
structures requires moving beyond existing backbone conformations. 
The task is not only to find a suitable amino acid sequence, but also to 
search through backbone conformations and find those that are ‘design-
able’—that is, those that accommodate sequences that would adopt the 
conformation in nature. Although these studies arguably start with the 
simplest approach (arranging well-defined regular secondary structure 
elements with little or no loop regions), they demonstrate accurate mod-
eling of backbone flexibility—a problem of considerable importance for 
designing functional interactions that we will return to later.

Increasingly, applications of computational design methods aim to 
create proteins with not only new structures but also modified and 
novel functions. At the core of ‘function’ lies, most generally, a physi-
cal interaction between a protein and its partner: a small molecule, 
a substrate, a nucleic acid or another protein. To design functional 
protein interactions, computational strategies have been applied to 
create metal binding sites12,13, protein-protein interactions with new 
and altered binding preferences14–20, highly specific small-molecule 
ligand receptors21, altered protein-DNA interactions22 and catalytic 
activities not observed in naturally occurring enzymes23,24 by opti-
mizing proteins to be complementary to a modeled transition state 
for the desired reaction.

Building on this impressive set of proof-of-concept studies, the ability 
to design protein interactions with defined affinity and selectivity har-
bors great promise for creating specific and sensitive molecular elements 
in many practical areas of biological engineering. Figure 1 highlights 
some of the concepts for the design of functional protein interactions 
that we will discuss. Applications include engineered proteins function-
ing as biological sensors or as actuators that interface with existing cel-
lular machinery to control biological processes. Designer molecules can 
function as probes to dissect complex cellular protein networks and thus 
aid in the discovery and validation of disease targets. Protein properties 
may be engineered to improve the characteristics of biotherapeutics and 
reduce side effects, and protein mimics of antigenic epitopes can make 
potent vaccines. Finally, in concert with powerful methods for directed 
evolution of protein functions25, protein design can generate useful 
molecular ‘parts’ to make biology easier to engineer, both by building 

Computational protein design—the automated search for amino acid 
sequences with defined three-dimensional structures—opens exciting 
possibilities for the engineering of biomolecules with desired shapes, 
precisely selective functional interactions and new catalytic activities. 
More than two decades ago, Ponder and Richards proposed a practical 
solution for designing proteins1. First, three-dimensional conformations 
of each amino acid side chain residue in a protein are picked from a 
predefined set of conformers. Combinations of these residues are then 
fit onto a fixed main-chain polypeptide backbone taken from an existing 
protein structure. The suitability of an amino acid sequence for a given 
structure is evaluated by the tight fit, or ‘packing’, of the atoms within 
the buried core of the protein structure. The procedure is an elegant way 
of reducing the enormous problem posed by protein design—searching 
both sequence and structure space simultaneously to find solutions with 
low free energy—to something much more manageable: matching a 
sequence to a defined backbone ‘template’ by only allowing discrete 
choices for the amino acid side chains. This formulation of ‘fixed back-
bone design’ is still the basis for much work in the field.

Since the development of initial protein design concepts1–3, several 
studies, each including experimental validation of computationally 
designed sequences, have produced a series of remarkable achievements. 
These milestones include predicting sequence changes that alter atomic 
packing arrangements in the buried core regions of proteins4–7, increas-
ing protein stability (summarized in ref. 8), and designing a completely 
new sequence for an existing small protein9.

Even protein structures not found in nature have been successfully 
designed, either by creating new arrangements of α-helices in dim-
ers, trimers and tetramers10, or by composing α-helices and β-sheets 
into a new fold ‘topology’11. By definition, creating these new protein  
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the great number of other possibilities that significantly differ from 
experimentally observed three-dimensional structures of the protein 
in question. This issue is called the ‘scoring problem’. To further com-
plicate matters, sampling and scoring are generally not independent: a 
‘scoring function’ that evaluates the energetics of sampled conforma-
tions typically guides the progress of protein structure prediction and 
design simulations.

Current protein design methods make key simplifications in sampling 
and scoring to enable searching through both sequence and conforma-
tional space. Sampling strategies limit accuracy by restricting the num-
ber of backbone and side chain conformational degrees of freedom that 
are varied during a simulation (Box 1 and Fig. 2). Several assumptions 
in design energy functions limit their accuracy as well (Box 2 and Fig. 
3). The contribution of conformational entropy is generally ignored, 
and for computational efficiency, waters are typically not explicitly con-
sidered. Electrostatics and solvation models are often simplified to be 
pairwise additive, which precludes modeling environment-dependent 
energies30–34. Several recent reviews describe in more depth confor-
mational sampling and sequence optimization methods27,35 as well as 
design energy functions27,36,37.

Achievements and challenges in protein interface design
The objective of designing proteins with not only new structures35 but 
also novel functions has been realized by engineering new and modi-
fied binding activities into a number of different protein systems. With 
a focus on the design of protein-protein interfaces, we will highlight 
achievements using the frameworks illustrated in Figure 1 and specific 
experimentally characterized examples (Fig. 4).

Making existing interactions stronger. A frequent application of com-
putational interface design is to increase the affinity of interactions38–43 
(Fig. 1a). Protein variants binding more tightly to their partners are 
useful as specific inhibitors for detailed mechanistic studies of existing 
interactions. They also have potential therapeutic uses, either for tar-
get validation or as biotherapeutics themselves. A striking example of a 
proof-of-concept design success in this context is increasing the affinity 
of antibody-antigen interactions beyond in vivo levels39.

A basic philosophy underlying several approaches is to target resi-
dues for design whose computed per-residue contribution to the 
binding energy is less favorable than what would be expected, on 
average, for the same amino acid in a similar protein environment. 
A straightforward strategy is to increase the amount of hydrophobic 
surface area buried in the interface40. Because design energy func-
tions make substantial approximations, however, correct ranking of 
designed sequences is a significant challenge, and many predictions 

new functions and by creating part families based on existing functions, 
where each family member has defined functional characteristics.

Keeping these ambitious long-term goals in mind, we will highlight 
both opportunities and difficulties in the field, focusing specifically on 
computational design of functional protein-protein interactions (see also 
refs. 26–28), although many of the key concepts and unsolved problems 
apply to protein structure prediction and design more generally. It will 
be increasingly important to develop innovative approaches to design 
proteins that are ‘fit’ to function in complex cellular environments—
a considerable challenge given that the criteria for protein ‘fitness’ are 
generally not well understood. Moreover, many fitness criteria, such as 
catalytic activity, are currently difficult to define as objective functions, 
which are needed for design optimization algorithms. Finally, because 
both sequence and structure space are vast, a finer mapping of these 
spaces (computationally and experimentally) is needed to develop more 
accurate predictive models. In light of these challenges, recent studies 
have highlighted exciting developments in computational methodolo-
gies that are ready for wider-reaching applications.

Key concepts in design methodology
Protein design, and the related problem of protein structure prediction, 
both require an understanding of the relationship between sequence 
and structure29. Thus, they share common challenges. Structure predic-
tion starts with a known sequence, but involves probing, or ‘sampling’, 
many possible protein conformations. Given the vast space of possible 
structures, sampling conformations that resemble folded and functional 
proteins (‘near-native’ conformations) is difficult. A second challenge 
is positively discriminating near-native protein conformations from 
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Figure 1  Concepts for protein interface design. (a) Designed substitutions to 
increase interface affinity can either be made in both partners in a complex 
(left) or just to one partner designed to match a fixed target (right). Such 
strategies are useful to develop protein interaction inhibitors. (b) One of 
the simplest formulations of the selectivity design problem is to change an 
existing interface A-B so that the two new partners A' and B' specifically 
recognize each other in such a way that cross-talk interactions with their 
original wild-type partners (A'-B and A-B') are avoided (left). Such ‘orthogonal 
pairs’ are useful for re-wiring of signaling pathways mediated by protein 
interactions. The right schematic illustrates the design of a homodimer into 
a heterodimer. (c) Functional design of ‘hub’ proteins accounts for multi-
specificity across shared interfaces (left). Many key signaling proteins, such 
as GTPases (right), exhibit multi-specificity through overlapping interfaces 
that bind several partners (GTPase Ran in grey, multiple partners colored). 
(d) Protein design can be useful to dissect individual interactions (left), an 
approach that is complementary to common knockout approaches of genes or 
proteins (right).
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the predicted hydrogen bonding geometry closely resembled that 
observed in the crystal structure.

Changing interaction preferences. A fascinating but challenging appli-
cation of protein interface design is changing the specificity of inter-
actions (Fig. 1b–d). Specificity is by definition a property of multiple 
‘states’, such as when a protein adopts different conformations or binds 
multiple partners. A selectivity design strategy, then, must not only con-
sider optimization for the target, termed ‘positive design’, but may also 
involve ‘negative design’, which selects against ‘competitors’: alternative 
conformations (for example an aggregated state) or unwanted binding 
partners. Specificity then arises from the preference for a given confor-
mation or set of binding partners over others. A general computational 
strategy to formulate the design of specificity as a multistate optimiza-
tion problem has been developed and successfully applied to engineer 
selective coiled-coil pairs46.

As may be guessed, the necessity for negative design will depend on 
the potential for cross-reactivity in the design system. In an elegant study 
converting a homodimer into a heterodimer, both positive and negative 
design strategies were compared on the same system47. In cases where 
desired and unwanted binding partners have similar structures and 
sequences, negative design appears essential15,46,47. Conversely, positive 
design alone18,19 may be sufficient if there are fewer features in common 
between targets and competitors47.

A simple proof-of-concept objective for specificity redesign is to con-
vert an existing binary protein interaction into a new selective protein 
pair by substantially remodeling the interface on both partners (Fig. 
1b, left). Such ‘orthogonal’ interacting pairs have been constructed16,45 
and are useful for engineering new signaling pathways, as well as for 
characterizing the role of cross-talk in existing networks. To construct 

overestimate the stabilizing effect of small-to-large mutations. Both 
the entropic cost of introducing large side chains and the penalty 
of burying neighboring polar groups resulting from an increase in 
hydrophobic surface area are frequently underestimated39. Instead, 
two strategies for electrostatic stabilization have been proposed39. In 
the first, polar groups with poorly satisfied hydrogen bonding donors 
and acceptors are replaced by hydrophobic residues to decrease des-
olvation costs. An alternative is to engineer intermolecular charge-
charge interactions in the interface periphery where desolvation is 
minimal. Both approaches may improve designs because estimating 
their effects primarily involves calculating solvation and medium-
range electrostatics that are less sensitive to precise atom locations. A 
related strategy has focused on increasing on-rates of protein interac-
tions through introduction of electrostatic steering interactions44.

Most successful strategies to increase interaction affinity perform 
individual mutations—often selected to be separated from each other 
in the three-dimensional structure—and then combine those muta-
tions that were experimentally found to stabilize the interface38,39,41. 
This strategy of course ignores potential coupling effects between the 
individual mutations. It may, however, avoid the problem that one desta-
bilizing mutation out of many designed changes in the interface can 
‘mask’ many correctly predicted stabilizing substitutions27.

An example for designs requiring multiple, likely coupled muta-
tions is the engineering of an intricate hydrogen bonding network, 
since all hydrogen bonding donors and acceptors buried in the 
interface should be satisfied. Such a network has been designed and 
structurally verified45, but it remains difficult to estimate the contri-
bution of the designed polar interactions to the binding free energy. 
Consequently, the designed hydrogen bonding network resulted in an 
overall weaker interaction affinity of the designed complex, although 

Box 1  Sampling concepts in computational protein design
The sampling problem in protein design is typically simplified 
by the use of a fixed polypeptide backbone that is commonly 
taken from an experimentally determined protein structure. 
Increasingly, backbone flexibility is taken into account in design 
as well, either by designing on an ensemble of backbone con-
formations, by iterating backbone and sequence optimization or 
by simultaneously exploring backbones and sequences (see also 
Table 3 for details and references on flexible backbone meth-
ods). Sequence and side chain conformational space are sam-
pled employing a library of different rotamers93 (conformations 
generated by discrete rotations around the side chain torsion 
angles) for each amino acid. Generally, flexible backbone meth-
ods yield a larger diversity of designed sequences and side chain 
conformations, as can be seen by comparing Figure 2a with b.

Because complete enumeration of all combinations of se-
quences and side chain conformations is generally intractable—
even when using a fixed backbone—design methods employ a 
variety of computational optimization techniques for finding low 
energy sequences94. Optimization methods are subdivided into 
‘deterministic’ approaches such as dead-end elimination68,69,95 
that are guaranteed to reach the lowest energy sequence for a 
given backbone and scoring function (unless the design problem 
is too large), and ‘stochastic’ methods that are not. Frequently 
applied stochastic approaches use Monte Carlo simulated an-
nealing96, genetic algorithms6 or the FASTER method97,98. As 
can be expected, there is a tradeoff between accuracy and speed 
of sequence optimization methods99.

a b

Figure 2  Sampling in fixed and flexible backbone protein design. Shown are 
low energy sequences and side chain conformations from 40 independent 
design simulations using Monte Carlo simulated annealing as described in 
ref. 96 in the core and interface region of a small protein recognition domain 
(PDZ). The crystal structure backbone (Protein Data Bank (PDB) code 
1BE9) is shown as silver Cα trace, the wild-type side chains in thick stick 
representation, and alternative designed side chains in transparent thin stick 
representation. (a) Side chain sampling on the fixed backbone taken from the 
crystal structure yields only a small number of different low energy sequences 
and side chain conformations. (b) More diverse low energy sequences and 
side chain conformations are found using a flexible backbone design protocol, 
where backbone movements and sequence design steps are iterated. Sampled 
backbone conformations are shown in thin transparent Cα trace.
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times or locations49. In such cases, in order to dissect the functions of 
individual interactions, the objective of protein design may be to reen-
gineer a ‘multi-specific’ interface to selectively recognize some, but not 
all of its binding partners (Fig. 1d). A computational design strategy 
applied to such multi-specific proteins with shared interfaces suggested 
that it may be possible to alter their interaction patterns50 (Fig. 5). The 
sequences of shared interfaces were designed in two different compu-
tational experiments. First, the sequence of the shared interface on a 
hub protein was computationally optimized for each binding partner 
separately. In the second computational experiment, the design strategy 
was switched to a ‘multi-constraint’ approach that aimed to predict hub 
protein interface sequences that would be consistent with all interaction 
partners considered. As expected, the multi-constraint approach yielded 
sequences that were much more similar to the naturally occurring inter-
face sequence, which may be constrained by the requirement to bind its 
multiple partners. Moreover, a comparison of the resulting ‘single’ and 
‘multi-constraint’ sequences provides information on, first, how the natu-
rally occurring interface may be optimized for its promiscuity and, sec-
ond, how the interface could be changed to alter interaction patterns. If it 
is possible to predict mutations in a shared interface that selectively affect 
certain interactions and not others (Fig. 1d), an upcoming challenge is 
then to develop experimental methods to characterize the biochemi-
cal and in vivo consequences of these perturbations. Such a combined 

these pairs, one strategy is a ‘computational second-site suppressor’ 
approach16. First, a mutation is introduced into one of the partners 
(A′) to destabilize its interaction with its original partner, B. Then muta-
tions in the interface on the second partner are sought (B′) that both 
compensate for the A′ mutation to form a stable A′-B′ complex and 
destabilize the A-B′ interaction.

Two patterns for specificity design have emerged through this pro-
cedure16. In one approach, called a ‘steric switch’, destabilization and 
compensation are achieved through ‘bump-hole’ designs, similar to a 
strategy for designing specific kinase variant–ATP analog pairs48. A sec-
ond pattern is a ‘polarity switch’, where an intermolecular polar interac-
tion network is replaced with a hydrophobic one or vice versa16. Changes 
in specificity suggested by computational design have been compared to 
those observed in naturally occurring homologs of the redesigned pairs, 
and both existing and new motifs were discovered16,46.

Designing promiscuity and interaction patterns. In a variation on the 
theme of selectivity design, it may be desirable to optimize a protein to 
bind not just one, but multiple target proteins (Fig. 1c). Such ‘multi-
specificity’ is a property of many ‘hub’ proteins in naturally occurring 
protein-protein interaction networks. Frequently, the hub protein uses 
a shared interface to bind several of its partners, as could be the case for 
proposed ‘date hub’ proteins that interact with their partners at different 

Box 2  Scoring concepts in computational protein design
Energy or ‘scoring’ functions in protein design (Fig. 3) generally focus on modeling three fundamental components: (i) detailed atomic 
packing interactions within and between proteins (Fig. 3a), (ii) polar interactions involving ion pairs and hydrogen bonds, often including 
an explicit hydrogen bonding orientation dependence100,101 (Fig. 3b) and (iii) the interactions of protein atoms with the solvent, includ-
ing a penalty for the desolvation of buried polar groups (Fig. 3c). Many scoring functions used in design frequently also contain statistical 
terms to describe propensities of amino acids for backbone and side chain torsion angles, approximations to the conformational entropy of 
protein side chains, and the energy of the unfolded state ensemble96,102.

While these approximate energy functions have been successfully used in protein structure prediction and refinement as well as design, 
it should be noted that accurate structure prediction may be easier than correctly ranking designed sequences with similar energies, since 
near-native structures generally have much lower predicted energies than other structures. For this reason, experimental tests of large 
numbers of designed sequences to evaluate and improve scoring functions are of great interest.
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Figure 3  Dominant contributions to protein design scoring functions. (a) Atomic packing interactions. The well-packed core of a PDZ domain (top 
left) would be destabilized by changes in side chain size, such as an alanine-to-phenylalanine substitution (top right, phenylalanine shown in green). 
Packing interactions are typically described using van der Waals potentials (bottom). The backbone is shown in transparent cartoon representation, and 
side chains are shown as spheres. (b) Hydrogen bonding. The intricate geometry of a hydrogen bond network in the interface between the DNAse E7 
(orange backbone) and its inhibitor Im7 (grey backbone) (PDB code 7CEI) (left) would be disrupted by changes in side chain donor/acceptor groups 
and their orientations (right). The bottom panel shows parameters used in a geometry-dependent hydrogen bonding potential101: the distance between 
the hydrogen (H) and the acceptor (A) (dHA), the angle at the hydrogen (Θ), the angle at the acceptor (Ψ), and the donor (D)–hydrogen (H)–acceptor 
(A)–acceptor base (AB) torsion angle (Χ). Side chains are shown in stick representation. (c) Solvation. The hydrophobic core of a PDZ domain (left) would 
be destabilized by an isoleucine-to-glutamate substitution (right). Solvation potentials favor the exposure of polar groups to the solvent and associate a 
penalty with burial of polar groups (bottom). Core side chains are shown as sticks with a transparent surface representation.
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computational approaches may be preferred if the design strategy has 
multiple objectives, such as binding to multiple targets and avoiding 
others. These requirements could also be included in the screening pro-
cedure, together with other potentially unknown selection pressures that 
are implicit in a screen. Nevertheless, if multiple desired objectives can 

computational and experimental approach may enable mapping of the 
cellular functions of individual interactions involving hub proteins.

Creating new interfaces. The computational design and structural 
validation of an entirely new high-affinity protein-protein interface 
is still an outstanding challenge, but progress 
has been made toward this goal. One strategy 
for creating de novo interfaces is to derive tem-
plate backbone arrangements from large-scale 
protein-protein docking experiments, and then 
to optimize interface sequences for each of the 
complex templates. Using this approach, a 
small domain was converted from a monomer 
into a heterodimer, although with only modest 
high-micromolar affinity51.

A simpler problem than creating a de novo 
interface is to design a new interface between 
two proteins that do not interact with measur-
able affinity, but have structurally similar part-
ners that do. This goal was achieved by fusing 
domains from distantly related homing endo-
nucleases and optimizing their interface for 
binding (Fig. 4b). Introduction of eight com-
putationally designed mutations resulted in a 
new functional chimeric protein whose crystal 
structure matched the design predictions14. In 
this study, both partners were redesigned to 
optimize their interaction. A more common 
case may be that a specific binding partner 
is desired for a native target whose sequence 
cannot be altered simultaneously. For example, 
the binding site of a PDZ domain, a common 
mediator of protein-linear motif interactions, 
was redesigned to match a number of defined 
peptide targets17.

Both design studies above were aided by 
the target interfaces being structurally well 
defined. In the chimeric protein case, the 
interface was formed around two well-packed 
α-helices. In addition, most of the redesigned 
side chains in the interface area were buried, 
and the backbone, which was kept fixed in the 
design simulations, was found to be essentially 
unchanged when the crystal structure of the 
designed complex was solved14. In the case of 
PDZ domain–peptide interactions, the back-
bone is also largely constrained, as the binding 
peptides complement a β-sheet in the PDZ 
domain by inserting an extra strand between 
the protein sheet and an α-helix.

Directed evolution experiments have been 
very successful in generating many examples of 
new interfaces, often using antibodies or mim-
icking their selection strategy by randomizing 
loops displayed from a protein ‘scaffold’ and 
selecting for binding52. Computational strat-
egies may provide advantages over directed 
evolution experiments in cases where the 
binding interface needs to be defined a priori 
(for example, because a certain mechanism of 
activation or inhibition is desired). Second, 
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Figure 4  Structurally characterized designed protein-protein interfaces. In each case, different protein 
chains are shown in cyan and blue in cartoon representation. The residue positions considered in 
design are shown as color-coded spheres at the Cα position: red positions were mutated from the wild-
type residue; wheat positions retained the wild-type amino acid residue type after design. Schematics 
illustrating the design objective are as in Figure 1. (a) A designed heterodimeric coiled-coil, PDB code 
1KD8 (ref. 84). (b) A designed chimeric homing endonuclease, PDB code 1MOW (ref. 14). The protein 
is bound to DNA shown in grey. (c) Two designed pairs of a colicin DNase-inhibitor complex, PDB codes 
1UJZ (left)16 and 2ERH (right)45. (d) A designed heterodimer derived from the SspB homodimer, PDB 
code 1ZSZ (ref. 47). (e) A designed interface between SHV-1 β-lactamase and β-lactamase inhibitor 
protein, PDB code 3C4O (ref. 42). (f) A peptide redesigned to bind the HIV-1 protease homodimer with 
increased affinity, PDB code 2NXD (ref. 85).
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A second source of needed experimental information relates to the 
design process itself. Fundamentally, computational design seeks to rank 
sequences with respect to the structural and functional requirements 
of the design objective. While the major demonstration of success in 
design has been through experimental proof-of-concept analysis of one 
or a few sequences, deemed most favorable by a scoring function and 
manual inspection, a more informative test may be to experimentally 
characterize as many designed sequences as possible. A comparison of 
the computational and experimental rankings of designed sequences for 
different design criteria, such as protein interaction affinity and mono-
mer protein stability, would contribute to a better understanding of 
successes and failures of design scoring functions.

Translating modeling progress to applications
There are several key areas in high-resolution protein modeling where 
recent advances may contribute to protein interface design. First, the 
high-resolution modeling of protein conformational ensembles can 
broaden and enrich the predicted sequence space for functional pro-
teins. Additionally, more extensive local structural ‘remodeling’ of pro-
tein regions can enable engineering new functional conformations or 
reshaping protein surfaces to create entirely new interactions. Further, 
multi-state methodologies for optimizing protein sequences for many 
structural and functional constraints may aid the design of proteins that 
perform specific functions in the context of complex biological environ-
ments. We next highlight progress in each of these areas.

Backbone flexibility in protein design. The vast majority of the successful 
applications of computational protein design of structure and function 
to date have relied on the assumption of a fixed polypeptide backbone 
onto which amino acid side chains are modeled. Taking into account 
rearrangements of the protein backbone is a considerable challenge, 
both because of the enormous increase in computational complexity 
and owing to the fundamental need for increased accuracy in sampling 
and scoring methods (Boxes 1 and 2). Thus, it has been a long-standing 
problem to develop and, importantly, adequately test flexible backbone 
protein design approaches53. Assessing these methods is not trivial, 
as engineering successes generally do not provide enough test cases. 
Encouragingly, large informative datasets are becoming increasingly 
available. Examples include collections of structural changes observed 
upon point mutations54, as well as sequences compatible with a given 
protein interaction55,56, where sequence variation is likely concomitant 
with slight structural adjustments. Approaches to backbone flexibility are 
summarized in recent reviews35,53,57 and include making small random 
moves of the ψ and φ backbone torsion angles7, sampling backbones 
from a parametric family of structures10, performing normal mode 
analysis58, gathering backbone ensembles from available crystal struc-
tures59 or computational methods60–62, and iterating between sequence 
and structure optimization borrowing techniques from protein structure 
prediction11,63–65. More technical details on different approaches and 
their assessment are given in ref. 53 and highlighted in Table 3.

There are several classes of design problems that require a treatment 
of backbone flexibility to varying degrees (Table 2). First, the ability to 
predict backbone conformational changes at high resolution is needed 
to model how proteins react structurally to the mutations introduced in 
protein design. This is critical, as the inability to accurately model con-
formational changes is a major reason that design predictions fail. Even 
when structural adjustments are relatively small, the energetic effects 
of these rearrangements can be substantial. In this respect, it is encour-
aging that methods to model small structural changes in response to 
mutations have shown improvements in predicting the effects of point 
mutations on protein structure54,66 and stability67.

be encoded correctly and efficiently in a design procedure, it may also be 
possible to characterize how the different objectives shape the resulting 
sequence ‘fitness’ across the landscape of input constraints.

Experimental characterization is key. At least two types of information 
are critical for further development of more accurate computational 
design methods.

First, experimentally determined three-dimensional structures of 
the designed molecules are required to assess and improve the qual-
ity of computational methods, and often more can be learned from 
predictions not born out as expected. Structural information is also 
necessary to judge whether a computational design was successful for 
the right reasons. Tables 1 and 2 highlight cases where computational 
designs were characterized structurally in two different areas relevant 
to this review: when protein interfaces were redesigned (see also Fig. 4), 
and when flexibility of the protein backbone was explicitly taken into 
account in the design process (which we will discuss further below). 
Solved protein structures illuminate some of the key difficulties in 
modeling protein interfaces. A particular characteristic of interfaces, 
in contrast to protein core design, is their substantially polar surface 
that needs to be satisfied by designed interactions. Accordingly, sev-
eral results from experimental interface design studies highlight the 
difficulty in modeling the balance between electrostatic and solvation 
effects, in particular with interface-bound water molecules or complex 
polar networks45, where polarization effects cannot be ignored. In some 
cases, defined water molecules in protein-protein interfaces cannot be 
displaced upon design, even when specific side chain–side chain inter-
actions were intended to replace the water-mediated interactions45.

a cb

d fe

Figure 5  Design of a multi-specific protein-protein interface. (a–f) Using the 
GTPase Ran as an example, the figure illustrates the predictions resulting 
from two computational experiments50: a ‘single-constraint’ simulation, 
where the shared interface on Ran is optimized using computational design to 
match binding to several of its partners separately (a–e, corresponding to Ran 
in complex with partners 1–5 in Fig. 1d), and a ‘multi-constraint’ simulation, 
where the shared interface is optimized to be consistent with all 5 binding 
partners (f). Shared interface residues on Ran are defined as positions that 
are contacted by at least three partners, and are indicated by Cα spheres and 
light cyan surface shading (Ran binding partners are omitted here to allow 
viewing the Ran interface). In each case in a–e, if the design simulation 
identified the native amino acid residue type as the most favorable, the Cα 
sphere is color-coded according to the respective partner in Figure 1c. The 
pattern of positions where the design methodology identifies the native amino 
acid type are varied between partners, suggesting strategies to optimize 
interaction selectivity. Slight conformational changes of the Ran interface 
in the different complexes can also be appreciated. The multi-constraint 
simulation yields a substantially more native-like interface (f, magenta), 
suggesting that multi-constraint design reflects at least to some extent the 
multiple constraints acting on the Ran interface to bind its partners.

802 volume 5   number 11   november 2009   nature chemical biology

r e v i e w
©

20
09

 N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



Most practically, flexible backbone methods broaden the design 
sequence space and thus may increase the probability of selecting 
functional sequences. A recent study has demonstrated that designing 
sequences for a protein-protein interface on an ensemble of backbone 
conformations improved the correspondence between amino acid 
type distributions selected computationally61 and from comprehen-
sive phage display selection experiments55. Thus, to maximize success 
with challenging protein interface engineering projects, structure-
based computational methods may become valuable in designing 
sequence libraries enriched in functional members that can then be 
experimentally screened71. Additionally, improvements to sampling 
methods may in turn help to detect and overcome weaknesses of 
scoring functions.

Remodeling proteins for function. In general, the flexible backbone 
approaches described above produce deviations from starting structures 
that are quite small. However, important protein interface engineer-
ing objectives require development and assessment of more aggressive 
approaches to modeling protein conformational variability. These tasks 

Additionally, backbone flexibility is needed to explore conformations 
around a desired structural template, particularly in cases where the 
target protein topology is not observed in nature. In this case, it is not 
clear whether the intended structure is designable, and iterating between 
optimizing a sequence for a fixed structure and optimizing the structure 
for a fixed sequence—which may be necessary to sample a designable 
conformation—has been successful11,64.

In related applications, it has been shown that designing on 
ensembles of near-native sampled conformations can change the 
characteristics of the predicted sequences in comparison to design-
ing on the native structure alone. Sequences derived from flexible 
backbone approaches are typically lower in predicted energy68,69 
and in many cases more closely resemble sequences in the natural 
family of the target protein59,60,65,70. Thus, even though differences 
in selection pressures complicate comparisons between natural and 
designed sequences, flexible backbone methods may nevertheless 
open exciting avenues to fundamentally improve understanding of 
the relationships between sequence, structure, dynamics and func-
tion in natural protein families53.

Table 1  Structurally validated protein interface designs
Goal/system Design strategy Biochemical and structural validation Ref.

Create a new, chimeric DNA 
cleaving enzyme (Fig. 4b)

Fusion of two domains from natural endonu-
cleases and redesign of the chimeric interface

Designed 14 interface positions to produce an enzyme with native-like 
cleavage rates for a chimeric DNA target site by introducing 8 mutations

A crystal structure matched the design to 0.8 Å Cα r.m.s. (root mean 
square) deviation

14

Alter specificity of colicin 
DNAse–immunity protein 
pairs: design complex mutants 
that recognize each other but 
not their wild-type partners 
(Fig. 4c)

‘Computational second-site suppressor’ strategy: 
design of interface mutations intended to  
destabilize interactions with the wild-type  
partners while stabilizing the mutant complex

3 designs were demonstrated to have the desired switched interaction 
selectivity (although weaker affinity than the original complex) through  
in vitro binding assays and functional assays in vitro and in E. coli

The crystal structure of one mutant complex agreed with the design to 0.5 
Å Cα r.m.s. deviation

Some differences between the predicted and experimental structures were 
attributed to water molecules with specific interactions not included in 
the design calculations

16

Increase the specificity switch 
between mutant and wild-type 
colicin DNAse–immunity  
protein complexes (Fig. 4c)

Design of interface residues on a series of  
systematically sampled rigid-body orientations of 
the two protein partners to optimize specificity 
for a binding mode; optimization of the design 
based on a crystal structure

Design of a new hydrogen bonding network in a protein interface, and  
confirmation by X-ray crystallographic analysis

The crystal structure of the design revealed a water molecule maintained in 
the mutant interface, resulting in conformational strain and packing defects

Further design based on insights from the mutant crystal structure  
conferred at least a 300-fold specificity switch against the wild-type partners

45

Convert the homodimeric 
SspB adaptor protein into a 
stable, specific heterodimer 
(Fig. 4d)

Asymmetric design of 8 positions at the dimer 
interface using one strategy that accounted only 
for heterodimeric stability (positive design), 
and another that explicitly penalized competing 
homodimeric states (negative design)

The stability-only calculations produced a complex that was more stable 
but also existed in homodimeric states, while taking negative design 
into account was necessary to obtain specificity for heterodimers, at the 
expense of stability

A crystal structure of the heterodimer showed that designed side chains 
were accurately predicted, although two side chains differed at the χ2 
angle, and one side chain with a high B-factor differed at the χ1 angle

47

Increase affinity and  
specificity of β-lactamase 
inhibitor protein (BLIP) for 
SHV-1 β-lactamase (Fig. 4e)

Redesign of clusters of residues in the BLIP–
SHV-1 interface to increase the stability of that 
complex

Several designs increased affinity for SHV-1 while decreasing affinity for 
TEM-1 β-lactamase

Crystal structures of the two highest affinity complexes showed that sev-
eral designed side chain conformations were correctly predicted, but a 
critical interfacial salt bridge was missed in both models; the authors sug-
gested that flexible backbone methods with a larger rotamer library might 
have predicted the salt bridge

42

Increase the affinity of RT-RH 
peptide for inactivated HIV 
protease (Fig. 4f)

Combination of predictions from charge  
optimization and sequence design to produce 
single, double and triple mutants at 8 residue 
positions

Isothermal titration calorimetry showed that one of three designs improved 
affinity by tenfold; observed affinities arose from reducing the entropic 
cost of binding at the expense of lowering enthalpic gains compared to the 
wild-type sequence

Crystal structures of two of the designed peptides showed good agreement 
with the models, while a third showed rotameric deviations at designed 
positions

85

Predict the structures and  
stabilities of a family of  
heterodimeric coiled coils 
(Fig. 4a)

Sequence design of hydrophobic residues at 
opposing positions in the oligomeric interface, 
and enforced heterodimerization though oppo-
sitely charged interface residues; designs used 
an ensemble of backbone conformations derived 
from parameterized models of coiled coils

Predicted stabilities of minimized designs showed good agreement with 
values from chemically induced unfolding experiments

Crystal structures were within 0.7 Å r.m.s. deviation of the models over all 
heavy atoms on average

84
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developments in the high-resolution modeling of protein regions devoid 
of regular secondary structure. New methods employing ‘inverse kine-
matics’ can rapidly move loops or defined protein segments to new con-
formations with prescribed endpoints, bond lengths and bond angles78. 
The basic principles are borrowed from robotics, where calculating the 
accessible conformations of objects subject to constraints, such as deter-
mining the possible positions of the interior joints of a robot arm given 
fixed positions for the shoulder and fingertips, is a well-studied problem. 
For proteins, the task becomes modeling the ‘mechanically accessible’ con-
formations of segments in the structure, and evaluating the larger number 
of sampled conformations using a physically realistic energy function. If 
these methods of segment reshaping can be successfully integrated with 
protein design, they open avenues to mimic the natural ability of proteins 
to use loop regions for achieving tight surface complementarity in inter-
faces. Such methods for surface-matching could be used in combination 
with grafting hot spot motifs for engineering new tight binding partners 
for existing targets, for reshaping peripheral interface regions to increase 
selectivity, or for creating new functional conformational switches.

Modeling context and function as constraints. To engineer new proteins 
that function in realistic biological contexts, techniques are needed to 
optimize protein sequences for ‘fitness’ within a complex environment, 
where proteins must form desired interactions while avoiding unwanted 
competitors. Other fitness constraints may require proteins to adopt 
multiple conformations to function. A signaling switch protein, such as 
a small GTPase, has many functional requirements, some of which are 
unknown. The GTPase needs to adopt different conformations and transi-
tion between them in response to interactions with nucleotides and other 
proteins, while specifically recognizing a variety of downstream binding 
partners responsible for propagating the switch signal. While designing 
such complex biological systems computationally is a daunting task, many 
recent computational developments mark progress toward this goal. These 
developments include methods to model at high resolution how protein 
switch loop regions change in response to binding different partners78, to 
design specific small-molecule sensors21 and biocatalysts with activities 
not observed in nature23,24, and to integrate multiple positive and negative 
constraints on protein binding15,46,50,79,80.

As discussed above, negative design is particularly important in 
cases of strong structural and sequence similarity between targets and 
competitors15,46,47. Such cases frequently arise because many protein 
interactions in cells are mediated by large families of domains using 
recurring protein-protein and protein-peptide interaction motifs. 

include creating proteins that are selective in the context of complex cel-
lular networks, engineering new high-affinity binders for specified tar-
gets, and designing ‘switches’ that change their conformation in response 
to a signal. The overarching goal is to produce reliable predictive meth-
ods to engineer new and functional conformations into proteins.

A key idea used in several strategies for engineering new protein func-
tions has been to ‘transplant’ elements from naturally occurring proteins 
with a given function into a new context. Many of these concepts were 
developed to place sets of residues into proteins forming the precise 
geometry of metal binding sites13. Related ideas were used to graft the 
putative binding epitope of interleukin-4 for its receptor onto a helical 
face of the leucine-zipper domain of the yeast transcription factor GCN4 
as a scaffold72, and to transplant ‘hot spot’ residues for the interaction 
of erythropoietin with its receptor onto an unrelated small protein, a 
PH domain73. A similar geometric matching strategy was applied to 
replace a set of residues in the TEM1 β-lactamase–inhibitor interface 
with a five-residue motif from a different protein74. Interestingly, the 
chosen motif was not derived from another protein-protein interface, 
but from a protein core region74.

Several computational strategies have been developed to allow the 
matching of desired features—hot spot residues, interaction motifs or 
loops—to a given scaffold2,73–75. In general, these methods find loca-
tions in the backbone of a potential scaffold that have the correct relative 
spatial arrangement and directionality of Cα-Cβ vectors matching the 
geometry of the desired motif. Such a strategy was also used to generate 
proteins with new catalytic activities23,24 by finding scaffold proteins that 
could support the arrangement of putative catalytic residues around a 
modeled transition state75.

In all cases described above, the polypeptide backbone of the scaf-
fold stayed fixed, and the computational strategies employed varying 
degrees of design and remodeling restricted to side chain conforma-
tions around the introduced motif. In the general case, ‘motif-directed 
design’, or grafting of multiple protein segments to reengineer entire 
binding sites, may require remodeling of the protein backbone, either to 
accommodate the precise geometry of the motif or to reshape the area 
around it to support and stabilize the introduced substitutions76. Toward 
these goals, entire loops have recently been grafted and redesigned, while 
allowing some backbone flexibility, to create new loop sequences with 
correctly modeled structures at high resolution64 and to modulate the 
substrate specificity of an enzyme77.

A promising approach to more extensively ‘reshape’ protein sur-
faces and mediate new interactions could take advantage of recent  

Table 2  Structurally validated designs employing flexible backbone approaches
Goal/system Design strategy Biochemical and structural validation Ref.

Design dimeric, trimeric and  
tetrameric helical bundles with  
right-handed topology

Hydrophobic-polar residue patterning 
and side chain packing calculations 
applied to algebraic models of helical 
bundle backbones with a right-handed 
superhelical twist

Sedimentation equilibrium analysis showed the oligomerization states 
matched the designed topologies

Circular dichroism (CD) confirmed helical structure

A crystal structure of the tetrameter matched the core atoms of the design to 
0.20 Å r.m.s. deviation

10

Design a globular protein fold not 
observed in nature

Iteration between sequence design for a 
fixed backbone and structure refinement 
for a fixed sequence, using techniques 
from de novo structure prediction

NMR and CD experiments showed the protein was well folded and thermostable

A crystal structure matched the design to 1.17 Å r.m.s. deviation over all 
backbone atoms

11

Introduce new loop sequences and 
structures into the protein tenascin

Grafting of 10-residue loops from the 
PDB and iteration of sequence design 
and structure refinement

NMR and CD showed that three designs were well folded and two had  
near-wild-type thermostabilities

A crystal structure of one loop matched the design to 0.46 Å backbone r.m.s. 
deviation

64

Switch enzyme substrate specificity 
in guanine deaminase by redesigning 
an active site loop

Design and remodeling of a shortened 
4-residue loop with constraints to posi-
tion functional groups on side chains

The redesigned loop produced a 2.5 × 106-fold substrate specificity switch 
from guanine to ammelide with moderate catalytic activity

A crystal structure of the loop was within 1 Å Cα r.m.s. deviation of the model

77
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biological processes mediated by functional protein interactions. Toward 
engineering and analysis of in vivo protein function, there are several 
key areas in need of progress.

Typical protein-protein interfaces involve large, flat interacting sur-
faces with nonlinear epitopes and conformationally coupled buried side 
chain interactions. These features endow energetics that require more 
accurate and tractable models of the physical basis of interaction affin-
ity and selectivity. In parallel, higher accuracy methods to predict the 
dynamical responses that proteins undergo upon binding or mutation 
are required. Continued cooperative development between structure 
prediction and design methodologies29 will be central to meeting these 
goals, together with large-scale experimental characterizations of ranked 
lists of designed sequences.

Key next steps are also to derive and demonstrate methods that 
can optimize the complex interfaces of protein signaling hubs for 

Hence, distinguishing desired from undesired binding partners may 
require consideration of many structurally similar states. A remarkable 
recent study did just that, creating peptide partners for targets from 19 
families of human basic-region leucine-zipper transcription factors 
that were selective in the context of competing factors from the other 
families15. A key to solving this challenging engineering problem was 
the development of elegant and fast computational methods that could 
evaluate the different states80 and model tradeoffs between stability 
and selectivity, aided by the relatively regular and well-characterized 
interaction geometries of the leucine-zipper interfaces15.

Outlook
As methods are being developed and validated to model multiple con-
straints and achieve selectivity among sets of structurally similar binding 
partners, computational design is becoming a useful tool for controlling 

Table 3  Approaches to modeling backbone flexibility in protein design
Method Features Computational benchmark Experimental validation Refs.

Parameterized models of 
coiled coils

Enables modified hydrophobic 
packing arrangements for alterna-
tive topologies

Circular dichroism, sedimentation  
equilibrium experiments, hydrogen-
deuterium exchange and X-ray  
crystallography confirmed the predicted 
superhelical twists

10

Random φ, ψ and ω perturba-
tions

Generalizes to any topology Agreement with experimentally measured 
stabilities of T4 lysozyme mutants

7

Insertion of peptide fragments Reduces search space by captur-
ing experimentally determined 
structural preferences

R.m.s. deviation to the native structure 
for ab initio models of 7 small proteins

86,87

Fragment insertion with  
compensating torsion moves

Reduces nonlocal perturbations 
due to fragment insertion

R.m.s. deviation to the native structure 
for a large dataset of 4- to 34-residue 
regions lacking secondary structure

Circular dichroism, NMR experiments 
and X-ray crystallography confirmed 
the design of a new protein fold

11,88

Fragment insertion with small 
torsion moves and the cyclic 
coordinate decent (CCD) loop 
closure method

Enables closure of breaks in pep-
tide chains from fragment  
insertion and small torsion moves

R.m.s. deviation to the native structure of 
ab initio 8- and 12-residue loop  
reconstructions, and r.m.s. deviation to 
the native structure of complexes docked 
during loop modeling

Design of 3 new loop structures and 
sequences in tenascin; remodeling and 
redesign of a loop to switch substrate 
specificity in guanine deaminase

64,77,89

Backbone ensemble  
generation by normal mode 
analysis

Relatively inexpensive and  
generally applicable if a template 
structure is available

Peptides designed to bind Bcl-xL showed 
selective binding compared to other Bcl 
family members in pull-down assays

58

Integer linear programming on 
backbone templates

Simultaneously samples sequences 
and backbone conformations

Comparison of sequences designed for 
human β-defensin 2 to naturally occurring 
homologous sequences

90

Dead-end elimination (DEE) 
with random φ, ψ moves

Finds the lowest energy sequence 
and conformation within a  
predefined volume

Comparison of predicted energies of 
sequences designed for the β1 domain of 
protein G and gramicidin synthetase A to 
a fixed backbone DEE method

68

DEE with ‘backrub’ moves 
inspired by conformational 
variability in crystal  
structures91

Finds the lowest energy sequence 
within conformations derived from 
local nonoverlapping tripeptide 
backrub moves

Comparison of predicted energies of 
sequences designed for the β1 domain of 
protein G and gramicidin synthetase A to 
a fixed backbone method

92

Monte Carlo with backrub 
moves

Enables small local moves for 
peptide chains of arbitrary length

Comparison of the accuracy of predicted 
side chain conformations of point mutants 
to a fixed backbone method; agreement of 
protein side chain and backbone confor-
mational variability with NMR dynamical 
measurements; comparison of designed 
sequences to natural protein homologs for 
ubiquitin; agreement of predicted human 
growth hormone sequences designed to 
fold and bind human growth hormone 
receptor with experimental screening

61,62,66,70

Monte Carlo with kinematic 
closure

Analytically determines 6 φ, ψ 
torsions of peptide chains while 
efficiently sampling bond angles, 
bond lengths and remaining  
torsions for peptide chains of  
arbitrary length

R.m.s. deviation to the native structure 
for ab initio reconstruction of the  
conformations of 12-residue loops in 
proteins and interfacial loops in protein-
protein complexes

78
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functional interactions with partners of varied fold classes while 
specifically eliminating unwanted interactions. More generally, one 
ultimately would like to develop methods to optimize ‘network fit-
ness’ for any type of quantifiable criterion, such as adopting specific 
conformations or interacting with certain association rates in addi-
tion to exhibiting a specified network topology.

In addition to engineering new molecules, much can be learned from 
applying computational protein design approaches to disrupt specific 
interactions, and then studying the phenotypic consequences of these 
perturbations using large-scale physical and genetic interaction map-
ping methodologies81–83. Such a combined approach would be comple-
mentary to powerful, commonly used strategies, such as knockout and 
knockdown methods, in that it may allow specific modulation of a 
subset of the interactions made by a given protein, instead of eliminat-
ing or affecting all interactions (Fig. 1d). In this respect, computational 
protein design as an engineering approach may contribute to a more 
fundamental understanding of the balance of interaction selectivity 
and promiscuity regulating key biological processes governed by the 
atomic details of functional protein interactions.
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