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The process of amino acid replacement in proteins is context-
dependent, with substitution rates influenced by local structure,
functional role, and amino acids at other locations. Predicting how
these differences affect replacement processes is difficult. To make
such inference easier, it is often assumed that the acceptabilities
of different amino acids at a position are constant. However,
evolutionary interactions among residue positions will tend to
invalidate this assumption. Here, we use simulations of purple acid
phosphatase evolution to show that amino acid propensities at a
position undergo predictable change after an amino acid replace-
ment at that position. After a replacement, the new amino acid
and similar amino acids tend to become gradually more acceptable
over time at that position. In other words, proteins tend to
equilibrate to the presence of an amino acid at a position through
replacements at other positions. Such a shift is reminiscent of the
spectroscopy effect known as the Stokes shift, where molecules
receiving a quantum of energy and moving to a higher electronic
state will adjust to the new state and emit a smaller quantum of
energy whenever they shift back down to the original ground
state. Predictions of changes in stability in real proteins show that
mutation reversals become less favorable over time, and thus,
broadly support our results. The observation of an evolutionary
Stokes shift has profound implications for the study of protein
evolution and the modeling of evolutionary processes.

Amajor focus of modern evolutionary studies is to understand
how structural and functional contexts determine the pat-

terns of evolutionary change at different positions in a biological
macromolecule. Such an understanding is important to phylo-
genetics, partially because the position-specific processes of evo-
lution are known to determine our ability to reconstruct deep
nodes in the tree of life (1) but also because features of the evo-
lutionary process such as convergence can deterministically mis-
lead phylogenetic reconstruction (2). Understanding patterns of
evolution and how they respond to details of structure and func-
tion can also potentially help us to better decode the evolutionary
record, allowing us to distinguish between structural and func-
tional constraints and identify the signatures of positive selection.
This finding can lead to improved understanding of a biomole-
cule’s structure, dynamics, thermodynamics, functionality, and
physiological context. Key questions concern how evolutionary
processes vary among sites and over time and particularly, how the
evolution at different locations influences each other. For exam-
ple, coevolution between different locations in a protein can slow
the amino acid replacement process, allowing phylogenetic in-
ference at deep nodes that would otherwise have been swamped
by recurrent neutral changes. Furthermore, coevolution tends
to depend on proximity in the 3D structure of proteins, leading to
the hope that, if properly understood, it could improve our ability
to predict important features of protein structure (3–11).
To understand patterns of molecular evolution, it is necessary

to model the process of evolution. Models of protein evolution
must, out of necessity, make assumptions or simplifications con-
cerning the underlying replacement process. In the past, most
model assumptions have been driven by the lack of data to deter-

mine parameters and the overwhelming computational demands
of more realistic but complex models. Recent advances in high-
throughput sequencing, high-performance computing, and phy-
logenetic model building have improved the situation, but it is still
necessary to make simplifications and assumptions. The question
is which simplifications are most useful for addressing a particular
problem or issue? The model including the simplifications should
be correct enough to decipher key features of how protein struc-
ture and function interact with protein evolution, allowing us
to interpret the terms of the model in terms of the basic biology
and biochemistry. To answer this question, we need to consider
the mechanistic theory underlying different evolutionary models.
The most direct approach to formulating a mechanistic model

of protein evolution is to make the replacement rates dependent
on the resulting change in various protein properties, which is
calculated as a function of the entire protein sequence. This ap-
proach has been the rationale for thermodynamic energy-based
models, which allow for direct calculation of contextual inter-
actions. Although this approach might seem a priori preferable
because of its directness, it has dual disadvantages: it is slow,
and it does not seem to explain the data as well as site-specific
empirical models (12, 13). Thermodynamic models are compro-
mised by the unlikely assumption that the fitness of a protein is
a simple function of its thermodynamic stability and the assump-
tions necessary to make the thermodynamic calculations com-
putationally feasible. For example, the energy potentials used
are almost certainly incorrect. We still do not have adequate
ways to include the effect of side chain and backbone flexibility
in these calculations. Thermodynamic properties generally involve
small differences between large numbers, meaning that these larger
quantities must be computed to excruciating accuracy. Small er-
rors in energy potentials can accumulate across the many atomic
interactions in a protein, compounding error in even the best en-
ergy models. Most of the time in evolutionary studies, however,
many variants need to be evaluated, and therefore, simple (and
even more error-prone) pairwise contact potentials are used for
computational reasons. Furthermore, to correctly calculate the free
energy of the native fold, it is necessary to consider the energy of all
thermodynamically relevant alternative folds. Because it is cur-
rently impossible to include the vast multitude of such folds or even
know what the relevant folds are, decoy datasets are generally used,
consisting of, for example, a subset of the known folds in protein
databases. These decoy datasets are inadequate representations of
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the energetically relevant competing folds, leading to large amounts
of error in energy analyses.
Because of these limitations, phylogenetic analyses have been

dominated by phenomenological models. Such models attempt
to capture the results of evolutionary change rather than model
the selective constraints acting on the evolutionary process per
se. Historically, empirical models of amino acid evolution were
obtained from observed differences among sequences (14–16).
Phenomenological substitution models were initially constructed
based on the assumption that evolution at all locations was
identical and independent or that different locations might
evolve at different rates, with the rate acting as a simple scaling
factor for the rate matrix. More elaborate models have been
constructed that allow substitution rates to depend on local
structure (17–19), whereas other models have allowed sub-
stitution rates to vary between branches and locations in ways
that are determined by the sequence data (20–22). In these
models, it was observed that replacements were more frequent
among amino acids with similar physicochemical properties (for
example, among small hydrophobic amino acids) than more
disparate amino acids (for example, between amino acids with
positive and negative charge). This idea of exchangeability can be
rationalized using the graphical models in the work by Fisher
(23), which noted that, if a trait is approximately optimized, it is
far more likely for smaller, more conservative changes to be ac-
ceptable and not eliminated by purifying natural selection. More
radical changes, in contrast, are more likely to be deleterious.
An alternative approach is to implement site-specific mutation

selection models (24–27) that attempt to capture the mechanistic
aspects of the evolutionary process while avoiding the conceptual
and practical limitations of thermodynamic models. Such models
can be related to biophysical models of protein structure and
thermodynamics by considering that each location (or site) l in
a protein has a propensity for each of the 20 amino acids,
depending on its local structural and functional environment.
This propensity is then related to fitness by assuming that
organisms with a particular amino acid a at location l in the
protein will have an average fitness ωa

l compared with organisms
with other amino acids at that site. The propensities and fitnesses
are generally assumed to be constant over the course of evolu-
tion. The general structure of this model is, thus, that the
probability of substitution at location l is equal to μlij × f lij, where
μlij is the mutation rate from nucleotide i to nucleotide j at lo-
cation l and f lij is the probability of fixation at that location. If the
change is synonymous, then the mutation is usually considered
neutral (although codon biases can be included); however, if the
mutation of a codon encodes a replacement of an amino acid,
the probability of fixation is usually calculated using the relative
fitnesses of the two amino acids and the equations by Crow and
Kimura (28) and Kimura (29, 30) (see below). In contrast to the
thermodynamic approach, the parameters in such models can be
estimated from the sequence data rather than calculated from first
principles. The amino acid substitution process in such cases is
time reversible as long as the mutation process is time reversible.
The site-specific constant fitness mutation selection models

suffer from a number of limitations. The important properties of
proteins (e.g., structure, function, and stability) are holistic and
depend on interactions between amino acids. As different loca-
tions undergo substitutions, the context of other sites will change.
These changing interactions between locations with substitutions
in the protein have motivated work on correlated substitutions
or coevolution (3, 4, 8, 10, 11), and most such work has found
strong evidence that coevolution is extremely common. The
model also implies that a nonpreferred amino acid will always be
nonpreferred, and therefore, although occasionally observed, it
will be unstable over evolutionary time.
Modifications of exchange rates do occur, however, and are

mediated through coevolutionary interactions with exchanges of

amino acids at other locations. A fundamental difference be-
tween expectations under what we will call a coevolutionary fit-
ness model and the site-specific constant fitness (independent
evolution) model described above can be seen by considering
forward and reverse substitutions. In the constant model, if a
forward substitution (for example, from amino acid ak to al) is
advantageous, then the reverse substitution (from al to ak) will
always be disadvantageous or deleterious and will be unlikely to
occur. In other words, the change in fitness of the reverse sub-
stitution, Δωðal ⇒ akÞ, is the same magnitude and the opposite
direction as the change in fitness of the forward substitution of
Δωðal ⇒ akÞ ¼ −Δωðak ⇒ alÞ. In contrast, the coevolutionary
fitness model would allow for the possibility that Δωðak ⇒ alÞ and
Δωðal ⇒ akÞ might change because of substitutions at other sites.
Despite their limitations and the lack of a plausible underlying

theoretical rationale, the overall comparative success of the
phenomenological models suggests that we should consider how
they can be further developed. We should consider what un-
derlying processes make sense to model phenomenologically and
whether we can improve the successful application of such
models. The development of better models requires an improved
understanding of the substitution process and how it is affected
by epistasis. In particular, we want to know when the evolution-
ary process at a site changes, the magnitude and timescale of
these changes, and whether the changes occur in a predictable
fashion. We are interested in knowing the extent to which a co-
evolutionary scenario is justified when considering protein evo-
lution and how coevolution might affect substitutions through
fluctuating fitness differences among amino acids at each site.
We explore these ideas with a simple model of protein evolution
in which the fitness of a protein is calculated based on the
probability that it folds to its native structure (the purple acid
phosphatase). We investigate how substitution propensities
change with substitutions at individual locations because of
coevolutionary substitutions at other locations in the protein.
Finally, we consider the structure of a general model that would
take our observations into account.

Results
Scale and Rate of Fluctuations in Selective Constraints. We first
performed 18 evolutionary simulations on the structure of purple
acid phosphatase for a total of over 2.4 million substitutions. We
considered six focal locations: exposed sites 111 and 147, par-
tially exposed sites 168 and 273, and buried sites 7 and 135. We
calculated the instantaneous propensities ΠX

l at these sites for
each of the 20 amino acids X after every substitution in the
evolutionary pathway, defined as the equilibrium frequency of
the amino acid given fixed amino acids at all other locations and
ignoring the effect of base composition and the degeneracy of
the genetic code (Eq. 4). If there were no coevolutionary inter-
actions (the standard assumption of most phylogenetic models),
these propensities would not change over the course of the simu-
lations. Instead, there is considerable variation in propensities
in all simulations, which can be seen in the example segment
of evolution at site 168 shown in Fig. 1. It is also notable in Fig. 1
that the amino acid that is actually at that location is almost
always the amino acid with the highest propensity.
We can characterize the range of the fluctuations by calcu-

lating the distribution of the propensities at a given location,
such as in the distributions of the various amino acids at location
168 shown in Fig. 2. (The corresponding distribution for loca-
tions 111, 147, 273, 135, and 7 is shown in Fig. S1.) The most
frequent propensities for all amino acids range from 0 to 0.2 and
are centered around 1/20th, but the most common propensity for
any amino acid at the location is that it is highly disfavored.
However, all amino acids also have some probability of reaching
propensities near 1.0, in which case all other amino acids are
essentially disallowed.
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We can quantify the degree to which a site is constrained in its
amino acid composition by considering Al, the effective size of
the alphabet of amino acids possible at a given location l, cal-
culated with Eq. 5. The average values of Al for the six locations
hAli averaged over each point in the simulation using the in-
stantaneous propensities ΠX

l are 10.48 and 10.90 (exposed sites
111 and 147, respectively), 8.44 and 8.65 (partially buried sites
168 and 273, respectively), and 2.94 and 3.69 (buried sites 7 and
135, respectively). In contrast, the values of Al calculated using
the average values of the propensities hΠX

l i are 18.71, 19.10,
14.52, 17.80, 6.83, and 8.03, respectively. This finding indicates
that the average amino acid position is considerably more con-
strained at any instant than one would predict based on con-
sidering the average frequencies observed over long periods of
time. Notably, this observation holds true even with the varying
levels of constraint at the three sites (the surface sites are least
constrained and the buried site is most constrained).
We next considered the timescale of the fluctuations in amino

acid propensities. One way this question can be framed is by
asking about the rate at which the system loses memory of its
previous amino acid preferences. We measured this rate for the
six focal locations using the decay of the autocorrelation function
over different periods of time (Fig. 3). The autocorrelation drops
rapidly to 0.75–0.90 after 50 substitutions, after which it drops
off only very slowly and comes close to equilibrium after 104–105

substitutions or more (note the log scale for substitutions in
Fig. 3). The drop off can be reasonably well-fit by a stretched
exponential, characteristic of the dynamics of systems such as
spin-glasses with large numbers of degrees of freedom and
a rough energy landscape (Table S1). The rate of loss of pre-
dictability is highly dependent on the exposure of a site, with the

buried site retaining predictability the longest and coming to
a higher asymptotic value and the exposed site losing pre-
dictability the quickest and dropping to the lowest value in the
end. Notably, the predictability for each site does not drop to
zero (although the exposed site comes close), indicating that
information is retained about the nature of the site from the
long-term process, even if there is a great deal of fluctuation over
the short term. This finding is not surprising, because it reflects
the biases of different amino acids to different local structures as
well as interactions of the focal location with the biased dis-
tributions at other sites. (The presence of long-term information
about the amino acid distribution is also shown by the effective
size of the alphabet of amino acids calculated using the average
values of the propensities, which is less than 20.) Still, the
equilibrium correlation is only 0.36 for buried sites, which indi-
cates that recent propensities at a site (over the last 50–1,000
substitutions in the protein overall) are a better predictor of
future propensities than the location in the protein.

Coadaptation Between Protein Locations. As noted in Fig. 1, de-
spite considerable fluctuations, the amino acid that is at a loca-
tion is almost always the amino acid with the highest propensity.
This finding comes about, first, because as might be expected,
amino acids tend to be replaced by residues that have relatively
high propensities at the time of the substitution (that is, the
protein is preadapted to accept the new residue). This finding is
clear in Fig. 4, where the average propensity for a new amino
acid just after it was substituted into position 273 was 0.13. In
comparison, the overall average propensity of the same amino
acid was 0.07. This degree of preequilibrium is especially high
for the charged amino acids. Second, however, amino acid pro-
pensities tend to evolve so that the new amino acid becomes
more preferred at that position. The average propensity of
amino acids in the period after a substitution, while they are still
resident, is 0.17, significantly higher than the average pro-
pensities at both the time of the substitution and overall. This
finding means that, after a replacement, coevolution tends to
equilibrate the protein to the presence of the new amino acid.
This equilibration tends to increase over time, slowly approaching
the average propensity for amino acids that are fixed at a loca-
tion (Fig. 4) (see below). It can also be seen that these effects are
much more pronounced for the buried amino acids compared
with the partially buried and especially, exposed amino acids.
To separate the tendency of an amino acid to occur where it is

preferred from the tendency of the amino acid to become pre-
ferred where it occurs, we performed additional simulations in
which the amino acid at the focal location was not allowed to

Fig. 1. Propensities shift caused by coevolution. Results are shown for
propensities of various amino acids at site 168 during an evolutionary period
encompassing 500 substitutions. Black lines represent changes in the amino
acid resident at this location, with the current occupant during each time
period noted. During this time, site 168 underwent substitutions from
aspartic acid (D) to glycine (G) to alanine (A) and then, to threonine (T). The
propensities of the 20 amino acids are indicated by different colored lines,
which are indicated by the single-letter International Union of Pure and
Applied Chemistry (IUPAC) amino acid codes in the legend. For clarity, amino
acids with low propensities during this time period were omitted.

Fig. 2. Long-term distribution of propensities. Distributions of marginal
propensities for all 20 amino acids across 18 simulations totaling over 2.4
million substitutions are shown for partially buried site 168. Line colors are as
in Fig. 1. Similar plots for all six focal locations are shown in Fig. S1.

Fig. 3. Decay of the autocorrelation function of amino acid propensities.
The dynamics of the decay of the autocorrelation function are shown for
exposed locations (blue, site 111; cyan, site 147), partially exposed locations
(red, site 168; orange, site 273, and buried location (green, site 135; lime, site
7). Dashed lines fit to a stretched exponential plus baseline as described in
the text. Value of the fit at infinity represents the baseline value. Note the
modified logarithmic scale on the abscissa.
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change. In this way, the amino acid found at a location is in-
dependent of its propensity for the location. Fig. 5 shows the
average propensities of selected amino acids at position 168
when this location was constrained to have different fixed amino
acids. (More complete propensities for locations 111, 168, and
135 are shown in Fig. S2; average propensity for fixed residues,
averaged over the equilibrium distribution, are shown in Fig. 4.)
As can be seen, the protein in each case adjusts so that the fixed
amino acid becomes the preferred amino acid: the average
propensity of leucine (L) is 0.21 when L is fixed at location 168
but only 0.01 when aspartic acid (D) is fixed at this location.
Furthermore, the adjustment to the fixed amino acid also
increases the propensity for amino acids that are similar to the
resident amino acid: the propensity of L is increased when the
similarly hydrophobic valine (V) is fixed at that location, ad-
justment of the protein to serine (S) increases the propensity for
threonine (T), and the presence of the negatively and positively
charged glutamic acid (E) and lysine (K) increase the propensity
of the similarly charged D and arginine (R), respectively. Note
that these different propensities occurred in a single location
in the protein and therefore, cannot represent the constraints
caused by local structure.

Response to Deleterious Substitutions. Substantially destabilizing
substitutions may occur for a variety of reasons, including se-
lection at active site locations for improved or new functionality
or selective sweeps in nearby genes. How does the protein react
to such perturbations? How fast does the shift in amino acid

propensities approach equilibrium? To address these questions,
we chose a pair of residues X and Y and found three sequences
where (i) there was an X at the focal location and (ii) an X → Y
substitution would be moderately destabilizing, with a value
of ΔΔGX→Y = 1 kcal/mol. We then made this substitution in this
sequence, fixed the Y at this location, and monitored the ener-
getics of the Y → X back substitution. Each of these three sim-
ulations was repeated 1,000 times. An example is shown in Fig. 6
for substitutions from X = R to Y = D at site 111, which has
broadly similar characteristics to other types of substitutions.
Looking at these runs, it seems that there are rapid short-term
fluctuations on the order of 50 substitutions as well as consistent
long-term directional trends on longer timescales.
By averaging together multiple runs, a more general trend

emerges. Initially, before any other substitutions have occurred
in the rest of the protein, the back mutation R → D would re-
cover the original sequence, and therefore, ΔΔGR→D = −1 kcal/
mol. As additional substitutions occur, the arginine at this
location becomes increasingly accommodated relative to the
aspartic acid. After ∼50 substitutions, the reverse mutation is,
on average, deleterious, becoming increasingly deleterious with
additional substitutions.
Fig. 7 presents the evolution of the propensities of the 20 amino

acids after a fixed R111D substitution. Within a small number of
substitutions (fewer than 10), the propensity for the resident
amino acid rises about 1/20th (0.05). The propensity for the res-
ident amino acid eventually increases to about 0.25, on average,
after 1,000 substitutions, but it does not seem to have yet equili-
brated. This finding indicates that there is a rapid response
adjusting to such a destabilizing amino acid replacement (50–100
substitutions to rise from lowmarginal propensity to around 12%)
followed by a gradually decelerating rise over a much longer
period. Perhaps the most interesting aspect of Fig. 7 is what
happens to the propensities of the other amino acids. With this
negatively charged amino acid at the focal site (111), the pro-
pensities for the hydrophobic MFLIV of group amino acids and
the positively charged (RK) amino acids plummet, whereas
amino acids in the large NPYGHTSQ group remain at moderate
propensities (0.04–0.07). Most interestingly, the propensity for
the other negatively charged amino acid, glutamic acid, slowly
increases its propensity in step with the increase in aspartic acid
propensity, rising to about one-half the propensity of aspartic
acid. This finding is in agreement with the results in Fig. 5.

Evolution of Mutational Stability and the Evolutionary Stokes Shift.A
prediction of our model that can be measured is the effect of
subsequent substitutions on the effect of mutations and their
inverse over time. Recall that the standard model in the work by

Fig. 4. Increase in propensity for current amino acid caused by coevolution.
For each location, the average propensity of all amino acids during free
simulations (red) was compared with the average propensity of new amino
acids after a substitution (green), the average propensity of resident amino
acids during their residency (blue), and the average propensity of fixed
amino acids (magenta). The six locations examined were exposed locations
111 and 147, partially exposed locations 168 and 273, and buried locations 7
and 135.

Fig. 5. Effect of current amino acid on amino acid propensities. Average
propensity of selected amino acids at location 168 (hΠX

168i) depending on the
amino acid fixed at that location. Results are shown for X equal to lysine (L;
red), threonine (T; orange), serine (S; yellow), aspartic acid (D; green), and
arginine (R; blue).

Fig. 6. Evolution of the change in stability for the back mutation (ΔΔGD111R)
after an R110D mutation. Three sequences were chosen for which an R111D
mutation was slightly deleterious (ΔΔGR111D ≈1 kcal=mol). This mutation was
made, and the D was fixed at this location. Red, blue, and green traces
represent individual simulations. Black curve represents the average of 1,000
simulations for each of the three initial sequences.
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Halpern and Bruno (24) assumes that the propensities do not
change; thus, mutations and their inverse should have opposite
effects on stability (in our model, stability reflects propensity),
and this effect should not change over time, because evolution
is independent among sites in this model. We can examine this
effect by considering two divergent sequences. At every location
that differs, we can evaluate ΔΔG for the mutation that converts
the residue found in one sequence to the residue found at that
location in the other sequence and compare this finding with the
corresponding inverted situation. We perform this analysis for
sequences generated by the evolutionary simulation, where the
two sequences are separated by different degrees of identity at
the other locations in the protein (100%, 75%, and 20% in Fig. 8
A, C, and E, respectively). [Identity is used to represent distance
between the sequences to allow comparisons with sequences
from nature (Fig. 8 B, D, and F), for which the number of sub-
stitutions separating them is unknown.] Because our calculations
for simulated sequences are exact, the ΔΔG for mutations and
their inverses when no other changes between the two sequences
exist (100% identity) is exactly on the diagonal, indicating that
the ΔΔG for inverse mutations is always of the same magnitude
and opposite sign (Fig. 8A). As sequences diverge, the rela-
tionship moves off the diagonal (Fig. 8C) until, with low se-
quence identity (20%) (Fig. 8E), the inverse mutations are
almost always up and to the right, indicating that mutations away
from the resident amino acid are almost always worse (i.e., have
positive values of ΔΔG). To test this finding on sequences from
nature, we sampled ferrodoxin sequences with high-resolution
crystal structures in the protein database and predicted single-
mutation ΔΔG using Rosetta (31) (Fig. 8 B, D, and F). The
pattern is strikingly similar to the pattern from our simulated
proteins, strongly supporting the idea that there is a shift in real
sequences as well.
A comparison can be made with spectroscopy. If a simple

atom in vacuum is excited by absorption of a photon of light,
there is an increase in the energy of the system ΔEAbsorption ¼
EExcited state −EGround state. Subsequent emission of a photon
through fluorescence changes the energy of the system by the
negative of this amount: ΔEEmission ¼ EExcited state −EGround state ¼
−ΔEAbsorption. As a result, a plot of ΔEAbsorption vs. ΔEEmission
would consist of points on the line ΔEEmission ¼ −ΔEAbsorption,
similar to the plot ΔΔGX →Y vs. ΔΔGY →X shown in Fig. 8A. In
more complicated molecules, each electronic state corresponds
to a series of vibrational states, which add vibrational energy to
its total energy. At equilibrium at room temperature, the mole-
cule is generally predominantly at the ground vibrational state,
but changes in the electronic state often leave the molecule in an
excited vibrational state; after the excitation, the vibrational state

relaxes back to the ground vibrational state, generally through
radiationless transitions. This tendency for electronic transitions
(of either direction) to be accompanied by vibrational excitation
results in an increase in both ΔEAbsorption and ΔEEmission, in-
creasing the energy gain and reducing the energy loss, re-
spectively, which is an effect called the Stokes shift. As a result,
plots of ΔEAbsorption vs. ΔEEmission would consist of points above
and to the right of the line ΔEEmission ¼ −ΔEAbsorption, similar to
the effect of the evolutionary dynamics shown in Fig. 8 C–F. We
believe that the spectroscopic Stokes shift is an apt analogy for
the change in amino acid preference that occurs when an amino
acid is substituted at a position, which is characterized by the
tendency for substitutions in both directions to be deleterious
with larger values of ΔΔG as observed in Fig. 8. We, therefore,
refer to this effect in proteins as an evolutionary Stokes shift.

Discussion
We have presented evidence here that strongly suggests that our
understanding of how proteins evolve and coevolve needs to be
fundamentally revised. We have long understood that evolution
at different positions in proteins is context-dependent (even if
our models have not often incorporated this knowledge), but we
cannot make strong claims to understand what determines this
context dependence. We should understand more about general
trends, whether the structural context or sequence context
dominates evolutionary trends, and what amounts of sequence
change (what timescales) affect sequence context. Here, our
most notable finding is the existence of what we call an evolu-
tionary Stokes shift, by which we mean that, on substitution of an
amino acid at a position in a protein, the protein will tend to
adjust through coevolutionary processes to having that amino
acid at that position; therefore, the inherent propensity for that
amino acid at that position will be, on average, higher than it was
when the substitution occurred. As a result, for most of the time
that the amino acid is resident, the probability that a reverse

Fig. 7. Evolution of changes in propensities after mutation. Evolution of
amino acid propensities at site 110 over 1,000 substitutions. As in Fig. 5, three
sequences were chosen for which an R110D mutation was slightly deleteri-
ous (ΔΔGR111D ≈1 kcal=mol). This mutation was made, and the D was fixed at
this location. Curves represent the average of 1,000 simulations for each of
the three initial sequences. Amino acid color codes are as in Figs. 1 and 2.

A B

C D

E F

Fig. 8. Correlation between energetics of forward and backward muta-
tions. (A, C, and E) Values of ΔΔGX→Y compared with ΔΔGY→X for mutations
where one sequence is changed to match the amino acid in the other se-
quence at that location as a function of the pairwise identity at other
locations: (A) 100%, (C) 75%, and (E) 20%. If all locations are independent,
ΔΔGY→X ¼ −ΔΔGX→Y , which is the case for A. (B, D, and F) Similar calcu-
lations for different homologs of ferrodoxin, where the values of ΔΔGX→Y

and ΔΔGY→X are computed using Rosetta (31). Calculations were based on
the crystal structures of the two proteins for sets of proteins where the
pairwise identity at other locations was (B) 100%, (D) 70–80%, or (E) <25%.
Correlation coefficients (cc), calculated after excluding outliers (jΔΔGj> 15),
are included in the plots.
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mutation or any other mutation at that position will be accepted
will be substantially smaller than when the substitution occurred.
In our model, the evolutionary Stokes shift is affected through
folding stability, but it is reasonable to suppose that other fitness-
inducing complex landscapes may induce this effect as well as
long as there is a significant degree of epistasis.
The presence of an evolutionary Stokes shift does not neces-

sarily violate the reversibility of evolutionary dynamics. A new
amino acid resident at a given location will bias substitutions
at other locations to increase the propensity of the new amino
acid at that location. Other substitutions may arise, however, that
decrease the propensity, enabling another substitution at this
location to occur. The dynamics can be imagined as movement
on a fitness landscape between successive fitness peaks, each
representing an amino acid at that location. Differences in the
heights of the peaks represent the inherent suitability of any
amino acid for that location. Initially, when a substitution occurs,
the sequence is at a lower point on the peak, but its height on the
peak increases as coevolutionary substitutions occur at other
locations in the protein. Stochastic movement on the peak can
decrease the fitness, enabling a substitution at this location and
the jump to another peak. In contrast to this situation of muta-
tion selection balance, violations of reversibility would be ex-
pected after the fixation of a substitution because of positive
selection, and such nonreversibility can affect the reversibility at
other sites that are linked through coevolution. In this case, there
would be irreversible adjustment of the rest of the protein, im-
proving the fitness of the newly substituted amino acid, which is
seen in Figs. 6 and 7.
Even without the Stokes shift, we expect substitutions to

similar amino acids to be favored compared with dissimilar
amino acids (the Fisherian model) simply because of site het-
erogeneity; amino acids would predominantly be found where
they are preferred, and a location with a preference for a given
amino acid would likely accommodate similar amino acids. Our
model, however, would greatly enhance the Fisherian nature of
protein evolution; as the protein equilibrates to the presence of
a resident amino acid at a position, it will similarly increase the
propensity for amino acids that share physicochemical proper-
ties. In the classical point accepted mutation (PAM) matrix style
models (14–16), lower rates of substitution are modeled by a
phenomenological rate factor. Here, however, the explanation is
that the propensities for similar amino acids increase along with
the increase in propensity for the resident amino acid because of
coevolutionary adjustments in the rest of the protein sequence.
To develop a new framework for empirical model building in

evolutionary analysis, it is useful to build on the old framework.
In the models in the work by Halpern and Bruno (24) as well as
PAM-like models, sites evolve independently and reversibly. As
mentioned in the Introduction, in the models by Halpern and
Bruno (24), the rate of substitution is Ql

ij ¼ μlij f lij, where μlij is the
mutation rate and f lij is the probability of fixation of this change at
that location. At equilibrium, substitutions require a simulta-
neously high propensity for both the original amino acid (or it
would not be resident and available for substitution) and the new
amino acid (or the substitution would not be accepted). Loca-
tions with a high propensity for one amino acid will generally
have a high propensity for similar amino acids; this tendency for
the propensities of similar amino acids (Πl

i and Πl
j or alternatively,

the equilibrium frequencies πli and πlj) to covary between locations
provides a mechanism for the observation in the work by Fisher
(23) of the predominance of conservative evolutionary changes.
This mechanism relies on site dependence of the propensities; the
more uneven the distribution of propensities among different
locations, the more conservative the observed substitutions.
In contrast, PAM-like general reversible models applied to

a single site, Ql
ij, can be expressed as Ql

ij ¼ μlij λ
l
ij πlij, where λlij is

the parameter of mathematical convenience that results in a re-

versible model as long as
λlij
λlji
¼ μlji

μlij
. We note that the rate param-

eters of such models are not generally fit to individual sites
because of the large number of rate parameters (190). In gen-
eral, not even the equilibrium frequencies are fit to individual
locations, which means that the value of λlij is a parameter ad-
justed to the average observed frequencies among sites. Because
site-dependent propensities are not included in PAM-like mod-
els, the mechanism for favoring conservative changes that is in-
corporated into the model by Halpern and Bruno (24), which
depends on correlations between site-dependent amino acid
propensities, is disallowed. Instead, the conservative nature of
substitutions can only be contained in λlij, incorrectly suggesting
that the effect is one of rates rather than covarying propensities.
In our framework, which we will designate the Stokes–Fisher

framework, the substitution rate depends on the timescale. On
a very short timescale, when no other substitutions have occurred
in the protein, the substitution rate at each location is based on
the instantaneous amino acid propensities. The location-specific
rate of substitution over longer periods of time is, however, de-
pendent on coevolutionary changes at other positions. Sub-
stitution from amino acid i to j will occur only when propensities
have drifted such that j is sufficiently fit relative to i in that it has
a reasonable probability of substitution. The substitution prob-
abilities will depend on the distribution of relative fitnesses over
time, and it seems unlikely that probability of substitution given
arrival into a substitutable state can be separated from the
probability of arriving into a substitutable state. The most rea-
sonable approach for future model-building may, therefore, be
to combine the processes of drift to substitutability and fixation
into a single set of parameters. These parameters would repre-
sent the probability of a given shift in propensities times the rate
of substitution given this shift integrated over all possible pro-
pensity shifts. The shifts would reflect random fluctuations in
propensities as well as the systematic tendency of proteins to
adjust, on average, to the current amino acid at a location and
prefer similar amino acids.
Unfortunately, in addition to the large number of parameters

inherent in such an approach, our results show that the pro-
pensities and therefore, the substitution probabilities are likely to
change to varying degrees over different timescales. Propensities
may change rapidly, especially immediately after a substitution at
that site and especially after a selected substitution that would
have been deleterious with regard to the structure alone. Con-
versely, the results presented in Figs. 3 and 7 show that the
longest timescales are on the order of thousands of substitutions
in the protein, corresponding to branch lengths on the order of
10 substitutions per site. There is good reason to question
whether such a process will ever be knowable. However, there is
hope that the process may be moderately stable over moderate
periods of time as long as the amino acid at the focal site does
not change. In this manner, modifications of schemes that use
a set of Markov-modulated substitution models (32, 33) might
be promising. In contrast to currently-implemented Markovian
schemes, however, there would need to be interplay between the
changes in the amino acid at a given location and the length of
time that the amino acid has been at that location and the ap-
propriate substitution model. We can characterize the types of
changes in the substitution models through concepts such as
coevolutionary latency, the timescale during which the protein
adjusts to the new amino acid at the site through coevolution at
other sites. After this latency period, we can consider longer
periods of evolutionary time where there is a temporarily stable
process and for which any small fluctuations are sufficiently fast
that they may be averaged. We might also consider that, when
the process does change, the concept of coevolutionary latency
will again apply. These coherent coevolutionary propensity pro-
cesses may be expected to change in an a priori unpredictable
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way, but as long as there are coherent and measurable processes
in the tree on both sides of the change, then the coevolutionary
latency transition might be presumed to be fairly regular. This
finding might allow its characterization by a single posthoc in-
ferable parameter governing the rate of change from one co-
herent process to the other.
There have been other substitution models including context

dependency (34, 35), but most of these include the effect of
context on the mutation process. The mechanism that we discuss
here, conversely, involves the impact of the context (the protein
sequence) on the fixation probability. Because of this difference
in mechanism, the consequences are very different. First, the
local propensities are a function of all of the amino acids in the
protein; even locations not in contact with the focal location can
affect these propensities through either contacts made in un-
folded structures or changes in the protein stability and thus, the
degree of selective pressure. The magnitude of the epistasis
between different locations, however, has a wide distribution.
The result is amino acid propensities that fluctuate over a wide
range of timescales from near instantaneous to changes that
occur over thousands of substitutions throughout the protein.
Second, the impact of a given amino acid on the fixation process
at other locations in the protein results in a tendency of the
protein to adapt to this amino acid, a process that we have
termed the evolutionary Stokes shift. One consequence of this
Stokes shift is that the amino acid at a given location will gen-
erally have a higher propensity, not only because substitutions
will favor favorable amino acids but also because resident amino
acids will become favorable because of their impact on other
locations. This type of effect is difficult to imagine occurring
through changes in the mutation rates.
This Stokes shift will also affect similar amino acids, increasing

the rate of conservative substitutions. This finding can be un-
derstood by considering the original argument in the work by
Fisher (23) that conservative changes would be more likely to be
accepted than more radical mutations. This effect requires the
organism to be near a fitness optimum. This optimum can occur
because of the adaptive process of evolution. Alternatively, if we
consider the fitness landscape for a given location in the protein,
the location of the fitness optimum will move as the other loca-
tions in the protein change. The evolutionary Stokes shift will
result in the fitness optimum shifting to better match the amino
acid at that location. In this way, the criterion for the Fisher
construction would be satisfied, not only because the amino acid
adapts to the fitness landscape but also because the fitness land-
scape adapts to the current amino acid (23).
We characterized our aim here as considering the conse-

quences of evolution on a complex fitness landscape when they
are viewed from the perspective of a single site. If we view this
finding as part of a broader program, the goals might be to
characterize the effect of thermodynamically generated epistatic
interactions on the different types of models and see how the
next generation of models can include the impact of collective
protein properties on the evolution of individual locations con-
sidered independently. Essentially, we must understand the di-
alectic among amino acids. The broader program would include
understanding sign epistasis and genetic constraint on evolu-
tionary trajectories (36), developing Dobzhansky–Muller incom-
patibilities (37–39), and predicting differences in fitness of
different mutations in different organisms caused by compen-
satory change (40). We have addressed this program through
a particularly simple model, where the collectiveness involved
the calculation of protein thermodynamic stability. The next
stage, necessarily, is to evaluate the existence, magnitude, and
nature of such effects through detailed phylogenetic analysis.

Methods
Protein Model. The model used to simulate protein evolution in this study is
based on calculating a sequence’s free energy of folding to a particular
target structure (what we will call the native conformation) as described
previously (41, 42). The free energy GðS;CkÞ of a protein sequence
S ¼ fa1; a2; a3 . . .aMg in a particular conformation Ck is calculated based on
the sum of pairwise energies between amino acids that are in contact in that
conformation [that is, GðS;CkÞ ¼ ∑

i < j
γðai ; ajÞUk

i;j , where γðai ; ajÞ is the contact
potential between amino acids ai and aj and Uk

i;j is one if i and j are in

contact in structure k and zero otherwise]. We use the contact potentials
determined in the work by Miyazawa and Jernigan (43) based on their
analysis of protein structures. Amino acids are considered to be in contact if
their Cβ atoms (Cα in the case of glycine) are closer than 7 Å to each other.
After the scaling of the potential in the work by Miyazawa and Jernigan
(43), all energies are represented in kilocalorie per mole.

To calculate the free energy of folding ΔGFoldðSÞ, we need to calculate the
free energy for the native state as well as a large ensemble of alternative
folds. For the native state, we use the conformation of the 300-residue
purple acid phosphatase (Protein Data Bank ID code 1QHW) (44) to calculate
the free energy GNSðSÞ. We assume that the distribution of the free energies
ρUðGÞ of the large ensemble of thermodynamically relevant unfolded and
alternative conformations can be represented by a Gaussian distribution
with sequence-dependent average GðSÞ and variance σðSÞ2. Consider a large
set (NU) of possible unfolded structures with free energy values drawn from
such a distribution. The free energy of folding is equal to (Eq. 1)

ΔGFold
�
S
� ¼ GNS

�
S
�þ σðSÞ2 − 2kT G

�
S
�

2kT
þ kT ln NU: [1]

NU was set equal to 10160. T was set equal to 20 °C.
We estimated the values of GðSÞ and σðSÞ2 by calculating the average free

energy and variance of the free energies of the sequence in the confor-
mation of the first 300 residues of 55 different structurally diverse protein
structures. Combined with the value of GNSðSÞ, we can compute ΔGFoldðSÞ
with Eq. 1. We can then calculate the probability PFoldðSÞ that the protein
would be folded at equilibrium (Eq. 2):

PFold
�
S
� ¼ expð−ΔGFoldðSÞ=kTÞ

1þ expð−ΔGFoldðSÞ=kTÞ: [2]

As in previous work, we considered the fitness of a sequence ωðSÞ to equal the
probability of folding.

Evolutionary Dynamics. We initialized a protein sequence by choosing 300
codons at random (ignoring stop codons) using the standard genetic code to
determine the encoded amino acids. At any point in the simulation, a random
base underwent amutationwith probabilities based on the K80model (κ ¼ 2)
(45). The fitness ω′ of the resulting sequence was then computed based on
the value of ΔGFoldðS′Þ, the free energy of folding for this sequence, and the
corresponding folding probability PFoldðS′Þ. This fitness was then compared
with the fitness of the premutated sequence ω; the mutation was then ac-
cepted with a probability αf , with f (the fixation probability) calculated us-
ing the formula for diploid organisms by Crow and Kimura (28) and Kimura
(29, 30) of (Eq. 3)

f ¼ 1− expð−2sÞ
1− expð−4NEffsÞ

; [3]

where s is the selection coefficient equal to s ¼ ω′−ω
ω , Ne is the effective

population size set equal to 106, and α is a number that varied over the
course of the simulations but was always chosen so that f < 1 for all muta-
tions. The evolutionary dynamics are only sensitive to relative rates of ac-
ceptance for the different mutations (as long as the evolutionary time is
represented in terms of accepted substitutions; e.g., branch lengths). We
note that this finding assumes that mutations have nonoverlapping phases,
and because only one mutation is considered at a time, stochastic tunneling
is not possible. Because the inclusion of α did not affect these relative ac-
ceptance rates, it had no effect on the results.

The simulation proceeded for a sufficient number of generations such that
the stability of the protein reached equilibrium (i.e., the average fitness was
approximately constant over time and across independent runs). Equilibrium
is reached because of mutation selection balance, the point where there
stabilizing mutations are relatively uncommon and have smaller relative
fitness benefits, whereas destabilizing (but marginally acceptable) mutations
are greater in number. The stability at this point was approximately −10 kcal/
mol, which was approximately the stability observed in biological proteins of
similar size, and was achieved after ∼3,000 substitutions. All reported results
were obtained after this preequilibration. We note that, because of the
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form of Eq. 2 and its use as the fitness function, the relative fitness differ-
ences become smaller and smaller, with equivalent decreases in folding
energy as the probability of folding approaches 1.0.

Propensities and Constraints. Given a protein sequence S at any point in the
simulation, we can calculate the fitness ωX

l of organisms containing that same
sequence but with any amino acid X substituted at a focal location l in that
protein.Weexpress theacceptabilityof anyaminoacidat this locationgivenfixed
amino acids at all other locations by the propensity ΠX

l , which is given by (Eq. 4)

ΠX
l ¼ e2NeωX

l

∑
Y
e2NeωY

l

; [4]

where the sum in the dominator is over the 20 amino acids. This propensity
would be equal to equilibrium frequency πXl if the frequencies of the
nucleotides were equal and there was no redundancy in the genetic code.

The degree to which a site is constrained in its amino acid composition was
determined by using A, the effective size of the alphabet of amino acids
possible at a given location. This variable is defined as the exponential of the
sequence entropy at this location (Eq. 5):

Al ¼ exp
�
−∑

X
ΠX

l ln
�
ΠX

l

��
: [5]

The rate at which the system loses memory of its previous amino acid pref-
erences was measured using the decay of the autocorrelation function of the
amino acid propensities, which given K = 20 amino acids, is defined as (Eq. 6)

RlðτÞ ¼
E
��

ΠX
l

�
t
�
−
1
K

��
ΠX

l

�
t þ τ

�
−
1
K

�	

E
��

ΠX
l

�
t
�
−
1
K

�2	 ; [6]

where t and τ are measured in numbers of substitutions. The distribution of
the autocorrelation with different values of τ was modeled by fitting to a

stretched exponential of the form R̂ðτÞ ¼ ð1−bÞexp
�
−
�
τ=τk

�β	
þ b, where

b is the equilibrium correlation, τk is a scaling parameter, and β is the
stretching parameter (46). The stretched exponential is a generalization
of the exponential function commonly used to describe relaxation in dis-
ordered systems; β ¼ 1 corresponds to a standard exponential function,
whereas values of β< 1 lead to a stretching effect. The average relaxation
time is given by Æτæ ¼ τk

β Γ
�
1
β

�
.

Thermodynamic Calculations on Biological Proteins. To estimate the change in
stability ΔΔG resulting from mutations in biological proteins of known
structure, we used the ddg_monomer application from the Rosetta library
(31) The structures were first preoptimized to reduce any clashes that may
be present in the crystal structure. The optimization process involves running
three rounds of energy minimization starting with a lower repulsive value of
the van der Waals term and increasing it to the normal value by the third
round of minimization. The process also allows for slight backbone move-
ments to compensate for large or small side chain substitutions. The mini-
mization process is done on both the WT and mutated structure. We ran the
application using the recommended suggestions by finding the minimum
ΔΔG value after 50 iterations of the optimization process.
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