Next Generation Sequencing

October 8, 2014 Eric Chow Center for Advanced Technology (CAT) cat.ucsf.edu

Sequencing costs have dropped dramatically

Talk outline

- Traditional sequencing
- Next-generation sequencing
- Illumina sequencing
- NGS applications

- Primer extension with labeled terminators
- 700 base read length

ACTAGCTGGACTCGTCACACT

- Primer extension with labeled terminators
- 700 base read length

► TGATCGACCTGAGC T7-ACTAGCTGGACTCGTCACACT

- Primer extension with labeled terminators
- 700 base read length

► TGATCGACCTGAGC T7-ACTAGCTGGACTCGTCACACT

TGATCGACCTGAGC TGATCGACCTGAGCAG TGATCGACCTGAGCAGT TGATCGACCTGAGCAGTG TGATCGACCTGAGCAGTGT TGATCGACCTGAGCAGTGTG TGATCGACCTGAGCAGTGTG

- Primer extension with labeled terminators
- 700 base read length

► TGATCGACCTGAGC T7-ACTAGCTGGACTCGTCACACT

- Primer extension with labeled terminators
- 700 base read length

Next generation Massively Parallel Sequencing Technologies

- Many reads
- Next generation systems
 - Short read
 - Illumina Sequencing by synthesis (dye)
 - Ion Torrent sequencing by synthesis (pH)
 - Long read
 - Pacific Bioscience single molecule (dye)
 - Oxford Nanopore single molecule (current)

Nature Rev Gen

$DNA(n) + dNTP \rightarrow DNA(n+1) + PPi + H+$

PGM		Prot	<u>Proton</u>		
314	0.6M	PI	82M		
316	3M	PII	330M		
318	5.5M	PIII	660M		

Nature Rev Gen

Nature Rev Gen

TCAGGTTTTTTAACAATCAACTTTTTGGATTAAAATGT

Insertion/deletion errors Problems with scaling up

Pacific Biosciences

Nature Reviews | Genetics

Single molecule sequencing 20 kB read lengths 15% error rate

Oxford Nanopore

Single molecule sequencing 100 kB read lengths 15% error rate Can detect DNA modifications

Which system to use?

- Depends on the application
 - Counting experiments (RNA/ChIP-Seq)
 - Genome assembly
 - Structural rearrangements
- Read numbers and length
 - Numbers- Illumina, Ion Torrent
 - Length Pac Bio, Oxford Nanopore
- Error rates, types, bias
 - Illumina \rightarrow substitution
 - Ion Torrent ightarrow Indel
 - PacBio/Oxford \rightarrow high error rates (10-15%)

Sequencing costs have dropped dramatically

Instrument throughput has increased exponentially

Platform	Bases/ read	Reads/ run	Bases/run	Run/ day	Bases/day	cost/ MB
Sanger	700	96	6.7x10^5	24	1.6x10^6	\$500
Illumina GAII	150	10^8	1.5x10^10	1/8	1.8x10^9	\$0.520
Illumina HiSeq	250	4x10^9	1x10^12	1/6	1.6x10^11	\$0.029
Illumina XTen	300	6x10^9	1.8x10^12	1/3	6x10^11	\$0.007

You can sequence anything

- Well, almost
 - Make DNA
 - Add adapters
 - Total size <1kb
- Many ways to add adapters
 - PCR
 - Ligation
 - Reverse transcription
 - Primer extension

You can sequence anything

- Counting applications
 - RNA-Seq
 - ChIP-Seq
 - Footprinting (ribosome, transcription,...)
- Genome
 - Whole-genome (was \$1000s/genome)
 - Exome pull out coding sequence
 - DNA methylation (bisulfite conversion)
 - metagenomics

Sequencing is really, really cheap

- \$1000 human genome
- Non-invasive prenatal testing
- Large population studies
 - Pick out SNPs and mutations responsible for disease
 - Tumor/normal sequencing
 - Whole-genome sequencing will be universal
- Mostly due to Illumina (but watch out for others)

Flow cells, where the magic happens

Illumina library

Insert

Illumina library

- Adapter sequence includes primer binding sites and capture sequences.
- Ion Torrent library adapters are very similar.

Library binding to flow cell

Molecules are linearized

00000

Reverse Strands are cleaved

Original template strand remains (orange oligo)

。	•••••••••••••••••••••••••••••••••••••••		

Ends are blocked and sequencing primers hybridized

After clustering flow cell moves to the HiSeq

Sequencer is a microscope with fluidic channels

Reversible Terminator Chemistry

Illumina SBS technology

Limitations of SBS

Each clonal cluster contains ~1,000 copies Imperfect chemistry → some strands will lag and others will jump ahead

This limits the length of runs. HiSeq 2x150 MiSeq 2x300

Going from images to sequence

- Find clusters
- Calculate intensities
- Make basecalls

Sequence diversity is critical for template generation

Sequence diversity is critical for template generation

CYCLE 1

C channel G channel

Sequence diversity is critical for template generation

C channel G channel

System takes 4 images each cycle, 1 per nucleotide

System takes 4 images each cycle, 1 per nucleotide

System takes 4 images each cycle, 1 per nucleotide

Green

System takes 4 images each cycle, 1 per nucleotide

Blue

System takes 4 images each cycle, 1 per nucleotide

Fluorescence crosstalk

Fluorescent label spectra overlap

Red

Green cluster

Fluorescence crosstalk

Fluorescent label spectra overlap

Green cluster

Fluorescence crosstalk

Fluorescent label spectra overlap

Signal cross talk correction

Ubiquitin library

Ubiquitin library

Ubiquitin library

- HiSeq is much cheaper than the MiSeq
 - 10-20x more reads
 - 20% more expensive
 - Save MiSeq for longer reads