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PhenoRipper: software for rapidly 
profiling microscopy images
To the Editor: Recent advances in fluorescence microscopy have 
enabled unprecedented progress in many areas of biology. With 
the technology to perform high-content image-based screens 
now accessible to many labs, the analysis of the resulting large 
and complex data sets has become a bottleneck. Existing image 
analysis platforms1–3 offer flexible and sophisticated toolboxes for 
extracting biological information from image data. However, they 
can require steep learning curves, tuning of many parameters and 
long computational runtimes. There is an unmet need for easy-
to-use tools that enable bench scientists to rapidly interpret their 
image data sets. Here we describe PhenoRipper (Supplementary 
Software; updated versions available at http://www.phenoripper.
org/), an open-source software tool designed for rapid exploration 
of high-content microscopy images (Fig. 1a and Supplementary 
Fig. 1). PhenoRipper permits rapid and intuitive comparison of 

images obtained under different experimental conditions based on 
image phenotype similarity.

To minimize user input, PhenoRipper automatically identifies 
features from the images; users may only be required to mod-
ify default values of a few, visually interpretable, parameters. To 
increase speed, we chose a segmentation-free approach4,5: the 
software breaks images down into a square grid of blocks6–8 and 
performs analysis on these blocks rather than on individual cells. 
To capture heterogeneity, PhenoRipper identifies characteristic pat-
terns of neighboring blocks and describes each image in terms of 
the occurrence frequencies of these patterns6,8. Finally, a simple 
graphical user interface, PhenoBrowser, is used to tie together 
images, features and profiles. Profiles can be annotated or com-
bined (for example, by experimental or replicate conditions) to help 
interpret and explore their visual grouping. These design choices let 
users analyze their images an order of magnitude faster than exist-
ing unsupervised platforms (Supplementary Fig. 2). PhenoRipper 
does not replace traditional single cell–based analysis approach-
es2,9,10 as it does not quantify properties such as area or average 
nuclear biomarker intensity. Nevertheless, the statistical properties 
of subcellular-scale phenotypes captured by PhenoRipper can be 
sufficient to accurately group cellular perturbations and identify 
outliers (Supplementary Fig. 3a).

PhenoRipper’s engine performs four major steps (Fig. 1a and 
Supplementary Fig. 1). (i) PhenoRipper identifies foreground 
blocks. Images are gridded to a user-specified block size (20–30 
blocks per cell works well), and blocks are selected when the 
intensities of >50% of their pixels exceed a foreground threshold. 
This threshold is precalculated based on a small subset of images 
(Supplementary Methods), but it can easily be changed by the user. 
(ii) PhenoRipper identifies the most common foreground block 
types. To do this, it characterizes blocks by their distributions of 
assigned pixel colors and applies cluster analysis to classify them 
into different block types. This measurement is not sensitive to cell 
orientation and captures more information than simple averages 
(for example, a block with 50% red and 50% blue pixels would be 
different from a block with 100% purple pixels). (iii) PhenoRipper 
uses cluster analysis to identify superblock types, which repre-
sent the most common block type co-occurrence patterns within  
3 × 3 block neighborhoods. The use of blocks and superblocks helps 

range of phenotypes, encompassing nontrivial population-level 
effects such as cell-type heterogeneity or local cell-density effects 
(Fig. 1c). Although realistic synthetic data cannot replace true 
experimental data6, SimuCell can be a useful part of the algo-
rithm developer’s toolbox by generating rich, flexible test image 
data sets containing specified, parameterized ‘biological’ effects.

Note: Supplementary information is available at http://www.nature.com/
doifinder/10.1038/nmeth.2096.
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Figure 1 | Synthetic image generation using SimuCell. (a) Typical workflow 
of SimuCell use during algorithm development. (b) Steps involved in 
generation of synthetic images. In this example, microenvironment (local 
cell density) affects marker 1, and marker 2 influences marker 3. (c) SimuCell 
can be used to create images in which cell-population properties are varied 
independently.
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to capture information over different distance scales. To speed up 
the steps described above, this initial analysis randomly samples a 
subset of images (Supplementary Methods). (iv) PhenoRipper 
profiles each image by the frequency of occurrence of superblock 
types. Profiles of experimental conditions are computed by averag-
ing the superblock fractions of their corresponding images. We have 
found that similarities between profiles are relatively insensitive to 
parameter variation (Supplementary Figs. 3b and 4). These profiles 
provide compact, human- and machine-interpretable summaries of 
image phenotypes. Profile similarities can be used to infer relation-
ships among experimental conditions and underlying mechanisms 
of perturbations.

We tested PhenoRipper on a data set (640 four-channel imag-
es) in which cells were difficult to segment and phenotypically 
heterogeneous9 (Fig. 1b and Supplementary Fig. 5). This data 
set consists of images of 3T3-L1 preadipocytes that were moni-
tored for multiple readouts of adipogenesis at different days 
after induction of differentiation. Our original study, in which 
image analysis was carried out by traditional single-cell analysis, 
required a tedious manual step of discarding poorly segmented 
cells. In contrast, PhenoRipper completed its analysis in ~6.5 
minutes, selecting image features that could distinguish among 
images from different days of differentiation and identifying 
superblock types that corresponded roughly to subcellular fea-
tures of previously identified subpopulations, at different stages 
of the differentiation process8. Thus PhenoRipper can reveal 
meaningful features of heterogeneous populations and images 
for which robust cell segmentation is not easily achieved.

Next we reanalyzed a data set (~105 
three-channel images) whose scale and 
complexity is representative of high-
throughput screens, which typically 
require dedicated image analysis platforms 
and analysis expertise10 (Fig. 1c). This 
data set is from an experiment in which 
the effects of ~23,000 genome-wide RNAi-
mediated knockdowns on HeLa cells were 
monitored using cytoskeletal markers. 
The previous analysis was reported to 
take over 300 CPU hours, which excludes 
the time required to optimize the analy-
sis pathway. In comparison, PhenoRipper 
completed analysis of this data set in ~13 
hours on a test desktop, without the need 
to tune any parameters other than thresh-
old intensity and block size. To compare 
the profiling results, we focused on the 
‘hits’ reported in the previous study (our 
analysis of these ~7,000 images took ~30 
minutes). Visual grouping of PhenoRipper 
profiles, annotated by phenotypic classes 
defined in the previous study, suggested 
that similarities between knockdown pro-
files had been largely preserved between 
the two methods (Fig. 1c). Overall, simi-
lar profile pairs from PhenoRipper showed 
strong enrichment for similar biological 
function (Supplementary Methods and 

Supplementary Fig. 6). Thus PhenoRipper provides an approach 
for rapidly extracting biologically meaningful information from 
large, complex data sets.

PhenoRipper is designed to serve as an unsupervised explor-
atory tool for analysis of fluorescence microscopy images for both 
novices and experts. It may not always be the optimal tool—some 
applications may require quantification of specific features on 
single cells or may be more suitable for supervised classification. 
Nevertheless, the speed and simplicity of PhenoRipper make it a 
useful tool that enables bench scientists to perform rapid analysis 
of image data soon after acquisition.

Note: Supplementary information is available at http://www.nature.com/
doifinder/10.1038/nmeth.2097.
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Figure 1 | Overview of the PhenoRipper platform. (a) Flow chart of analysis performed by PhenoRipper. 
(b) PhenoBrowser interface. Upper left: three-dimensional (3D) Multidimensional scaling (MDS) plot 
of profiles for images of 3T3-L1 cells on different days of differentiation to adipocytes. Right: two 
selected images from days 15 (top) and 9 (bottom) (blue, DNA; green, lipid droplets; yellow, AdipoQ; 
red, PPARg). Lower left: superblock features that best distinguish the two selected images. (c) 2D MDS 
plot of PhenoRipper profiles for images of the 1,820 ‘hits’ from the genome-wide siRNA screen described 
in ref. 10. Colors represent the six tightest phenotypic groups defined in ref. 10. Classes: 1, metaphase; 
2, high-actin ratio; 3, lamellipodia + high-actin ratio; 4, proliferating cells; 5, small cells; 6, big cells. 
Gray dots, other/unclassified; A.U., arbitrary units.
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as a resource for testing and validating automated image-analysis 
algorithms. The BBBC is particularly useful for high-throughput 
experiments and for providing biological ground truth for evaluat-
ing image-analysis algorithms. If an algorithm is sufficiently robust 
across samples to handle high-throughput experiments, low-
thoughput applications also benefit because tolerance to variability 
in sample preparation and imaging makes the algorithm more likely 
to generalize to new image sets.

Each image set in the BBBC is accompanied by a brief descrip-
tion of its motivating biological application and a set of ground-
truth data against which algorithms can be evaluated. The ground 
truth sets can consist of cell or nucleus counts, foreground and  
background pixels, outlines of individual objects, or biological 
labels based on treatment conditions or orthogonal assays (such as 
a dose-response curve or positive- and negative-control images). 
We describe canonical ways to measure an algorithm’s performance 
so that algorithms can be compared against each other fairly, and 
we provide an optional framework to do so conveniently within 
CellProfiler. For each image set, we list any published results of 
which we are aware.

The BBBC is freely available from http://www.broadinstitute.
org/bbbc/. The collection currently contains 18 image sets, includ-
ing images of cells (Homo sapiens and Drosophila melanogaster) as 
well as of whole organisms (Caenorhabditis elegans) assayed in high 
throughput. We are continuing to extend the collection during the 
course of our research, and we encourage the submission of addi-
tional image sets, ground truth and published results of algorithms.
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Annotated high-throughput microscopy 
image sets for validation

To the Editor: Choosing among algorithms for analyzing bio-
logical images can be a daunting task, especially for nonexperts. 
Software toolboxes such as CellProfiler1,2 and ImageJ3 make it 
easy to try out algorithms on a researcher’s own data, but it can 
still be difficult to assess whether an algorithm will be robust 
across an entire experiment based on the small subset of images 
that is practical to examine or annotate. Even if controls are avail-
able, a pilot high-throughput experiment may be insufficient to 
show that an algorithm will robustly identify rare phenotypes and 
handle the experimental artifacts that will invariably be present 
in a high-throughput experiment. It is therefore useful to know 
that a particular algorithm has proven superior on several similar 
image sets. The performance comparisons presented in papers 
that introduce new algorithms are often not very helpful for 
assessing this because each study typically relies on a different test 
image set (often to the advantage of the proposed algorithm), the 
algorithms compared may not be the ones the researcher is most 
interested in and the authors may not have implemented other 
algorithms as optimally as their own. Although biologists should 
always also validate algorithms on their own images, it would 
be useful if developers would quantitatively test new algorithms 
against a publicly available established collection of image sets. In 
this way, objective comparison can be made to other algorithms, 
as tested by the developers of those algorithms. We see a need for 
such a collection of image sets, together with ground truth and 
well-defined performance metrics.

Here we present the Broad Bioimage Benchmark Collection 
(BBBC), a publicly available collection of microscopy images intended  
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