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The ability of a protein to carry out a given function results from
fundamental physicochemical properties that include the protein’s
structure, mechanism of action, and thermodynamic stability. Tradi-
tional approaches to study these properties have typically required
the direct measurement of the property of interest, oftentimes a
laborious undertaking. Although protein properties can be probed
by mutagenesis, this approach has been limited by its low through-
put. Recent technological developments have enabled the rapid
quantification of a protein’s function, such as binding to a ligand,
for numerous variants of that protein. Here, we measure the ability
of 47,000 variants of a WW domain to bind to a peptide ligand and
use these functional measurements to identify stabilizing mutations
without directly assaying stability. Our approach is rooted in the
well-established concept that protein function is closely related to
stability. Protein function is generally reduced by destabilizing muta-
tions, but this decrease can be rescued by stabilizing mutations.
Based on this observation, we introduce partner potentiation, a met-
ric that uses this rescue ability to identify stabilizing mutations, and
identify 15 candidate stabilizing mutations in the WW domain. We
tested six candidates by thermal denaturation and found two highly
stabilizing mutations, one more stabilizing than any previously
known mutation. Thus, physicochemical properties such as stabil-
ity are latent within these large-scale protein functional data and
can be revealed by systematic analysis. This approach should allow
other protein properties to be discovered.

deep mutational scanning | epistasis | high-throughput DNA sequencing

The sequence of a protein determines the protein’s physico-
chemical properties, which include structure, thermodynamic

stability, ability to interact with other molecules, and catalytic
capacity (1). These properties, in turn, determine the function of
the protein. Because sequence determines function, mutagenesis
has been a fundamental tool for understanding how proteins work.
A mutation can impact the function of a protein when it alters one
or more properties of the protein, such as its structure, catalytic
activity, or stability. Understanding the mechanism by which a
mutation impacts protein function has traditionally required spe-
cialized assays to measure these properties (for example, thermal
denaturation has been used to measure stability).
Coupling of selection and high-throughput DNA sequencing

has enabled methods to measure the function of large numbers
(up to millions) of mutated versions of a protein (referred to here
as variants) (2–4). These methods, known as “deep mutational
scanning” (4), link the function of each variant with its abun-
dance in a population of variants under selection for that func-
tion. Variant frequencies within the population are measured en
masse by high-throughput DNA sequencing of the gene encoding
the protein. The change in frequency of each variant is quantified
by comparing each variant’s frequency before selection with its
frequency after selection. The enrichment or depletion of each
variant through selection serves as a proxy for the variant’s function;
variants containing highly functional (beneficial) mutations enrich
after selection, whereas variants containing poorly functional
(deleterious) mutations deplete. Deep mutational scanning enables

measurement of the functional consequences of large numbers of
protein variants in parallel and therefore produces a large-scale set
of protein functional data. Based solely on this dataset, we present
an analysis to identify mutations that stabilize a protein.
Mutations that stabilize proteins are important both for un-

derstanding protein activity and for successful protein engi-
neering. Stabilizing mutations in protein drugs, such as insulin
(5) and antibodies (6), and commercial enzymes, such as sub-
tilisin (7), can prevent proteolysis or misfolding, thereby in-
creasing effective activity. Proteins are marginally stable and
become nonfunctional if destabilized past a threshold. Thus,
protein stability is linked to measures of protein function like
catalytic activity or ligand binding (8–10). For example, a single
mutation that decreases stability beyond the threshold can dra-
matically reduce protein function. However, such a destabilizing
mutation can be rescued by the introduction of a second stabi-
lizing mutation. The resulting protein is above the stability
threshold and consequently, has increased function.
Most mutations are destabilizing, and thus, in a set of randomly

generated double mutants, the rare stabilizing mutations will
generally be paired with destabilizing mutations. Thus, we hy-
pothesized that we could identify stabilizing mutations based on
their ability to rescue many other (mostly destabilizing) mutations.
This hypothesis raises the intriguing possibility that fundamental
physicochemical properties of certain protein variants (e.g.,
those variants with the highest stability) might be inferred solely
from large-scale measurements of protein function. Here, we
show that a systematic analysis of these measurements for a large
number of variants of a protein can be used to calculate partner
potentiation, a metric that reveals stabilizing mutations.

Results
Deep Mutational Scanning of a WW Domain. We used deep muta-
tional scanning to measure the ability of 47,000 unique variants
of the hYAP65 WW domain to bind to their polyproline peptide
ligand (2, 4). WW domains mediate protein–protein interactions,
have a well-defined structure, and fold through a two-state
mechanism, simplifying subsequent measurements of thermo-
dynamic stability (11–13). We displayed a library of variants of
the hYAP65 WW domain on the surface of T7 bacteriophage.
The library was created by doped oligonucleotide synthesis, with
each library member containing, on average, two mutations in a
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102-base variable region encoding 34 amino acids that span the
majority of the domain. The library was subjected to three
rounds of selection for binding to a biotinylated form of the
GTPPPPYTVG peptide ligand, which had been immobilized
on magnetic streptavidin beads. We performed high-throughput
DNA sequencing of the input and libraries from rounds 1–3,
acquiring at least 10 million reads for each library (Fig. S1 and
Table S1).
We used this high-throughput DNA sequencing data to derive

a functional score for each WW domain variant in the library based
on the variant’s frequency at each round of selection. Variant
frequencies were corrected for nonspecific carryover, which
occurs when nonfunctional variants are carried from one round
to the next because of background bead binding and incompletely
effective washing (14, 15). The nonspecific carryover rate was
estimated from the performance of variants containing stop codons,
because these variants should be nonfunctional. From the non-
specific carryover-corrected frequencies, we made linear models
of round-to-round enrichments for each of the 47,000 variants
present in the input library and all three rounds of selection. For
each variant, the slope of the resulting line indicates that var-
iant’s enrichment or depletion during the assay. To calculate a
functional score, we divided each variant’s slope by the wild type
(WT) slope (Fig. S2). We used a goodness-of-fit cutoff (slope
R2 ≥ 0.75) to eliminate variants that behaved erratically.

Interaction Between Single and Double Mutants in the WW Domain.
We hypothesized that stabilizing mutations could be found based
on their ability to rescue other mutations, most of which are
destabilizing. In our protein function dataset, a rescue effect
would be seen when two single mutations combine in a doubly
mutated variant to produce unexpected functional gains. These
unexpected functional gains resulting from combinations of
single mutations can be described in terms of epistasis (9, 10, 16,
17). Here, we define epistasis as occurring when two single
mutations (a and b) combine to impact protein function dif-
ferently than expected based on their individual functional
effects and an interaction model. We used the most common
model, called the product interaction model, with the epistasis
score ðεproab Þ computed as (Eq. 1)

εproab ¼ Wab −Wa • Wb; [1]

whereWab represents the functional score of the double mutant and
Wa and Wb represent the functional scores of the single mutants.

Using the product model, we calculated 5,010 individual
epistasis scores from the functional scores of 47,000 variants. The
product model dictates that the product of two single-mutant
functional scores (Wa • Wb) should equal the double-mutant
functional score (Wab) if no epistasis is present. We found that
single-mutant functional scores predicted double-mutant func-
tional scores with a Pearson’s R2 of 0.67 (Fig. 1A). In a previous
study examining variants of the hYAP65WW domain that survived
after six rounds of selection for peptide binding (2), we obtained
a value of 0.68. Thus, despite altering our analysis to combine
consecutive rounds of selection, additional sequencing, and ex-
tensive data filtering, we did not improve predictions of double-
mutant functional scores (Fig. S2 and Table S1). Furthermore,
we tested the logarithmic, minimal, and additive interaction
models, with the epistasis scores ðεlogab ;  ε

min
ab ;  εaddab Þ computed as

εlogab ¼ Wab − log2
��
2Wa − 1

�
•
�
2Wb − 1

�þ 1
�
; [2]

εmin
ab ¼ Wab −minðWa;WbÞ; and [3]

εaddab ¼ Wab − ðWa þWb − 1Þ: [4]

None of these commonly used models of epistasis (18) resulted
in improved predictions of double-mutant functional scores (Fig.
S3 A–D). We conclude that the limiting factor in predicting
double-mutant functional scores is the accuracy of the model
rather than the quality of the measurements of function. These
results argue that epistasis is an intrinsic property of the
hYAP65 WW domain rather than an artifact of data quality or
model choice.
Under the product model, which predicted double-mutant

functional scores most accurately, the mean epistasis score for all
variants was near zero ðεpro ¼ 0:07Þ, with a SD of 0.65 and 86%
of the scores within 1 SD of the mean. The magnitude of epis-
tasis scores scales with the magnitude of variant functional scores
(Fig. 1B). This scaling effect arises because raw variant functional
scores are used to calculate epistasis scores. Therefore, if two
single mutants and the corresponding double mutant have small
functional scores, they cannot yield a large epistasis score. We
observed both high magnitude-positive and -negative epistasis
scores but no population mean tendency to positive or negative
epistasis (Fig. 1B). The most functional double mutants have
positive epistasis scores, suggesting that highly functional mutants
may be difficult to predict.
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Fig. 1. Relationship between function and epistasis in a massive collection of double mutants. (A) The functional score of 5,010 doubly mutated variants was
predicted from the functional scores of the component singly mutated variants using the product model. Predicted functional score is plotted against ob-
served functional score and the two are highly correlated (Pearson’s R2 = 0.67). For each doubly mutated variant, the linear models used to generate the
functional score had an R2 ≥ 0.75. (B) Epistasis scores calculated using the product model for the 5,010 variants are plotted against the functional score of the
doubly mutated variant. The distribution of epistasis scores is shown in the Inset. Dashed lines are placed at ±1 SD from the mean.
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To gain insight into the patterns of epistasis in the WW domain,
we constructed a network view, which shows that, in some regions of
the WW domain, mutations that yield positive epistatic interactions
occur at positions that also harbor mutations that yield negative
interactions (Fig. 2A). Epistasis scores are distributed non-
homogenously, resulting in hotspots (individual positions at which
some mutations have many positive epistatic interactions and
other mutations have many negative epistatic interactions) (Fig. 2
A and B). These hotspots occur in regions of high epistasis that
comprise both loops as well as a portion of the N terminus (Fig.
S3E) (Wilcoxon rank sum test, P = 7.85 × 10−22).

Identification of Thermodynamically Stabilizing Mutations. Because
stabilizing mutations could potentially rescue many destabilizing
mutations, the simplest strategy to find them would rely on the
expectation that stabilizing mutations are among the most highly
represented mutations after selection. As a gold standard, we
used three known stabilizing hYAP65 WW domain mutations
(19, 20) present in the dataset (A20R, L30K, and D34T), which
under this expectation, should become highly enriched. How-
ever, for these three mutations, postselection representation was
not a useful predictor of stability (Fig. S3F). This strategy likely
failed because although we measured a large number (5,010) of
epistasis scores, these scores represent only a small sample of
the 211,200 possible epistasis scores in the 34 positions that
were varied.
Regardless of overall postselection representation, stabilizing

mutations should rescue many other mostly destabilizing muta-
tions. Each of these rescue interactions would have a positive
epistasis score. Thus, we hypothesized that stabilizing mutations
should be those rare mutations with a large positive average
epistasis score. We calculated a mean epistasis score for each
single mutation a ðεproa Þ, which consists of the mean of all of the
epistasis scores arising from double mutants containing a and any
other single mutation b ðεproab1

;  εproab2
; . . . εproabx

Þ. However, the mean
epistasis score was also unable to separate all three known sta-
bilizing hYAP65 WW domain mutations present in our dataset
from the bulk of the mutations as well as two known activity-
enhancing mutations (19–22) (Fig. 2C). The mean epistasis
score failed to correctly identify stabilizing mutations because
of two inherent biases. One bias is the scaling effect, where the

magnitude of an epistasis score scales with the functional scores of
the participating variants. The other bias is a sampling bias in-
herent in deep mutational scanning caused by its reliance on se-
lection; highly deleterious mutations are either not observed or
observed only when they pair with beneficial mutations.
To address these biases, we derived a third strategy that employs

an epistasis-based metric, which we termed partner potentiation
(Fig. 3A). Partner potentiation quantifies the degree to which an
individual single mutation (a) improves, or potentiates, the
functional effect of its partner single mutations (b1, b2, . . . bx)
in the collection of double mutants in which it is found
(ab1, ab2, . . . abx). In a given double mutant (ab), a has a part-
ner-normalized epistasis score with the other mutation b (Pa→b)
calculated as (Eq. 5)

Pa→b ¼ Wab −Wa •Wb

Wb
: [5]

The partner potentiation score of a (PPa) is calculated as the mean
of the partner-normalized epistasis scores (Pa→b1, Pa→b2, . . .
Pa→bx). We calculated partner potentiation scores for mutations
that occurred in at least 10 double mutants. Partner potentiation
accounts for the functional effects imparted by the partner
mutations, reducing the impact of both the scaling and sampling
biases. Unlike change in representation or mean epistasis, part-
ner potentiation separated all three known stabilizing mutations
from the bulk of points as well as the known activity-enhancing
mutations (Fig. 3B). As expected, mutations with high partner
potentiation scores frequently resulted in positive epistasis
(Fig. S3G).
We defined a candidate list of 15 stabilizing mutations having

a partner potentiation score greater than 0.4 and a functional
score greater than 0.9 (Table S2). The list harbors the three known
stabilizing mutations and includes none of the known activity-
enhancing mutations. We chemically synthesized six candidate-
stabilizing WW domain variants (D10Q, P12H, L30I, Q35K,
I33R, and T36R) as well as the known stabilizing D34T variant
as a positive control (20) to characterize their stability by thermal
denaturation (Fig. 3C). Far UV circular dichroism spectroscopy
was used to record the denaturation curves from which ΔGfolding
and ΔΔGfolding data were extracted (Table S2). The stability of
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Fig. 2. Epistasis alone does not reliably identify stabilizing mutations. (A) A network view of epistatic interactions between mutations is shown. Individual
mutations are presented as nodes in the graph and colored by functional scores (red corresponds to mutations with higher functional scores than WT, and blue
corresponds to mutations with lower functional scores than WT). Mutations are arranged first by position and second by alphabet along the circumference of
the graph in clockwise order from the 12:00 coordinate (zoom in to see individual mutations). The WT sequence is shown around the outside of the graph.
Positive and negative epistatic interactions between mutations are shown as gradient red and blue edges, with width and shading proportional to the mag-
nitude of the interaction. The position of the β-strands in theWWdomain is indicated by the blue arrows. For clarity, only epistatic interactions at least 1 SD from
the mean are shown. (B) For each position in the domain, the fraction of epistasis scores that are negative is plotted on the x axis, and the fraction of epistasis
scores that are positive is plotted on the y axis. The fractions of positive and negative epistasis scores are correlated among positions (R = 0.60, P = 8.8 × 10−5). (C)
The average epistasis score of each of the 192 single mutants found in 10 or more double mutants is plotted against the single-mutant functional score of each
mutation. The known stabilizing (A20R, L30K, and D34T) and activity-enhancing (K21R and Q35R) mutations are highlighted in red and blue, respectively.
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the D10Q and P12H variants could not be quantified because of
the absence of pretransition baselines resulting from their low
stability. These strongly destabilizing mutations are located near
the N terminus of the WW domain. These mutations may act to
stabilize the phage capsid–WW domain interface, and therefore,
they may be stabilizing the WW domain in the phage assay but
not in the context of the isolated WW domain. Of the remaining
five variants, the L30I, D34T, and Q35K mutations resulted in
significant stabilization, I33R was a neutral mutation, and T36R
was slightly destabilizing. Among these five variants, ΔΔGfolding
highly correlated with partner potentiation but not with average
epistasis or functional score (Spearman’s ρ = −0.81) (Fig. S4).
Moreover, the identification of two stabilizing mutations in a
grouping with the three known stabilizing mutations shows that
thermodynamic stability, a fundamental protein property, is
implicit in large-scale functional data.
To assess the false-negative rate of our approach, we com-

pared our findings with a study of stability in the Pin1 WW do-
main, which shares a high degree of sequence and structural
homology with the hYAP65 WW domain. The stability of 47
alanine or glycine mutants distributed throughout the Pin1 domain
was assessed by thermal denaturation (23). Of these mutants, one
(2.1%) mutant was significantly stabilizing, suggesting that ∼14
stabilizing mutations should exist among the 646 possible single
mutations in the hYAP65 domain. Assuming that our validation
rate of 33% (2/6) generalizes to all 12 candidate mutations, we
would expect to find a total of four stabilizing mutations in ad-
dition to the three known stabilizing mutations. These seven
mutations represent one-half of the total predicted from the Pin1
data. False negatives may be caused by the incompleteness of the
data, which allowed a calculation of partner potentiation scores
for 192 of 646 possible single mutations, differences in stability
between Pin1 and hYAP65, or intrinsic limitations of this approach.
We compared our validation rate (2/6) to the rate of random
discovery of stabilizing mutations suggested by the Pin1 data
(1/47) and found that our rate was significantly higher (binomial
exact test, P= 0.0067). Additionally, we conducted our analysis on

a restricted set of high quality data and obtained nearly identical
results (Fig. S5).
The 15 candidate mutations that we identified occur at a total

of just eight positions. These positions are scattered throughout
the WW domain and are not confined to the loop regions (Figs.
2 and 3D). In fact, the candidate stabilizing mutations occur at
positions in both loops and strands as well as ligand-contacting
and -noncontacting positions. One mutation, L30I, increased the
Tm by a striking 12 °C and thus, is more stabilizing than any other
known stabilizing mutation in the hYAP65 WW domain. Posi-
tion 30 makes contact with the peptide ligand and is the site of
another known stabilizing mutation, L30K. The identification of
L30I highlights the use of finding stabilizing mutations based on
functional data, because these mutations will not hinder peptide
binding, even if they occur at a contact position.
Finally, we used FoldX (24), a widely used computational tool

for predicting the thermodynamic impact of mutations in proteins,
to analyze the effects of single mutations on WW domain stability.
None of the known or candidate stabilizing mutations were clas-
sified as stabilizing by FoldX (Dataset S1). This result underscores
the difficulty of computational prediction of the thermodynamic
impact of mutations in proteins and highlights the effectiveness
of our strategy.

Candidate Stabilizing and Activating Mutations Synergize to Enhance
Function. Our data offer an opportunity to explicitly examine the
behavior of candidate stabilizing mutations in a protein. We
tested the theory that the candidate stabilizing mutations enable
the acquisition of activity-enhancing but destabilizing mutations
(10, 25, 26). We classified single mutations that had beneficial
effects on function but were not classified as candidate stabilizing
mutations as activating mutations. Among variants with functional
scores greater than WT, those variants containing two activating
mutations generally had higher functional scores than those var-
iants with a single activating mutation (and no candidate stabilizing
mutation) (Fig. 4A). Variants with candidate stabilizing mutations
(and no activating mutation) had higher functional scores than
variants that relied solely on activating mutations, which suggests
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Fig. 3. Partner potentiation reveals stabilizing muta-
tions. (A) Partner potentiation is calculated for a query
mutation a that forms doubly mutated variants with
mutations b1, b2, b3 . . . bn. Partner-normalized epistasis
scores are calculated for a by dividing the epistasis
score of each double-mutant combination that a is
found in by the functional score of the partner mu-
tation (an example calculation for b1 is shown). The
partner potentiation of a is calculated as the mean of
the normalized epistasis scores (in this case, the scores
for b1 . . . bn). (B) Partner potentiation is plotted for
each single mutation against its functional score. The
known stabilizing (A20R, L30K, and D34T) and activity-
enhancing (K21R and Q35R) mutations are highlighted
in red and blue, respectively. Mutations with a partner
potentiation score greater than 0.4 and a functional
score greater than 0.9 were considered to be stabiliz-
ing. (C) Stabilizing mutations were validated by ther-
mal denaturation. The WT hYAP65 WW domain, the
known stabilizing mutant D34T, and four candidate
stabilizing mutants (L30I, I33R, Q35K, and T36R) are
shown in black, purple, red, green, orange, and blue,
respectively. (D) Positions in the hYAP65 NMR structure
(Protein Data Bank ID code 1k9q) with stabilizing
variants as judged by partner potentiation are shown,
colored by the magnitude of the mean partner po-
tentiation score using the PyMol software. Stabilizing
mutations are distributed throughout the WW do-
main. Positions of previously known (superscript 1) and
previously unknown (superscript 2) validated stabiliz-
ing mutations (20, 30, 34, 35) are highlighted.
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that the WW domain is only marginally stable (Fig. 4A) (Wilcoxon
rank sum test, P = 6.65 × 10−14). The largest functional score
increases arose in double mutants that combine a candidate sta-
bilizing mutation with an activating mutation (Wilcoxon rank sum
test, P = 8.56 × 10−13) (Fig. 4A).
We compared the ability of candidate stabilizing and acti-

vating mutations to rescue deleterious mutations. Stabilizing
mutations should rescue deleterious mutations more effectively,
because most deleterious mutations are destabilizing, a defect di-
rectly resolved by stabilizing mutations but not activating mutations.
To test this prediction, we identified rescue events, in which a
deleterious single mutation paired with a candidate stabilizing
or activating mutation in a double mutant with a functional score
at least as good as WT. To avoid sampling biases, we restricted
this analysis to the set of deleterious mutations paired with both
activating and candidate stabilizing mutations in the double-
mutant functional data. Within this set, the deleterious mutations
that are rescued by candidate stabilizing mutations and activating
mutations largely overlapped (∼70%). However, candidate sta-
bilizing mutations rescued, on average, three times as many
deleterious mutations than did activating mutations. To examine
the rescue effects on a per mutation basis, we ranked candidate-
stabilizing and activating mutations by the fraction of deleterious
mutations that they rescued. Independently verified stabilizing
and activating mutations rescued the largest fraction of deleterious
mutations within their class (Fig. 4B). Thus, candidate stabilizing
and activating mutations can rescue many of the same deleteri-
ous mutations, but candidate stabilizing mutations enhance
tolerance to deleterious mutations to a much greater degree
than activating mutations.
Stabilizing mutations rescue destabilizing mutations by buffer-

ing decreases in stability, whereas activating mutations exert their
rescue effect by buffering functional costs through increased
activity. The fraction of mutations rescued by a given activating
or candidate stabilizing mutation was more highly correlated with
functional score for activating mutations (Spearman’s ρ = 0.92)
than candidate stabilizing mutations (Spearman’s ρ = 0.59; P ≤
1 × 10−4) (Fig. S6). This finding suggests that rescue by activating
mutations occurs through a cost exchange and rescue by candidate
stabilizing mutations occurs through a different mechanism.

Discussion
High-throughput approaches like deep mutational scanning can
measure the function of protein variants on an unprecedented
scale. As a simple list, the large-scale functional data that these
approaches produce identify beneficial and deleterious mutations
as well as positions important for protein activity. Here, we have
shown that we can use these data to identify a feature not imme-
diately obvious from functional scores alone: the identity of stabi-
lizing mutations. To accomplish this goal, we developed a metric,
partner potentiation, that enabled us to identify stabilizing muta-
tions without having to explicitly measure stability. We found 15
candidate stabilizing mutations and validated 2 previously unknown
mutations among the ∼600 possible single mutations within the
WW domain, which supports the notion that stabilizing mutations
are uncommon. Three of these mutations had been previously
identified by rational design efforts, but most mutations could not
have been predicted. Thus, large-scale functional data can be an-
alyzed to reveal at least one fundamental protein property.
Additionally, we characterized epistasis in a WW domain on a

massive scale. Most single mutations did not show strong epistasis
when combined, and there was no mean tendency to positive or
negative epistasis. Recently, a large-scale analysis of epistasis in the
HIV protease described a geographic enrichment of epistasis (27).
In the WW data, we found similar evidence for strong epistatic
interactions occurring between particular regions. In addition, our
data show that the occurrences of positive and negative epistatic
interactions are correlated at positions in the WW domain,
highlighting a limited number of hotspot positions where epi-
static interactions, both positive and negative, are most likely.
Our analysis enabled us to classify a large number of mutations

as either potentially activating or stabilizing. The interplay be-
tween activating mutations and stabilizing mutations has impli-
cations for both protein evolution and protein engineering (9,
10, 16). This work offers an explicit, large-scale test of the pro-
tein evolutionary theory that predicts that stabilizing mutations
permit the existence of other activating but destabilizing mutations.
The finding that WW domain double mutants with one candidate
stabilizing mutation and one deleterious mutation have increased
function relative to those mutants with one activating mutation
and one deleterious mutation supports this theory. Furthermore,
we find that candidate stabilizing mutations enhance tolerance to
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deleterious mutations to a greater degree than activating muta-
tions. This result illustrates the importance of stabilizing mutations
in preserving diversity during protein evolution.
Computational and experimental approaches have been de-

veloped to identify stabilizing mutations. Computational methods
generally rely on physicochemical models to estimate the ther-
modynamic impact of mutations (28, 29). Stabilizing mutations
can also be identified by analyzing evolutionary conservation or
proteins from hyperthermophilic organisms (30, 31). Rational
design draws on protein structure as well as the knowledge of the
experimenter to predict stabilizing mutations (32). Selection-based
methods, including directed evolution, attempt to distinguish
stabilizing mutations by selecting for activity among a library
of variants of a protein under conditions that include high tem-
perature, denaturant, or the presence of protease (31–33). The
validation rate of the approach described here (33%) is broadly
similar to the other approaches; however, stabilizing but deacti-
vating mutations, which plague other strategies, are eliminated.
Systematic analyses of the kind presented here could allow us

to disentangle and consequently, quantify other properties that
contribute to protein function. For example, the prediction of
protein structure might benefit from large-scale protein func-
tional data that reveal amino acid preferences within particular
structural elements (e.g., the paucity of proline residues in
β-strands) and the functional effects of mutations that occur at
spatially proximal positions. The feasibility of this approach is
illustrated by existing structural prediction methods that are
founded on these concepts but require extensive existing se-
quence alignment or structural training data (34, 35). Another
example relates to the understanding of enzyme mechanism,
which might be uncovered by an analysis of the pattern of
mutations that increase or decrease catalytic activity in large-scale
protein functional data. In particular, the study of rare strongly
activating mutations represents a systematic method for exploring
mechanism. Finally, protein–protein interaction interfaces could

be mapped in detail by analysis of large-scale protein functional
data collected in the presence and absence of an interacting
protein partner. Partner-dependent changes in variant function
would indicate positions important for the binding interaction,
and amino acid preference at those positions could reveal the
nature of the binding surface. Thus, we predict that the increasing
accessibility of large-scale protein functional data will provide
exciting new tools for understanding how proteins function.

Materials and Methods
We briefly discuss key methods here and refer readers to SI Text for full
experimental and analytical details.

WW Domain Phage Display, Selection, and Sequencing Library Construction.We
performed the phage display and selection as described previously (2). Three
rounds of selection of the WW domain library against the GTPPPPYTVG pep-
tide bound to magnetic beads were carried out. High-throughput sequencing
libraries were prepared using PCR and then sequenced on a GAIIx (Illumina).

High-Throughput Sequencing and Quality Filtration. The 102-base variable
region was sequenced using partially overlapping reads to increase quality
(2). The data were analyzed using the Enrich software package (36).

Calculation of Variant Functional Scores. To calculate variant functional scores,
we used nonspecific carryover-corrected data from consecutive rounds of se-
lection to construct a linear model for each variant. The slope of the line in this
model is proportional to variant function; variants that enrich throughout the
selectionhavepositive slopes,whereas variants that deplete have negative slopes.
Goodness-of-fit filters (R2 > 0.75) were employed as described in SI Text.
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