Samuel Thompson Nov. 12th, 2014

Timeline

- 11/12 (Today) Overview of multi-state design
 - Multi-state design (MSD) in Rosetta
 - Fitness functions for optimization in MSD
 - How to design an patch with MSD
- 11/17 (Monday) Present your plan
 - Expectations at the end of this presentation
 - We will distribute MSD scripts
- 11/19 (Wednesday) Check-in on progress

Goals for Multi-state Design in PUBS

 Examine how interactions in multiple states shape protein sequences

 Model the interactions that might inform analysis of your experimental selection data

MULTI-STATE DESIGN IN ROSETTA

Rosetta Stabilizes a Protein Fold/ Conformation

 We want to be able to model function in terms of 1) a structure and 2) its biophysical energy

Input structure

Tolerated sequence space

Rosetta Stabilizes a Protein Fold/ Conformation

- We want to be able to model function in terms of 1) a structure and 2) its biophysical energy
- What about proteins that adopt multiple states/conformations?

Hypothesis: sequences are an energetic compromise between states

PDB structures

To make your life easier...

We are giving you a python script that generates all the necessary files.

To run this script you need to decide two things:

- 1) Which residues to design?
- 2) How to weight each state in the fitness function?(not the same fitness from your experiments)

SELECTING PATCHES FOR DESIGN

2-3 Minute Group Discussion

With the people near you:

 What residues in a protein with multiple states are likely to compromise?

How will you identify them?

First task: picking design patches

- Patch: set of residues proximal to each other
- One simulation designs one patch
- Try to limit to 6-8 residues. Don't go above 9.
- Overlap your patches to reduce edge effects

Chimera Demo

- Selecting an interface in Chimera
 - Open the command line tool
 - \$sel :.a & :.b z < 5</p>
 - Selects residues in chain A that are 5Å from chain B
- Use the MatchMaker tool to align structures
 - Look for conformational changes
- Use attributes to paint information onto the structure
 - http://www.rbvi.ucsf.edu/chimera/docs/ ContributedSoftware/defineattrib/ defineattrib.html#attribdef
- Feel free to get more clever in picking your patch...

THE MULTI-STATE DESIGN FITNESS FUNCTIONS

Fitness functions

- The fitness function determines what we optimize during the simulation
- We want a fitness function that compromises for all modeled binding interactions
- Simple fitness function: Fitness = $E_1 + E_2 + E_3$...
 - − E₁ is the Rosetta energy of state 1, and so on

Fitness functions

The fitness function determines what we optimize during the simulation

- We want a fitness function that compromises for all modeled binding interactions
- Simple fitness function: Fitness = $E_1 + E_2 + E_3$...
 - $-E_1$ is the Rosetta energy of state 1, and so on
- What are some of the potential problems with a simple fitness function?

We can think of multi-state design in terms of logic

A simple fitness function gives us "or" logic

We can think of multi-state design in terms of logic

A simple fitness function gives us "or" logic

What we want is "and" logic

To address some of these issues, we will use a fuzzy logic fitness function

- Boolean logic: 1 = True and 0 = False
- Fuzzy logic: 1 > more True > more False > 0
- "And" Fitness = $F = f_1 * f_2 * f_3 * ...$
 - Where f1 is the fitnessof state 1, and so on...

Want a function for f_i that varies from 1 to 0

Sigmoids can model the fitness of an individual state

Sigmoids can model the fitness of an individual state

Your task: Adjusting the weights

Meaning of changing the weights: the change in fitness for some states may be less important for optimization.

The states that you will be using are the structures of the 5 complexes

2-3 Minute Group Discussion

Within your team:

 What states do you want to examine? Which states would you keep fully weighted? Which states would you down weight?

 What simulation(s) would constitute a control/comparison for these simulations?

AFTER YOU HAVE GENERATED DATA WITH MULTI-STATE DESIGN

Analyzing the Results

- Output of multi-state design is a fasta file of highfitness sequences
- Need to compare the results of multiple simulations
 - Multi-state to single state (k = 0 for all but one)
 - Multi-state to multi-state
- Also need to compare Rosetta results to your experimental data

Sequence Logos are Visual and Intuitive

- Column height = Information = Max entropy Observed entropy
- Character height = Amino acid frequency * Information at position
- Generated from a fasta file of sequences
 - http://weblogo.berkeley.edu/logo.cgi
 - http://weblogo.threeplusone.com/create.cgi

Robison et al., Journal of Molecular Biology, 1998 Schneider and Stephens, Nucleic Acids Research, 1990

What we are looking for when you present your plan on Monday:

- Justification of using multi-state design to compare with the *in vivo* selection data
- What what residues make up your patch?
 - How did you determine this?
 - Based on your experimental data, which of these residues are you most interested in?
 - What residues are in your patches?
 - Include images of the patch
- What k-values (weights) will you be testing?
- How will you compare sequencing data to the output sequences from Rosetta?
 - Include any relevant outline/flow-chart and equations

Three parameters modulate the fitness curve

sigmoidal equation for fitness of a state

$$f_i = (1 - k) + \frac{k}{1 + e^{s(E_{state} - o)}}$$

