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INTRODUCTION

Accurate modeling of the impact of a mutation in a protein must reca-

pitulate both the structural change associated with a mutation as well as

the change in the free energy of the folded state. As with most other mac-

romolecular structure prediction problems,1 accurately predicting the struc-

tural changes associated with a point mutation requires, first, an efficient

method for conformational sampling, and second, an accurate free energy

function. Once the structure of the mutant protein has been computed, the

change in the free energy of folding can be estimated from the difference in

the free energies of the folded wild-type and mutant structures, assuming

the change in the unfolded state free energies depends only on the identi-

ties of the amino acids at the substituted positions. Previous studies have

used conservative sampling procedures to predict differences in free-ener-

gies, DDGs, allowing only the mutated residue to reconfigure within a fixed

environment,2–4 as well as methods incorporating increased protein flexi-

bility.5,6 Although the above studies all report impressive correlations with

experimental values, they use quite different energy functions and sampling

strategies, hence it is not clear which features of the approaches are suffi-

cient and necessary for good performance.

Prompted by a recent study reporting poor performance of the Rosetta

methodology in predicting the free energy changes associated with muta-

tions,7 we present here a detailed analysis of the tradeoff between the reso-

lution of the energy function and the extent of conformational sampling in

DDG prediction. We go beyond previous work by systematically evaluating a

wide range of sampling methodologies (Fig. 1) in the context of the same

forcefield, separating the contribution of the forcefield from that of the sam-

pling methodology. We show that roughly equivalent overall performance

can be achieved using a wide range of sampling techniques, ranging from

an entirely fixed backbone approximation to full-protein flexibility, provided

that the resolution of the energy function is matched to the granularity of

the sampling technique. The poor results obtained by Potapov et al. are

shown to be the result of inappropriate combination of limited sampling

with an undamped potential function. By studying the distributions of pre-

diction failures, we identify areas of modeling which need to be improved
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ABSTRACT

The prediction of changes in protein sta-

bility and structure resulting from single

amino acid substitutions is both a funda-

mental test of macromolecular modeling

methodology and an important current

problem as high throughput sequencing

reveals sequence polymorphisms at an

increasing rate. In principle, given the

structure of a wild-type protein and a

point mutation whose effects are to be

predicted, an accurate method should re-

capitulate both the structural changes

and the change in the folding-free energy.

Here, we explore the performance of

protocols which sample an increasing di-

versity of conformations. We find that

surprisingly similar performances in pre-

dicting changes in stability are achieved

using protocols that involve very different

amounts of conformational sampling,

provided that the resolution of the force

field is matched to the resolution of the

sampling method. Methods involving

backbone sampling can in some cases

closely recapitulate the structural changes

accompanying mutations but not surpris-

ingly tend to do more harm than good in

cases where structural changes are negli-

gible. Analysis of the outliers in the sta-

bility change calculations suggests areas

needing particular improvement; these

include the balance between desolvation

and the formation of favorable buried

polar interactions, and unfolded state

modeling.
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for higher accuracy prediction of the changes in stability

and structure brought about by point mutations.

METHODS

Data-set

Except for comparison to the results of Potapov et al.

mentioned in the discussion, all tests reported in this ar-

ticle utilized a benchmark set comprised of 1210 single

mutations obtained from Protherm.8 Duplicate entries

were resolved by taking the highest resolution structure,

and if multiple experimental measurements were

recorded, the mean of all reported measurements was

used. Structures greater than 350 residues were elimi-

nated due to the computational intensiveness of some of

the protocols tested. A representative set of 771 muta-

tions was used to assess the most computationally inten-

sive protocols, including the proteins barnase (1a2p),

apomyoglobin (1bvc), FK506 binding protein (1fkj),

staphylococcal nuclease (1stn), a-spectrin (1u5p), chy-

motrypsin inhibitor II (2ci2), and T4-lysozyme (2lzm).

Description of protocols

The first set of protocols (Table I) we considered relax

the sidechains but keep the backbone fixed. Sidechains are

optimized in two steps—first, discrete combinatorial

rotamer optimization and second, continuous optimiza-

tion of the sidechain torsion angles. The combinatorial

rotamer optimization (referred to as repacking throughout

the remainder of the text) is carried out using Monte Carlo

simulated annealing with the Dunbrack backbone depend-

ent rotamer library.9 The continuous optimization is car-

ried out using quasi-Newton minimization and is referred

to as minimization throughout the remainder of the text.

We experimented with two energy functions at both the

repacking and minimization steps. The first is the standard

Rosetta all atom energy function used in prediction and

design calculations;10 we refer to this as ‘‘hard-rep’’ because

the Lennard-Jones repulsive interactions are not damped,

thus atomic clashes incur very large energetic penalties. The

second has the repulsive interactions at short atomic separa-

tions damped as described in the Supporting Information

but is otherwise identical; we refer to this as ‘‘soft-rep’’

because small atomic overlaps are not heavily penalized.

We also experimented with allowing different numbers

of residues surrounding the site of mutation to be

Figure 2
Comparison of predicted to experimentally observed DDGs. Method 16

(Table I) which employs backbone minimization after repacking all

sidechains was used in this calculation. The correlation is 0.69 on the full set

of 1210 mutations. Predicted values along the x-axis versus experimental

values (kcal/mol) on the y-axis. The equation of the best-fit line is y5 0.57x.

All results are for the 1,210 mutation test set except for those in the last row,

which are on a reduced set of 771 mutations, due to the computational cost

of the ensemble method.

Figure 1
Extent of conformational sampling in the DDG prediction protocols.

Protocols considered here are on the right, and previously described

methods (Refs. 1–5) on the left.
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repacked. As indicated in the Table I protocol summary,

we considered three possibilities: first, only repacking the

mutated residue, second, only residues within 8 Å of the

mutated residue, and third, all residues.

We also explored protocols which carry out backbone

torsion angle minimization following sidechain repacking

in attempts to more accurately model the structural conse-

quences of mutations. To prevent the backbone from mov-

ing too much from the native structure, in some protocols,

we included distance constraints during the backbone

minimization as described in the Supporting Information.

Finally, we explored protocols which more extensively

search through alternative backbone conformations. We

developed a Monte Carlo simulated annealing protocol that

generates backbone conformations with ideal bond lengths

and bond angles that uniformly sample the space of confor-

mations surrounding any given native structure. The proto-

col carries out 100,000 moves each consisting of a small ran-

dom perturbation of the backbone torsion angles; the scor-

ing function prevents sampling from deviating by more than

a specified tolerance from the starting structure. Single side

chain rotamer flips are attempted at one-tenth the frequency

of backbone moves. The resulting structures have small and

partially compensating changes in nearly all the backbone

torsion angles. The lowest energy structure sampled during

each trajectory is subjected to backbone and sidechain mini-

mization using the hard-rep energy function. Full details are

provided in the Supplementary Information.

RESULTS

As described in detail in the Methods section, we experi-

mented with a range of different protocols for computing free

energy changes accompanying mutations. In all of these pro-

tocols, the calculations focus on energy changes in the native

state—changes in free energy of the unfolded state are assu-

med to be context independent for computational tractability.

Sidechain-only optimization

In the first set of protocols, the sidechains, but not the

backbone, are allowed to relax following introduction

of the amino acid sequence change. Several trends are

evident in the comparison of the performance of the

different fixed backbone protocols in Table I. First, the

Figure 3
Examples for which modeling backbone flexibility improves structural recapitulation. (A) T4-lysozyme mutant (1qtb), V 42 A; (B) T4-lysozyme

mutant (241l) A 29 I; (C) FK506 binding protein (1fkj) W 59 L; and (D) T4-lysozyme (2lzm) I 3 V. Pink, starting wild-type crystal structure; blue,

mutant crystal structure; gray, structural prediction with limited backbone minimization; and green, structure produced with less stringent

constraints around the site of mutation and uniform harmonic constraints outside this region (row 18, Table I). In (D), green is the structure

produced from perturbed backbone protocol (row 20, Table I).
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performance of protocols using the hard-rep potential

improved with increasing conformation freedom (rows 2,

4, and 7, Table I), but for all of the fixed backbone sam-

pling strategies, better performance was achieved with the

soft-rep potential (rows 1 and 2, rows 3 and 4, rows 6

and 7, Table I). Atomic clashes in models of the mutant

structures that cannot be fully resolved with sidechain–

only optimization are likely to account for both of these

trends; indeed, filtering the data by removal of DDGs with
large clashes (>7 Erep) after repacking all residues with the

hard-rep energy function (row 7, Table I) increased the

correlation to 0.62 (1117 mutations) from 0.10 (1210

mutations). The atomic clashes that remained following

sidechain repacking were not resolvable with sidechain

minimization (r 5 0.25; row 8, Table I). Second, the per-

formance of protocols using the soft-rep energy function

was insensitive to the amount of conformational freedom

(rows 1, 3, and 6, Table I); very similar performance was

obtained whether only the mutated residue was repacked,

a subset of residues were repacked or all residues were

repacked (correlations of 0.67 and stability-classification

accuracies of 0.73; rows 1, 3, and 6, Table I). This result is

consistent with the earlier observation2 that the soft-rep

potential is well suited to recapitulating DDGs with a fixed

backbone, and does not require the optimization of neigh-

boring sidechains to obtain a significant correlation.

The reason for the poor results obtained by Potapov

et al. is evident from the above analysis. Perhaps because

of unclear documentation, Potapov et al.7 used the hard-

rep potential with a limited sidechain repacking protocol

followed by sidechain minimization (similar to row 5 in

Table I), and found very little correlation between pre-

dicted and observed DDGs (0.26 on 1913 mutations). As

we have discussed previously,11 if a fixed backbone rep-

resentation with discrete rotamer optimization is carried

out, the repulsive interactions must be damped, other-

wise they dominate the computed energies.

Limited backbone minimization

The set of sidechain-and-backbone protocols (rows 9–

19 in Table I), extends the set of sidechain-only protocols

by applying a restrained quasi-Newton minimization step

to backbone and sidechain degrees of freedom starting

from sidechain optimized structures while tethering the

structure to the initial starting model (see Supporting

Information). Correlations were higher when the soft-rep

energy function was used during the sidechain optimiza-

Table I
DDG Prediction Accuracies for All Tested Protocols

Values reported for each method are the correlation/stability-classification accuracy with respect to experimental data. While overall correlations are very similar among

different methods, the small-to-large class shows improved performance with the addition of more protein flexibility.
*Values correspond to a reduced set of 771 mutations.
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tion step than when the hard-rep energy function was

used (R 5 0.63 with hard-rep, 0.69 with soft-rep when

backbone and sidechain minimization is performed after

repacking all-residues, see rows 16 and 17, Table I). How-

ever, if the soft-rep energy function was used during

minimization, increased conformational freedom yielded

worse correlations (row 15, Table I, R 5 0.57) highlight-

ing the incompatibility of the soft-rep energy function

with flexible backbone modeling.

The performance of these protocols improved as more

conformational freedom was introduced to the system—

to a point. As more sidechains were allowed to repack

before the backbone minimization step, the correlations

improved (rows 10, 13, and 16, Table I). Repacking all

residues before minimization (r 5 0.69, row 16, Table I)

performed marginally better than repacking residues with

8A (r 5 0.66, row 13 Table I), which performed better

than repacking the mutant residue only (0.51, row 10

Table I). This improvement is likely due to sensitivity of

the hard-rep scoring function to residual atomic clashes;

excluding mutations for which models contained high-re-

pulsive energies (>7 Erep) restored the correlations of the

protocols to 0.68 (1,207 mutations).

The minimization step in the above calculation is con-

strained using crystal structure derived restriants. Allow-

ing increased conformational freedom in the neighbor-

hood of the mutation during the minimization stage

(weakening the crystal structure based distance restraints

in the neighborhood of the mutation site) yielded a

slightly worse correlation (from r 5 0.69, row 16, Table I

to r 5 0.67, row 18, Table I), and complete removal of

restraints during minimization (row 19, Table I), yielded

a worse correlation still (0.63, Table I).

Monte Carlo ensembles

Sampling is quite limited with quasi-Newton minimi-

zation of the backbone; it locates the nearest minimum

but is unable to cross barriers into lower-energy minima

nearby. To increase the exploration of the energy land-

scape close to the native structure, we developed a proto-

col that generates an ensemble of structures centered on

the native structure. Other methods have recently been

developed using ‘‘back-rub’’ motions that have proven

quite powerful.12,13 Our goal was to generate ensembles

with levels of structural perturbation similar to those

generated with back rub while restricting bond lengths

and angles to ideal values (see Supporting Information),

since the addition of bond length and bond angle degrees

of freedom and associated potential terms can introduce

noise. The new protocol was tested with the hard-rep

energy function and yields ensembles with uniform devi-

ations from the starting native structure both in Carte-

sian coordinates and in the individual torsion angles (see

Supporting Information, Fig. 2).

Although significant correlations can be produced with

stochastic sampling of backbone conformations close to

the starting structure, these correlations are not as high

as those obtained using limited backbone minimization

(r 5 0.65, row 20 in Table I vs. r 5 0.69, row 16 in Table

I, both evaluated on a set of 771 mutations). As previ-

ously observed by Benedix et al.,6 the correlations

increase as more models in the ensemble are produced

(Supporting Information Fig. 3). This is likely due to

reduction in the noise associated with stochastic sam-

pling of the protein backbone. The considerable improve-

ment obtained by Benedix et al. with conformational

sampling compared to using static crystal structure likely

reflects the undamped potential they used.

Comparison of sampling techniques

No one protocol significantly outperforms the others;

among the best combinations of energy function and

optimization method for each of the sampling regimes,

the correlations ranged from 0.65 to 0.69 (rows 6 and 16,

Table I). However, if mutations are divided according to

the change in van der Waals volume, clear trends are

observed. In particular, the best protocol that relaxed the

backbone (row 16, Table I) showed a significant improve-

ment over the best sidechain-only protocol (row 6, Table

I) for the small-to-large class of mutations (r 5 0.66 vs.

r 5 0.57 on a set of 164 mutations, rows 6 and 16,

Table I) and also on mutations involving only hydropho-

bic residues (r 5 0.68 vs. r 5 0.57 on a set of 365 muta-

tions; see Supporting Information).

The inclusion of restrained backbone minimization (row

16, Table I) did not compromise the correlation on large-

to-small mutations; the correlation is equivalent to the

maximum obtained by other methods, 0.67 (row 16, Table

I). A similar result was reported by Yin et al.5 The protocol

involving extensive backbone movement (row 20, Table I)

has correlations similar to the fixed backbone methods in

all size categories—improvements in modeling mutations

that induce significant backbone changes are offset by the

introduction of noise in modeling the remaining muta-

tions. The stability-classification accuracies for the best

methods were 0.73 for large-to-small mutations (rows 1, 3,

and 11, Table I) and 0.67 for small-to-large mutations

(rows 15, 16, 18, and 19, Table I); no protocol significantly

outperforms the others using this metric.

Structure recapitulation

Overall, the variation in the protein backbones pro-

duced by the methods increases with increasing confor-

mational searching. Constrained minimization protocols

(rows 9–17, Table I) on an average produce structures

0.08 Ca RMSD from the starting structure, whereas min-

imization with no constraints (row 19, Table I) produces

structures on an average 0.57 Ca RMSD from the start-
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ing structure. The Monte Carlo ensemble method (row

20, Table I) is more aggressive than limited backbone

flexibility but somewhat constrained compared with free

minimization, producing backbones of 0.44 Ca RMSD

on an average.

We evaluated the performance of the different proto-

cols described above in recapitulating structural changes

accompanying point mutations observed in crystal struc-

tures of mutant proteins, using a set of 154 pairs for

which the crystal structures of both wild-type and mu-

tant proteins were available (see Supporting Informa-

tion). The more aggressive flexible backbone methods

produced quite striking recapitulations of structural

changes in a number of cases (Fig. 3) but overall did not

result in improved predictions over the more conserva-

tive methods (Supporting Information Fig. 5). Overall,

loosening constraints around the site of mutation yielded

better predictions than the uniform constraint minimiza-

tion method in 62 cases (of 154), whereas the more

aggressive backbone perturbation method yielded better

predictions than the best limited-backbone minimization

protocol in 44 cases, as assessed by comparing the all-

atom RMSD of the mutant sidechain to the crystal struc-

ture (see Supporting Information). Prediction accuracy

for small-to-large, buried mutations increases slightly

with increasing structural variability, but only when the

backbone is known to shift (�0.4 Å Ca shift). When the

backbone is essentially correct to begin with, the all-atom

RMSD prediction accuracy for the flexible backbone

methods is not surprisingly worse than for the fixed

backbone methods (Supporting Information Fig. 5). The

failure of the flexible backbone methods to give an over-

all improvement reflects in part the large fraction of cases

where very little backbone movement actually occurs.

This lack of consistent improvement in structural recapit-

ulation also in part explains why the flexible backbone

methods do not do better overall in DDG prediction.

DDG prediction performance with empirical
structural knowledge

To determine if improved structural models necessarily

lead to improved energetic predictions, we computed

predicted DDGs based on the solved crystal structures

(data not shown). Not surprisingly, naively taking the

difference in total computed energy between the wild-

type and mutant crystal structures resulted in zero corre-

lation with the experimental DDG data, since small dif-

ferences throughout the independently solved structures

drown out the energy differences due the sequence

change itself. To reduce this noise, we computed the dif-

ference not in the total energies of the wild type and mu-

tant crystal structures but of the total interaction energies

of residues at the mutation site. The correlation of this

computed interaction energy difference with the experi-

mental DDG data, 0.77, is the same as that of the best

limited-backbone minimization protocol over this set of

mutations, a finding corroborated by other studies.4

Energy function training incorporating both
DDG and sequence recovery data

The Rosetta energy function contains ‘‘reference ener-

gies’’ for each of the 20 amino acids, which represent the

average energy of the residue in the unfolded state. The

parameters in the standard energy function used in the

calculations described, thus, far in this article, were deter-

mined by maximizing sequence recovery in comprehen-

sive sequence design calculations for a large set of pro-

teins.9 In this weight optimization, the reference energies

are influenced by the overall frequencies of the amino

acids, and, hence, will also incorporate effects related to

the metabolic cost of making amino acids, their effects

on solubility, and so forth. Hence, we reasoned that bet-

ter performance might be achieved if these reference

energies were fit directly on DDG data where overall

amino acid composition biases are absent. We fit the 20

reference energies, using 20-fold cross-validation, keeping

all other weights fixed except for a constant term to

adjust the energies to a kcal/mol scale, obtaining an over-

all correlation of 0.73 (Supporting Information Table II).

Optimization of weights on other forcefield terms did

not improve the correlation sufficiently to be justified

(Supporting Information Table II). Although the increase

in performance resulting from fitting on DDGs was not

large, a notable advantage is that this puts the overall

energy function on a kcal/mol scale matched to experi-

mental DDG measurements.

For design calculations, reference energies trained on

sequence recovery are likely to be desirable, whereas for

DDG calculations, training on thermodynamic data is

more appropriate. To obtain a compromise reference

weight set, we trained on both datasets at the same time

using the opt-E weight-optimization suite (Leaver-Fay

et al., in preparation), yielding a weight set with a DDG

Table II
The Free Energy Changes Associated with Surface Substitutions and

Polarity Changing Substitutions Are Relatively Poorly Predicted. Results

Shown Are for the Best Performing Method (row 16, Table I), Involving

Limited Backbone Minimization After Repacking All Sidechains

Category Correlation Fraction correct Number of Mutations

All 0.69 0.72 1210
Low B-factor 0.69 0.75 596
High B-factor 0.67 0.7 606
Buried 0.66 0.78 397
Partially exposed 0.63 0.71 421
Exposed 0.54 0.72 384
Nonpolar 0.68 0.76 365
Polar-to-nonpolar 0.58 0.68 456
Polar 0.79 0.7 81

Exposed mutations and polarity changes are relatively poorly predicted. Results

shown are for the best performing method, involving limited backbone minimiza-

tion after repacking all sidechains.
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correlation 0.69 and a sequence recovery rate of 29%

(Supporting Information Table II; parameters in Sup-

porting Information).

The correlation after weight-training on DDG experi-

mental data, r 5 0.73, is essentially equivalent to correla-

tions obtained by other algorithms, ranging from 0.59 to

0.76. Why do such widely different conformational sam-

pling protocols and energy functions have such similar

prediction accuracies? A likely explanation is that the

remaining variance in the experimental data is due to

factors not represented in any of the models. The first of

these is experimental error in the measurements them-

selves—it was recently estimated based on differences in

the free energy changes determined in different groups

for the same mutation that the maximum correlation

possible is 0.86.7 The second missing contribution is

likely due to errors/missing features in the energy func-

tion. We survey these potential missing contributions in

the following paragraphs.

Contributions to failures in prediction
accuracy

To investigate potential systematic problems, mutations

were categorized according to polarity, burial, and B-fac-

tor (see Supporting Information for category definitions;

Table II and Supporting Information Table I). We also

compared the enrichment of specific structural features

in mutations systematically mispredicted by all of our

methods (Table III). The outlier set is defined as the con-

sensus of 10% worst predictions for all protocols; re-

moval of these outliers improved correlations (r 5 0.71–

0.75). Features we examined included the unfolded state,

hydrogen bond characteristics, and interactions with bur-

ied, bound water molecules or ligands.

The largest errors in accuracy are for cases where polar

residues are swapped for hydrophobic residues or vice

versa, with correlations ranging from 0.55 to 0.6 (Table

II and Supporting Information Table I), which suggests

the largest areas for improvement involving the delicate

trade-off between polar desolvation and the formation of

favorable buried polar interactions. Consistent with this,

buried hydrogen bonds are two-fold enriched in the out-

lier population (19% vs. 9%). Cases in which an unsatis-

fied hydrogen bonding group is introduced in a buried

hydrophobic environment are also enriched in the outlier

category (8% vs. 4%). Finally, buried residues making

hydrogen bonds to water molecules, an interaction absent

in our implicit solvation model, are somewhat enriched

in the outlier class as well (9% vs. 4%). The development

of polarizable electrostatics models and the inclusion of

explicit water molecules14 may help better recapitulate

the energetics of these interactions.

Buried residues are in general predicted better than

exposed ones, as has been reported in previous stud-

ies.3,5,6,15 Although the correlation within the category

of exposed residues is poor (r 5 0.47), the stability-clas-

sification accuracy is very similar (0.71 for exposed

mutations and 0.78 for buried residues, Table II).

Because mutations to exposed residues are mostly neu-

tral, they are easy to categorize even if their DDGs are

challenging to predict (see Supporting Information for

definitions).

To examine the potential contribution of the unfolded

state, we collected 305 m-values for mutations from

staphylococcal nuclease.16–19 Mutations whose m-values

significantly affected the energy of the unfolded state

(�20% difference from the wild-type m-values) were

enriched four times more than average in the outlier

class (34% vs. 8%). Previous studies have also noted dif-

ficulties in modeling this class of mutation accurately.4,5

Improved modeling of such mutations may require

explicit modeling of context-dependent unfolded state

effects.

We observe only a marginal decrease in performance

for mutations in high-B-factor regions when compared

with low-B-factor regions (0.68 vs. 0.64, fixed-backbone,

all sidechains repacked, row 6 Table I; Supporting Infor-

mation Table I). Inclusion of backbone flexibility reduces

the discrepancy further (0.69 vs. 0.67, limited backbone

Table III
Classes of Mutation Enriched in the Outlier Population

Category

Outlier mutations All mutations

Number Total Percentage Number Total Percentage

Unfolded state significantly affected by mutation 13 38 34 23 305 8
Buried hydrogen bonds 16 85 19 106 1210 9
Buried polar–polar hydrogen bonds 11 85 13 67 1210 6
Buried charged-polar hydrogen bonds 7 85 8 59 1210 5
Introduction of buried unsatisfied hydrogen bonding partner 7 85 8 52 1210 4
Putative conformational change 6 85 7 34 1210 3
Buried, hydrogen bonded to water 8 85 9 45 1210 4
Ligand contacts 5 85 6 18 1210 1
Buried, mobile region 5 85 6 69 1210 6

Residues making buried hydrogen bonds, hydrogen bonds to buried water molecules, or contacting ligands are enriched in the outlier population, as well as mutations

affecting the unfolded state.

E.H. Kellogg et al.

836 PROTEINS



minimization after sidechain repacking, row 16, Table I)

(see Table II). Entropic effects may contribute to predic-

tion inaccuracy overall but are not as evident as might be

expected in this subset of the data.

Conformational sampling appears to be still in part

limiting. The outlier class includes a number of muta-

tions of large to small hydrophobic residues. The free

energy changes in these cases are predicted to be

extremely destabilizing due to the creation of a large

hydrophobic cavity, whereas the effect of the mutation

is near neutral, indicating significant conformational

rearrangements. Comparison of our predictions to the

mutant crystal structure20,21 suggests that some fail-

ures are due to the inability to sample correct confor-

mations.

DISCUSSION

Previous studies have shown that free energy changes

accompanying point mutations can be reasonably well pre-

dicted, but the features contributing to this success are not

evident as the different methods use very different sampling

procedures and energy functions. Here, we demonstrate

that the free energy changes associated with point mutations

can be predicted equally well by protocols that involve

widely varying amounts of conformational sampling, pro-

vided that the resolution of the energy function matches the

coarseness of the sampling. As found in previous studies,22

protocols involving coarse conformational sampling per-

form well when repulsive interactions are damped, whereas

protocols involving aggressive conformational sampling per-

form well when repulsive interactions are not damped. We

find that protocols that incorporate backbone flexibility are

better suited than fixed-backbone protocols for modeling

small-to-large mutations, but the preponderance of large-

to-small mutations masks this improvement on the overall

dataset. Expanding on the results of Dantas et al., we show

that the best methods for modeling small-to-large muta-

tions utilize a damped energy function for sidechain optimi-

zation followed by an undamped potential during con-

strained, gradient-based minimization (row 16, Table I).

When used during optimization, the hard-rep energy func-

tion can select incorrect rotamer conformations (row 17,

Table I), which are often not rescued during the subsequent

round of gradient-based minimization because of the diffi-

culty in crossing high-energy barriers.

Our calculations model the contributions of mutations

to the free energy of folding in different ways. The

change in enthalpy resulting from the mutations is calcu-

lated explicitly through Lennard Jones interactions,

hydrogen bonding, and so forth. Interactions with sol-

vent, both enthalpic and entropic, are modeled using an

implicit solvent model.23 The changes in the entropy

and enthalpy of the unfolded state are assumed to be

context independent: for example, the change in

unfolded state free energy for all leucine to alanine sub-

stitutions are assumed to be identical. This assumption

clearly breaks down when the residue is making specific

interactions and/or has restricted conformational free-

dom in the unfolded state.16,24 The reasonable success

rate in predicting DDGs with this rather drastic assump-

tion suggests that unfolded state effects are not major

contributors to the DDG, but, as noted in the results,

they could well be responsible for some of the deviations

between the computations and experiments.

The poor results of Potapov et al. resulted from use of a

limited sampling protocol without dampening the repul-

sive interactions. Consistent with the previously reported

results, a protocol analogous to that of Potapov, (row 4,

Table I), produced a correlation near 0 for our benchmark

set of 1210 mutations. On the dataset used by Popatov, our

best performing method using limited backbone minimi-

zation (row 16, Table I) yields an overall correlation of

0.57 on 1937 mutations, and 0.62 on 1920 mutations of

the Potapov set (excluding as in the Potapov study muta-

tions with repulsive interactions of �7 units); this is equiv-

alent to the performance of the best algorithms tested by

Potapov. For comparison, the EGAD method had a corre-

lation of 0.59 on a set of 1065 mutations, FoldX had a cor-

relation of 0.50 on a set of 1200 mutations, and CC/PBSA

had a correlation of 0.56 on a set of 478 mutations.

In conclusion, our best-performing method for DDG pre-

diction involves limited backbone minimization; with train-

ing and 20-fold cross-validation, it produces a correlation of

r 5 0.73 on a comprehensive set of 1210 mutations (Sup-

porting Information Table II), matching that of previously

published algorithms but on a larger test set. Although addi-

tion of protein flexibility in some cases improves the model-

ing of structural response to mutation, we find that more

often than not, more aggressive remodeling can decrease the

ability of a method to recapitulate mutant structure and can

have correspondingly negative impact on DDG prediction.

More extensive sampling with more accurate potential func-

tions hopefully will reverse this dissapointing fall off in pre-

dictions in the not too distant future. Analyses of consis-

tently badly predicted mutations among all methods reveal

that improvements in modeling the unfolded state, buried

polar networks, and explicit water or ligand contacts may be

the key to further improvements in performance. There is

clearly much room for improvement in DDG prediction

methodology.
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