaxQuant automatically quantifies several hundred thousand peptides per SILAC-proteome

experiment and allows statistically robust identification and quantification of 44,000 proteins in mammalian cell lysates.

Data analysis in MS-based proteomics is much more challenging than
for other high-throughput technologies such as microarrays1 and
remains a principal bottleneck in proteomics2,3. In one popular format
of MS-based proteomics, proteins are enzymatically digested to
peptides, which are analyzed online by liquid chromatography (LC)
coupled to electrospray and tandem MS (MS/MS)4. MS spectra
contain peptide mass and intensity information, and the identity of
the peptides is deduced by matching the MS/MS spectra against a
sequence database5,6. Typically, peaks are extracted from raw data, the
peptide mass is estimated from the scan from which the peak was
‘picked’ for sequencing and the peak files are sent to a search engine.
Results consist of tables of identified proteins. In a quantitative
proteomics experiment using stable isotopes, peptide and protein
ratios are obtained by direct comparison of the signals of the ‘light’
and ‘heavy’ isotope in the same LC run7,8.

There is already a substantial literature on ‘computational proteo-
mics’ (reviewed in refs. 3,9–12). However, these efforts were usually
not directed at high-resolution data of the type readily attainable
today and they do not approach the quality of a skilled human expert.
Here we describe a set of algorithms that efficiently and robustly
extracts information from raw MS data and allows very high peptide
identification rates as well as high-accuracy protein quantification for
several thousand proteins in complex proteomes.

RESULTS

Analysis pipeline

MaxQuant incorporates all steps needed in a computational proteo-
mics platform but currently uses Mascot13 to generate peptide

candidates for MS/MS spectra. Below, we describe the analysis frame-
work and illustrate its performance with SILAC-treated HeLa cells that
were stimulated for 2 h with epidermal growth factor (EGF)14. These
data were obtained by triplicate analysis of 24 peptide fractions from
isoelectric focusing using an LTQ Orbitrap mass spectrometer. We
describe conceptual issues and computational analysis. A detailed
explanation of algorithms is provided in Supplementary Notes online
and their C# source code in Supplementary Data online.

Feature detection and quantification

The high resolution of modern mass spectrometers and the need for
quantification in functional proteomics led us to start the data analysis
with ‘features’ in the MS spectra (mass and intensity of the peptide
peaks) rather than focus on the fragmentation spectra. This is already
commonly done in MS-based biomarker discovery9. In MaxQuant,
peaks are detected in each MS scan by fitting a gaussian peak shape
to the three central raw data points and then assembled into three-
dimensional (3D) peak hills over the m/z-retention time plane
(Fig. 1a–c). Smoothed intensity profiles over retention time are split
at significant local minima. From the centroid masses we obtain a high
precision, intensity-weighted estimate of mass for the 3D peak
(Fig. 1d). For each 3D peak an individual mass precision is calculated
by bootstrap replication (Supplementary Notes).

Each of the 72 LC-MS runs of the HeLa proteome resulted in
B382,000 3D peaks, on average. It is not trivial to efficiently and
reliably determine isotope patterns, and we employ a graph theoretical
data structure to construct an undirected graph with the 3D peaks as
vertices. An edge is inserted between two peaks when the difference in
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mass equals the difference in isotope mass of an average amino acid
(‘averagine’15) within bootstrap errors, with an additional error
tolerance due to unknown atomic composition and when the intensity
profiles have a sufficiently high overlap in retention time. The
resulting graph contains millions of edges, connecting ‘pre-isotope’
patterns, which, however, are not necessarily consistent in terms of
charge state. We then iteratively determine the longest, consistent sub-
graphs. In the LC-MS run in Figure 2, the number of 3D peaks was
317,658, assembling into 31,806 isotope patterns. Thus, isotope
patterns reduce data features tenfold and are a potent noise filter. A
particularly dense region is greatly enlarged in Figure 2c. In this small
region of a few m/z units, three overlapping isotope patterns
are automatically and correctly assigned, despite the overlap caused

by peptides of different charge states (z ¼ 5 versus z ¼ 2) and near-
identical masses of two co-eluting peptides. This would have been
difficult from the MS information alone, even for an expert human
scientist (Fig. 2d).

In our example we carried out SILAC16 using arginine and lysine.
To detect heavy-light SILAC partners we consider all possible pairs of
isotope patterns. Potential SILAC pairs are first required to have
sufficient intensity correlation over elution time (allowing for some
retention-time shift due to isotope effects) and to have equal charges.
By default we assume at most three labeled amino acids per peptide.
Therefore, pairs could contain lysine (K), arginine (R), KK, KR, RR,
KKK, KKR, KRR and RRR. For each of these cases we convolute the
two measured isotope patterns with the theoretical isotope patterns of
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Figure 1 Three-dimensional peak detection.

(a) Two-dimensional (2D) peaks whose intensity

drops to zero on both sides. The centroid mass of

a 2D peak is calculated as a fit of a gaussian

peak shape to the three central raw data points.

(b) Peaks are broken up at local intensity minima.

(c) 2D peaks in adjacent MS scans are assembled

to 3D peak hills over the m/z-retention time
plane. Two peaks in neighboring scans are

connected whenever their centroid m/z positions

are sufficiently close. (d) 3D peak eluting over

1.5 min represented with color-coded intensity,

decreasing from green over yellow to white, in the

mass-retention time plane. Forty-nine centroids

(dotted red line) have been joined to form this 3D

peak. Note that fluctuations in mass become

larger at low abundance. (e) 3D representation of

the same peak. (f) Eleven 3D peaks forming two

isotope patterns. The masses of the upper and

lower isotope patterns are identical. The sixth

peak of the lower isotope pattern has just been

detected, whereas the sixth peak of the upper

isotope pattern has just escaped detection.

Figure 2 Automatic large-scale SILAC pair

detection. (a) Overview of the part of the mass-

retention time plane capturing most of the

peptides in one LC-MS run of an OFFGEL

fraction of HeLa cell lysate. 5,666 SILAC pairs

have been detected in this run and are coded in

different colors. (b) Zoom into the region

indicated by the black rectangle in a. Several

SILAC pairs can be seen with charges ranging

up to five. MS/MS sequencing events are

indicated either by squares, in case they led to
a peptide identification, or by crosses. (c) Zoom

into the region indicated by the black rectangle

in b showing a challenging case for isotope

pattern detection involving three peptides.

Note that MaxQuant correctly assigned the

monoisotopic mass, whereas the instrument

software picked the C13 peak for sequencing.

The heavy-labeled blue peptide has a small

peak at the low-mass side of the monoisotopic

peak because of the usual impurities of the

commercially available heavy amino acids.

(d) The mass spectrum corresponding to the

dotted rectangle in c.
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the difference atoms, that is, the atoms that have to be added so that
both peptides would have the same atomic composition. If the mass
differences are within the combined bootstrap error and if there is
sufficient intensity correlation of the two isotope patterns in m/z
dimension, the peaks are associated as a SILAC pair. Figure 2 contains
5,666 SILAC pairs.

The resulting isotope patterns are then scaled to each other using all
ratios, starting with a least-square solution and determining the best
median fit iteratively by bisection. This yields the fold-change between
the two SILAC peptides (Supplementary Notes). For triple-labeling
SILAC experiments17 more cases need to be considered but the
procedures are very similar. In each LC-MS run, we normalize peptide
ratios so that the median of their logarithms is zero, which corrects for
unequal protein loading, assuming that the majority of proteins show
no differential regulation.

Improving peptide mass accuracy

The peptide mass is calculated as the intensity-weighted average of all
MS peak centroids in the 3D peaks within the isotope patterns
belonging to a SILAC pair or triplet. The statistics of the number of
mass measurements per SILAC peptide is given in Supplementary
Figure 1 online.

We use the several hundred SILAC charge pairs in every LC-MS run
for recalibration without knowing their identity and minimize differ-
ences between mass estimates from different charge states. The
resulting polynomial remaps experimental m/z values to their cor-
rected values. Nonlinear mass corrections are about 1 p.p.m. for the
LTQ Orbitrap mass spectrometer (Supplementary Fig. 2 online).

We next use the two masses of peptide charge pairs to derive an
estimate of the mass accuracy (deviation from the true value) from the
estimate of the mass precision (repeatability of the measurement) by
requiring that mass estimates are within the error range. We then scale
the bootstrap errors by the required factor—between two to three in

our data. As in similar cases18, this factor is
likely due to autocorrelation between the
centroid determinations in subsequent spectra.
To correct for global expansion or contraction
of the mass scale we use well-identified pep-
tides and minimize the mass deviation of
these peptides weighed by their individual
mass precisions.

We plotted the corrected mass precisions for
the 477,511 SILAC pairs in our data set as a
function of peptide signal (Fig. 3a). Mass pre-
cisions are extremely high (p.p.b.) and roughly
proportional to one over the square root of the
peptide signal. Figure 3b shows that 50% of
the peaks have corrected mass precisions better
than 393 p.p.b. In agreement with this, the
actual mass deviations of all identified peptides
(measured minus calculated mass) have a s.d.
of 409 p.p.b. and average absolute mass devia-
tion (average of the absolute value of the
difference between measured and calculated
masses) of 278 p.p.b. (Fig. 3c).

Peptide mass estimates are usually taken
from the MS peak that leads to selecting the
peptide for fragmentation (Fig. 3d). Average
absolute mass accuracy in this standard
approach is 1.8 p.p.m. and s.d. is 2.5 p.p.m.
Thus mass accuracy measured as s.d., a key

performance parameter in proteomics19, improved sixfold using our
computational approach. We suspect the improvement would have
been even greater if we had not used the ‘lock mass option’20. Worse,
even including the lock mass, the normal approach would have
necessitated a maximum allowed mass deviation of 10 p.p.m. for all
peptides, whereas searches are performed with much tighter and
individualized mass tolerances in MaxQuant.

Peptide and protein identification

Because the SILAC state of most isotope patterns is known beforehand,
we can treat the label modifications as fixed in the database search. By
counting the number of arginines and lysines, the SILAC state
distinguishes limit tryptic peptides from incompletely cleaved ones.
This a priori information decreases the search space about tenfold. For
fragmentation spectra not associated with a SILAC pair, a conventional
database search is performed. After a database search, the list of top ten
sequences matching a fragmentation spectrum is sorted according to
their peptide score or P-score21 and filtered for consistency with
a priori information, retaining the best scoring one. We allow a
deviation between the measured and calculated mass of four s.d. of
the individual bootstrap error for each peptide.

We use a database containing all true protein sequences, concate-
nated with reversed nonsense versions of these sequences22,23. To avoid
spurious correlations because half of the reversed tryptic peptides have
the same mass as the forward sequence, we also swapped every
arginine and lysine with the preceding amino acid in the reversed
sequences. This approach still retains the local amino acid relations—
leading to the same length and mass distributions of peptides
(Supplementary Notes).

To assess the likelihood of false identification we generate two lists
of peptides, one for the hits in the forward sequences and one in the
reversed sequences. We construct two histograms by gaussian kernel
smoothing (Fig. 4). They can be interpreted as approximations to the
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Figure 3 Accurate masses and individual peptide mass errors. (a) Mass precision corrected for

autocorrelation of 4477,000 SILAC pairs as a function of integrated signal intensity. Precision is
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total and the conditional probability densities

pðs; LÞ and p s; L X ¼ falsejð Þ

where the Boolean variable X indicates ‘true or false’ (forward) or
‘false’ (reverse) sequences. s is the peptide database score and L the
peptide length. The probability of a false hit, given the peptide
identification score and the length of the peptide is then

p X ¼ falsejs; Lð Þ ¼ p s; LjX ¼ falseð Þp X ¼ falseð Þ
p s; Lð Þ

the posterior error probability (PEP) of each individual peptide. We
use the PEP only as input for calculating the false-discovery rate
(FDR) below. The a priori probability p(X¼false) is a constant with no
effect on the final list of accepted peptides at a given FDR. Longer
peptides, which are less frequent in the database, are automatically
accepted with lower scores.

To determine a cutoff score for a specific
FDR, we sort all peptide identifications, from
the forward and the reverse database, by their
PEP, starting with the best. Peptides are
accepted until 1% of reverse hits/forward hits
has accumulated. The fraction of wrong iden-
tifications in the forward database is then 1%
as well.

In this run, 11,299 sequencing events led to
7,307 peptide identifications (identification
rate of 64.7%, Fig. 5). Sequencing events
associated with SILAC pairs have identifica-
tion rates of 84.4%. Identifications (red
squares) cluster in particular regions of the
contour plot (Fig. 5a), with characteristic
polymer patterns devoid of peptide identifi-
cations (Fig. 5b) and fragmentation events in
peptide-rich regions almost uniformly identi-
fied (Fig. 5c). Note that many SILAC pairs
were not targeted for sequencing at all (32.3%
in this run).

We next assemble peptide hits into protein
hits, a nontrivial step in shotgun proteo-
mics24. Whenever the set of identified
peptides in one protein is equal to or com-

pletely contained in the set of identified peptides of another protein
these two proteins are joined in a protein group. Shared peptides are
most parsimoniously associated with the group with the highest
number of identified peptides (‘razor’ peptides24) but remain in all
groups where they occur. Protein quantification may then be per-
formed based only on unique peptides, including razor peptides, or
using all peptides. By default we use unique and razor peptides as a
compromise between unequivocal peptide assignment and most-
accurate quantification.

We assign to each protein group a PEP by multiplying their peptide
PEPs. Only peptides with distinct sequences and only the highest-
scoring identified spectra are used to avoid bias due to dependent
peptides. Similarly to the peptide PEP, the protein PEP serves to sort
the list of hits from forward and reverse databases. Using a protein
FDR of 1% and requiring that each protein group contain a unique
peptide, we identified 4,149 proteins in the cell line proteome
(Supplementary Table 1 online).
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Figure 4 Peptide score (P-score) distributions. The panels show the distributions of scores in the

forward (blue) and reverse (red) database with peptide length (L) as the parameter. MaxQuant filters

potential hits by a priori information, which moves the reverse hit distribution far to the left. These

distributions are used to calculate the false-positive rate for peptide identification as a function of
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Protein quantification

Many of the isotope patterns that have not been assembled into SILAC
pairs are nevertheless identified by database search. For these peptides
the m/z-elution time shapes of the 3D peaks belonging to the
identified SILAC version are translated to the location of the
missing SILAC partner and after integration of intensities, ratios are
calculated in the same way as for SILAC pairs that were detected
before identification.

Protein ratios are calculated as the median of all SILAC peptide
ratios, minimizing the effect of outliers. We normalize the protein
ratios to correct for unequal protein amounts.

We next calculate an outlier significance score for log protein
ratios (significance A). To create a robust and asymmetrical estimate
of the s.d. of the main distribution we calculate the 15.87, 50 and
84.13 percentiles r�1, r0, and r1. r1-r0 and r0-r�1 are right- and left-
sided robust s.d. For a normal distribution, these would be equal
to each other and to the conventional definition of an s.d. A
suitable measure for a ratio r4r0 being significantly far away from
the main distribution is the distance to r0 measured in terms of the
right s.d.

z ¼ r � r0

r1 � r0

As a P-value for detection of significant outlier ratios we define

significance A ¼ 1

2
erfc

zffiffiffi
2

p
� �

¼ 1ffiffiffiffiffi
2p

p
Z1

z

e�t2=2dt

which is the probability of obtaining a log-ratio of at least this mag-
nitude under the null hypothesis that the distribution of log-ratios has
normal upper and lower tails (Supplementary Fig. 3 online).

For highly abundant proteins the statistical spread of unregulated
proteins is much more focused than for low abundance ones8 (Fig. 6).
To capture this effect, we define another quantity, significance B,
which is calculated only on the protein subsets obtained by intensity
binning. We define bins of equal occupancy such that each contains at
least 300 proteins.

We quantified 4,100 proteins, comparable to the number of
significant messages in a microarray experiment on the same cell
type14 (Supplementary Table 1). If a minimum of three quantifica-
tion events (three SILAC pairs) is required, quantification becomes
very reliable25,26 because an outlier ratio has no effect on the median.
Strikingly, 99.3% of proteins were within 50% of the one-to-one ratio.
This implies excellent SILAC partner identification as wrongly part-
nered peptides would have ratios strongly deviating from 1. We found
48 proteins to be significantly upregulated based on significance B with
a Benjamini-Hochberg27 FDR o 5% (Supplementary Table 2 online).

Notably, two of the most heavily upregulated proteins after 2 h of
EGF stimulation were the transcription factors JunB and the orphan
nuclear receptor NR4A1, also termed early-response protein NAK1
(Fig. 6). Both are known to be regulated by growth stimuli. Among
the most upregulated proteins in Figure 6 there is a conserved dual-
specificity tyrosine-serine phosphatase (MTM1), widely studied in
relation to myotubular myopathy28 and, like PTEN, a lipid phospha-
tase29. The completely uncharacterized protein C1orf52 is tightly
associated with the tumor suppressor BCL10 and therefore also called
BAG for BCL10-associated gene. Neither of these proteins was
known to be induced upon EGF stimulation. Many of the other
significantly regulated proteins also have potential connection to
growth factor signaling (Supplementary Table 1). Proteins encoded
by genes having regulatory binding sites for SREBP-1 are shown to be
significantly upregulated when analyzed by TRANSFAC30. SREPB-1
likely mediates the effects of EGF stimulation on cancer-relevant
proteins like FAS31.

DISCUSSION

We have introduced a set of computational proteomics algorithms
with several useful features. Efficient extraction of mass information
allows us to search protein databases with maximum allowed mass
deviations that adjust themselves to the precision with which the
peptide is measured. The mass accuracies achieved here are the highest
yet reported in large-scale proteomics32 and sharply limit the number
of candidate peptides in database searches. With low-resolution data,
only a few percent of fragmentation events lead to successful identi-
fication33, whereas the mass accuracy and feature extraction in
MaxQuant allow 73% of the fragmentation events associated with
SILAC peptide pairs to be identified. Thus, standard ion trap frag-
mentation is extremely information rich, and nontryptic and modified
peptides do not constitute the majority of fragmented peptides. The
MaxQuant algorithms recently enabled comprehensive quantification
of the yeast proteome34. Although we identified essentially the
complete proteome, we found only three (o1%) of the 814 ‘dubious’
open reading frames (ORFs) (http://www.yeastgenome.org/), which
are not expected to be expressed from evidence such as comparative
genome sequencing. This provides independent evidence that our
FDR estimates of peptide and protein identifications are very stringent
(Supplementary Fig. 4 online). Much higher identification rates
among dubious ORFs (3%) were found in genome-wide tagging
experiments35,36. Likewise, aggregate data from yeast proteome
resources cover 12% of these dubious ORFs37, the same percentage
as their occurrence in the genome.

We have already applied MaxQuant to quantify 45,000 proteins in
the mouse stem cell proteome38 and several other proteomes in similar
depth. We conclude that the computational tools for proteome-wide
quantification are now in hand. With further advances in instrumen-
tation, particularly in the dynamic range of measurements39,40,
proteomics should be suitable for routine ‘functional genomics’
experiments, for which microarrays have so far been the only option.
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Figure 6 Proteome-wide accurate quantification and significance.
Normalized protein ratios are plotted against summed peptide intensities.

The spread of the cloud is lower at high abundance, indicating that

quantification is more precise. The data points are colored by their

‘significance B’, with blue crosses having values 40.05, red squares

between 0.05 and 0.01, yellow diamonds between 0.01 and 0.001 and

green circles o0.001.
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METHODS
Software development and availability of MaxQuant. MaxQuant is developed

for the .NET framework and written in the C# language. The interactive 3D

data viewer was developed on the basis of DirectX. MaxQuant executables are

available via http://www.maxquant.org/, whereas the source code of algorithms

is available in Supplementary Data. It runs on Windows desktop computers

and is compatible with XP and Vista. Processing time is currently about 20 min

per raw file and per processing core. Detailed description of the algorithms used

in MaxQuant can be found in Supplementary Notes.

Data processing. The Mascot program version 2.2.04 was used to generate up

to ten peptide sequence candidates per fragmentation spectrum (Matrix

Science), and International Protein Index (IPI) version 3.48 was searched.

The database search is done with an initial maximum allowed mass deviation of

7 p.p.m. for the peptide mass and 0.5 m/z units for fragmentation peaks, which

is optimal for linear ion trap data41.

Gene Ontology, Pfam domain and TRANSFAC overrepresentation analysis.

P-values for overrepresentation in regulated proteins were calculated with the

Wilcoxon-Mann-Whitney test on the continuous significance B values calcu-

lated by the MaxQuant software.

Data used in analysis. The data used in this analysis have been published in

reference 14. SILAC was performed as described42. Briefly, HeLa cells were

stimulated with EGF for 2 h and mass spectrometric analysis performed as

described20. ‘Heavy’ (EGF stimulated) and ‘light’ (control) SILAC cell popula-

tions were combined and lysed. Proteins were digested in solution with trypsin,

and the resulting peptides were separated by isoelectric focusing into 24 fractions

with an Agilent 3100 OFFGEL Fractionator. Each fraction was purified with

StageTips43 and analyzed by liquid chromatography combined with electrospray

tandem mass spectrometry on a Thermo Scientific LTQ Orbitrap mass spectro-

meter with lock mass calibration20. The experiment was performed in triplicate.

Raw mass spectrometric data files and evidence tables containing

peptide and protein data can be downloaded from Tranche at http://tranche.

proteomecommons.org/.

Note: Supplementary information is available on the Nature Biotechnology website.
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