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mutagenesis provides insight into proteins, but 
only recently have assays that couple genotype to 
phenotype been used to assess the activities of as 
many as 1 million mutant versions of a protein in a 
single experiment. this approach—‘deep mutational 
scanning’—yields large-scale data sets that can 
reveal intrinsic protein properties, protein behavior 
within cells and the consequences of human genetic 
variation. deep mutational scanning is transforming 
the study of proteins, but many challenges must be 
tackled for it to fulfill its promise.

As the central players in the cell’s machinery, pro-
teins have been the subject of numerous mutagenesis 
approaches that seek to characterize their functions. 
Nonetheless, the ability to measure the effects of muta-
tions in proteins has been limited to a relatively small 
number of mutations. But what if it were possible to 
know the functional consequences of every possible 
amino acid change at each position in a protein or 
the biochemical activity of hundreds of thousands of 
different protein variants, each containing two, three 
or even more mutations? Recent technologies known 
collectively as ‘deep mutational scanning’ make muta-
genesis studies of this magnitude a reality.

The key problem that deep mutational scanning 
solves is the limited ability to predict the most inform-
ative mutations in a protein to analyze. Changes to 
amino acids that are distant from binding or active 
sites can have drastic effects on the thermodynamic 
stability or enzymatic activity of a protein1. Highly 
conservative mutations, whose consequences can 
be difficult to predict, may be neutral, deleterious or 
hyperactivating2,3. Multiple mutations combined can 
lead to unexpectedly large increases or decreases in 
activity4,5. By enabling the impact of mutations to be 
examined in an unbiased fashion, deep mutational 
scanning can reveal the unexpected. It can also address 
otherwise intractable cases in which it is necessary to 
measure the activity of a huge number of variants. 

For example, functional analyses of genomes and of 
protein engineering experiments increasingly demand 
this scale of data.

Carrying out a deep mutational scan requires an 
assay amenable to a coupled genotype-phenotype 
platform (Fig. 1). Such platforms include cell-based 
assays, with a protein typically expressed from a plas-
mid or virus, or in vitro systems, such as phage or 
ribosome display. A library of mutated variants of the 
gene is synthesized, cloned into the appropriate vec-
tor and introduced, for example, into cells where the 
protein encoded by the gene carries out a function that 
can be selected for. The selection enriches cells with 
active protein variants and depletes those with inac-
tive ones. The library is retrieved from both input and 
post-selection cells, and the frequency of each variant 
in the two libraries is determined by high-throughput 
DNA sequencing. The change in the frequency of each 
variant from input to selection serves as a measure of 
its function. Separation technologies, such as cell sort-
ing, can also be used to place variants into bins, with 
the variants in each bin scored by DNA read counts.

The assays amenable to deep mutational scan-
ning vary as widely as the activities that proteins can 
show. These include binding of a protein to a peptide, 
another protein, DNA, RNA or other ligands and enzy-
matic activities such as phosphorylation or ubiquitina-
tion. Cellular assays can take advantage of a growth 
or drug selection or expression of a protein that may 
be fluorescent or epitope tagged. In vitro approaches 
can enrich active variants on the basis of enzymatic 
activity, which can be combined with the use of an 
antibody that recognizes a post-translational modi-
fication. Because of the astronomical scale of DNA 
sequencing, millions of individual protein variants can 
be examined in a single experiment. This approach 
has been applied to a growing number of disparate 
proteins in a variety of contexts (Table 1). Establishing 
the infrastructure to carry out a deep mutational scan 
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for the first time can be challenging, but it is becoming less so 
as reagents, software and methods are developed (see ref. 6 for 
protocols).

On the simplest level, the large-scale mutational data that result 
from a deep mutational scan reveal the functional consequences 
of all possible single mutations. These data can be organized into 
a sequence-function map (Fig. 2). Such a map can be viewed as an 
all-residue scan, in which each position has been mutated to every 
other amino acid. These maps are dense with information, with 
each position having a unique pattern of functional effects; most 
substitutions are likely to be deleterious, but a few may enhance 
activity. In addition to characterizing the effects of single muta-
tions, deep mutational scanning can also examine the effects of 
multiple mutations. Collectively, these data can yield insights into 
protein structure and function, but gleaning these insights is a 
challenge for both experimental and computational biologists.

inference of fundamental protein properties
A number of biochemical methods are customarily used to 
directly assay the fundamental properties of proteins; for exam-
ple, chemical denaturation analyzes thermodynamic stability, 
enzyme kinetics reveal mechanism, X-ray crystallography pro-
vides structure, and light scattering measures particle size. These 
methods apply purpose-built instrumentation in the context of a  
specialized workflow, generally feasible for no more than a hand-
ful of variants.

Instead of using such methods to measure protein properties in 
a serial fashion, one might infer some properties from large-scale 
mutational data. This approach draws on knowledge derived from 
more than a century of study of proteins, including principles of 
how they fold and unfold, act in catalysis, interact with solvents 
and evolve. For a given protein property, such prior knowledge 
has the potential to generate a model or algorithm that relates the 
functional consequences of mutations to the property in question, 
and the model could be applied to the large-scale data obtained 

in a deep mutational scan (Box 1). This approach could augment 
and eventually supplant some traditional methods that are time-, 
cost- and labor-intensive. We highlight three areas in which this 
approach has progressed.

First, because stabilizing mutations can rescue destabilizing 
ones7–9, large-scale mutational data can be analyzed to identify 
thermodynamically stabilizing mutations. These mutations are 
important for engineering proteins for pharmaceutical or indus-
trial uses and are difficult to identify; most mutations are either 
neutral or destabilizing. Current methods to identify stabilizing 
mutations have limitations, including poor performance for large 
or atypical proteins, extensive validation requirements, limited 
output and the identification of mutations that, although stabiliz-
ing, also result in an unintended loss of activity10–12. In previous 
work, we developed a computational model that measures the 
effectiveness of single mutations in rescuing many other dele-
terious single mutations when they occur together in a doubly 
mutated variant13. We applied this model to measurements of the 
peptide-binding capacities of ~50,000 variants of a WW domain 
and identified new stabilizing mutations.

Second, because mutations can perturb enzyme function, anal-
ysis of large-scale mutational data can reveal aspects of a protein’s 
catalytic mechanism. It is possible to identify rare variants that 
have enhanced activity or altered specificity. Such unusual vari-
ants were recently identified on the basis of the ubiquitination 
activity of ~100,000 variants of an E3 ubiquitin ligase, and these 
hyperactive variants were used to unlock mechanistic details 
through further biochemical and structural approaches14. Other 
analyses of enzyme mechanism from large-scale mutagenesis data 
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Figure 1 | Deep mutational scanning generates large-scale mutational 
data. Deep mutational scanning draws on high-throughput DNA 
sequencing to assess the functional capacity of a large number of protein 
variants simultaneously. A library of protein variants is created and 
introduced into a system in which the genotype of each variant is linked 
to a selectable phenotype, then selection for the function of the protein is 
imposed (top). Variants with high activity increase in frequency, whereas 
variants with low activity decrease in frequency. High-throughput DNA 
sequencing is used to measure the frequency of each variant before and 
after selection. These frequency data are analyzed to generate a functional 
score for each protein variant (bottom). WT, wild type.

table 1 | Deep mutational scanning targets

scanned protein model selection

Fab antibody fragment36 Ribosome display Ligand binding
YAP65 WW domain13,37 T7 bacteriophage Ligand binding
E4B ubiquitin ligase14 T7 bacteriophage Ubiquitination activity
PKA regulatory subunit38 T7 bacteriophage Ligand binding
Synthetic PDZ domain39 M13 bacteriophage Ligand binding
CcdB16 Escherichia coli Toxin activity
PSD95 PDZ domain40 E. coli Ligand binding
G protein–coupled 

receptor41
E. coli Ligand binding

Designed influenza 
inhibitor29

Saccharomyces cerevisiae 
surface display

Ligand binding

Designed lysozyme 
inhibitor42

S. cerevisiae surface  
display

Ligand binding

Designed digoxigenin 
binder43

S. cerevisiae surface  
display

Small molecule binding

IgG1 CH3 domain44 S. cerevisiae surface  
display

Ligand binding after 
thermal stress

Hsp90 (refs. 45,46) S. cerevisiae 
complementation

Growth rate

Matα2 degron23 S. cerevisiae fusion protein Growth rate
Ubiquitin47 S. cerevisiae 

complementation
Growth rate

Pab1 (ref. 17) S. cerevisiae 
complementation

Growth rate

Neuraminidase48 Mammalian cell Oseltamivir resistance
IgG CDRs49 Mammalian cell display Ligand binding
B-Raf  50 Mammalian cell Vemurafenib resistance
Fab, fragment antigen binding; YAP65, yes-associated protein-65; PKA, protein kinase A; 
PSD95, postsynaptic density protein-95; Hsp90, heat-shock protein 90; Matα2, mating type 
protein-α2; Pab1, poly(A)-binding protein-1; CDR, complementarity-determining region.
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make use of the observation that the most mutation-intolerant 
positions in a protein frequently correspond to residues directly 
involved in contacting the substrate or performing catalysis. 
Another potential starting point is the pairing of hyperactivat-
ing single mutations with deleterious single mutations that affect 
folding, stability, substrate interaction or other properties. For 
example, a mutation that enhances catalysis might be expected 
to rescue deleterious mutations that destabilize the protein but 
not those that block substrate binding.

Third, because mutations can perturb protein structure, large-
scale mutational data can contribute to structural efforts. X-ray 
crystallography and nuclear magnetic resonance yield detailed 
structures, but do not work for every protein, particularly trans-
membrane proteins and large protein complexes15. De novo 
prediction of protein structure, although useful, cannot rou-
tinely provide useful structures even of average-sized proteins. 
Mutational data can help discriminate among predicted protein 
structures. For example, the functional consequences of mutation 
at each position in the bacterial toxin CcdB correlate with distance 
to the protein surface in a known structure. Adkar et al.16 used this 
observation to select accurate CcdB structures from among a large 
set of predictions on the basis of which positions were buried. In 
another example from our own work, positions found to be sensi-
tive to most substitutions except those to hydrophobic amino acids 
constituted the core hydrophobic structure of the protein17.

In the future, large-scale mutational data could facilitate the 
prediction of protein secondary structure. Typically, algorithms 
base predictions on the amino acid preferences in each type of 
secondary structure (α-helix, β-sheet or loop) in a training set 
of proteins with known structures18,19. As an alternative, large-
scale mutational data on proteins with known structures could 
also reveal amino acid preferences within structural elements, 
and the resulting preferences could be used to enhance structure 
prediction algorithms. A provocative challenge is the use of deep 
mutational scanning data to generate structural models. We sug-
gest that these data could be analyzed to determine covarying 
positions in a protein’s sequence, with the expectation that these 

positions will be close to one another in the three-dimensional 
folded structure. These experimentally determined distance con-
straints could then be combined with protein structure modeling 
software such as Rosetta to produce a plausible structural model20. 
Indeed, the fact that covariation between positions derived from 
the natural evolution of a protein can be used to predict structure 
if the multiple sequence alignment for the protein is sufficiently 
large21 hints that this approach is feasible.

Analyzing large-scale mutational data is challenging because 
the principles by which fundamental protein properties relate to 
mutational data are not fully understood (Box 1). In some cases, 
lessons learned from the study of a small number of mutations will 
generalize well, but in others some refinement of our understand-
ing will be required. Furthermore, these analyses require high-
quality mutational data to succeed. High-throughput methods 
are notoriously susceptible to problems with data quality. Thus, 
practitioners will need to develop and apply standards, especially 
regarding appropriate replication and models for controlling sys-
tematic and stochastic error. Nevertheless, there is a huge poten-
tial payoff: a common method for understanding fundamental 
properties of proteins in their native environment.

understanding how proteins behave in cells
Deep mutational scanning can be conducted in cells and thus 
offers the opportunity to marry protein science with cell-based 
approaches. Furthermore, the power of the technology is magni-
fied by the fact that, for a particular protein, scans can be redone 
in a number of ‘sensitized’ backgrounds or conditions (Fig. 3)—a 
veritable ‘Hershey heaven’22, where repeating the same experi-
ment with slight alterations yields novel data. We discuss three 
examples of this approach.

First, deep mutational scanning can be used to probe protein-
protein interactions. Structural approaches for studying such 
interactions, such as cocrystallization, yield high-resolution infor-
mation, but their throughput is inherently low. High-throughput 
approaches, such as yeast two-hybrid or mass spectrometry, 
provide little, if any, structural detail. A library of variants can 
be screened for interaction in cells that overproduce a partner 
protein. The expectation is that a subset of mutations that in the 
initial (nonsensitized) screen were deleterious might be neutral 
in the presence of excess binding partner, revealing positions in 
the protein relevant to the interaction.

Second, mutational scanning can measure the stability in cells 
of protein variants that are tagged with a required metabolic 
enzyme23. If the stability of the enzyme depends on the stability 
of the variant to which it is fused, then cells harboring a long-
lived variant will have high concentrations of the enzyme and 
grow faster. The influence of protein-degradation factors could 
be investigated by varying their abundance.

Third, mutational scanning using cell-based protein- 
aggregation models could yield details of the biophysical pro-
cesses driving aggregation in vivo. For example, variants of 
an aggregation-prone protein could be fused to an essential 
enzyme whose activity diminishes as the aggregation state of the 
variant increases24. Furthermore, by again varying the expres-
sion of chaperones and degradation factors, the experimenter 
might better understand how these factors identify and degrade  
aggregation-prone proteins.

Position

A
C
D
E
F
G
H
I

K
L
M
N
P
Q
R
S
T
V
W
Y

Stop

0 5 10 15 20

−8

−6

−4

−2

0

2

4

25

log
2 (functional score)

Figure 2 | Large-scale mutational data illustrate how protein sequence 
affects function. A hypothetical sequence-function heat map is shown for 
a 25-residue portion of a protein, illustrating the functional consequences 
of making every single amino acid mutation at every position. Positions 
are indicated numerically, and each mutation is indicated by its single-
letter amino acid abbreviation. The color of each element of the heat map 
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protein evolution and engineering
Experimental evolution approaches offer the opportunity to watch 
protein evolution as it occurs, but they have been limited either to 
examining a handful of variants or to making population-based 
measurements. Owing to the vastness of the sequence landscape, 
conclusions arising from these studies have been incomplete 
and sometimes contradictory. Protein evolution has also been 
treated theoretically, but many predictions remain untested. Deep 
mutational scanning approaches, when applied to experimental 
evolution of proteins, offer the ability to explicitly and simulta-
neously track the fates of hundreds of thousands of sequences. 

They can thus begin to address fundamental questions25, such 
as: how many paths can evolution take? How many mutations 
are required to produce a new function? Are there many distinct 
sequences that could evolve to solve the same problem? In short, 
these approaches offer the opportunity to experimentally explore 
the protein fitness landscapes that shape evolutionary trajectories. 
For example, large-scale mutational data on a WW domain13 and 
on an HIV protease and reverse transcriptase26 have revealed that 
some combinations of mutations within variants interact to pro-
duce unexpectedly large functional effects, such that intramolecu-
lar mutation interaction ‘hotspots’ can be identified within these 

The initial stages of data analysis focus on producing a set of high-quality functional scores from raw sequence data51. In the  
simplest case, reads are aligned to a wild-type template, variants are enumerated and functional scores are calculated by taking  
the ratio of the frequency of each variant before and after selection37. More complex cases (for example, those incorporating  
time-series data) can be dealt with using linear models13,14. Nevertheless, clear standards for analyzing deep mutational scanning 
data have yet to emerge. Enrich, an interactive software package for accomplishing the first data-analysis phase, is publicly  
available, but its use requires command-line expertise52. Enrich guides users through the process of transforming raw  
high-throughput sequencing data into a set of variant functional scores. Enrich also generates a comprehensive sequence-function 
map from the data. However, deeper analyses of the functional scores are considerably more challenging and depend on the  
questions being asked. In some cases, analytical paradigms are already emerging, including those that examine how multiple  
mutations interact and how large-scale mutagenesis data change under different experimental conditions. Data analysis remains  
a significant challenge, but not an intractable one.

For example, when engineering a protein or when classifying mutations in a disease-related protein, the experimenter may be 
interested only in how single mutations affect protein activity. In this case, data for single amino acid substitutions derived from a 
deep mutational scan can be displayed as a heat map relating sequence to function (Fig. 2). Further analysis can yield insights into 
topics such as fundamental protein properties, the behavior of proteins inside cells and the paths of protein evolution but is  
typically a slow and complex undertaking.

Successful interpretation of deep mutational scanning data starts with proper experimental design. Will the experimenter take 
advantage of direct selection for a protein property of interest? Will the analysis require only single mutations, or will multiple 
mutations be needed? Will the analysis need large numbers of variants, or will a few thousand suffice? To give an idea of how one 
might answer these questions, we highlight three broad experimental designs and give examples of how an experimenter might go 
about analyzing the resulting data sets.

Direct selection for a protein property of interest results in the most straightforward analysis of large-scale mutational data.  
Examples include measurement of:

• thermodynamic stability of a library of IgG variants, using yeast display selection and thermal denaturation44;
• in vivo protein stability of a library of yeast degron variants, using a metabolic reporter protein fusion23; and
• inhibitor resistance of a library of BRAF variants, using a cell-based resistance assay50.

Knowledge-based inference is a more complex type of analysis and can be applied when direct selection is not possible for the 
desired protein property. For example, directly selecting for mutations that change an enzyme’s mechanism would be difficult. Here 
the experimenter selects for protein function without using specialized conditions (for example, higher temperature to select for 
stability or the presence of an inhibitor to select for resistance) and then carries out an analysis that relates the functional scores 
to the property of interest. Examples include identification of:

• thermodynamically stabilizing mutations, identified because they rescue multiple destabilizing mutations13;
• buried positions, identified because they tolerate fewer substitutions than solvent-exposed ones16;
• core positions, identified because they exhibit similar patterns of preference for hydrophobic amino acids17; and
• mechanism-altering mutations, identified because they are hyperactivating14.

In even more complex cases, no analytic framework for the mutational data yet exists and will need to be developed.  
Examples include:

• benchmarking and improving computational approaches for interpreting human genetic variation;
• improving the correlation of biochemical properties with disease risk;
• enhancing prediction algorithms for de novo protein structure and activity; and
• understanding protein evolution.

Box 1 interpretinG LarGe-scaLe mutationaL data 
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proteins. High-throughput sequencing of T7 RNA polymerase 
evolving to bind new promoter sequences has revealed distinct 
classes of convergently evolved solutions27.

Deep mutational scanning experiments should also be instru-
mental in realizing the promise of protein engineering, which 
improves existing proteins, and de novo design, which imagines 
new ones with desired features. Currently, efforts in these areas 
proceed from rule-based design28 or use blind selection to iden-
tify one or a few variants with improved functionality among a 
library. In both cases, deep mutational scanning approaches could 
be transformative, enabling the identification of large numbers 
of useful mutations that can be combined to refine engineered or 
designed proteins. For example, this approach was used to opti-
mize a computationally designed hemagglutinin-binding protein 
that inhibits influenza virus29, resulting in the identification of 
five mutations that combined to produce a 25-fold improvement 
in affinity. Traditional affinity-maturation approaches would not 
have resulted in the final, high-affinity inhibitor because such 
approaches cannot effectively explore the staggeringly large 
number of mutant combinations required to find a variant with 
five mutations. Large-scale mutagenesis data offer the opportunity 
to improve the protein-design process by enabling designers to 
examine exhaustively where and why their algorithms fail29,30.

deep mutational scanning and human genetics
A large component of the genetic basis of disease lies in rare vari-
ation, with every human carrying, on average, ~300 rare, pro-
tein-encoding variants31. Knowing the functional consequences 
of rare mutations in important genes is crucial for many people, 
from physicians, pharmacists and patients to casual users of per-
sonalized DNA testing. Most existing experimental approaches 
are not practical for assessing the rapidly increasing number of 
these rare mutations being identified. They simply cannot achieve 
the scale necessary to measure the phenotypic consequences of 
the variation that can occur in a typical human protein, which 
comprises 375 amino acids subject to 7,500 possible single muta-
tions (including to stop codons)32. The challenge is highlighted 
by the fact that 10% of women harboring a missense mutation in 
the BRCA1 gene, which may predispose them to breast cancer, 
are told they harbor a “variant of unknown significance”33. That 
BRCA1, one of the best-studied proteins, still generates such diag-
noses indicates that the situation for the average protein impli-
cated in human disease is far worse. Furthermore, it will not be 
possible to repeat the investment of time and money in studying 
BRCA1 for each of these thousands of other proteins.

Currently, computational prediction of the functional con-
sequences of mutations with programs such as Condel, GERP, 
PolyPhen-2 and SIFT is the best researchers can do. But these 
computational approaches are limited in their accuracy34. For 
example, when Condel, PolyPhen-2 and SIFT predict the func-
tional consequences of a set of known deleterious mutations, they 
produce correct and concordant results in fewer than half the 
cases35. Because these tools are based on evolutionary conserva-
tion of individual positions and/or the physicochemical proper-
ties of amino acids, they are relatively successful only on average. 
But they fail in an unacceptably large fraction of cases, making 
them far from ideal for clinical use.

Large-scale mutational data could empower these computa-
tional approaches. First, these data provide a new resource for 
benchmarking computational approaches. Second, analysis of a 
modest number of large-scale mutagenesis data sets derived from 
proteins with diverse structures and functions could enhance our 
understanding of how, in a general sense, mutations affect protein 
function. This information should be useful for improving the 
accuracy of physicochemical models of the impact of mutations. 
Third, large-scale mutagenesis data in model organisms that are 
selected for their fitness could even contribute to developing com-
putational models that predict the effects of mutations on a more 
complex organism.

In principle, experimental characterization of the functional 
consequences of all possible single amino acid substitutions using 
a deep mutational scanning approach could obviate the need for 
computational inference in interpreting coding variation by fur-
nishing sequence-function maps of disease-related proteins (Fig. 2).  
This task seems daunting, as it would require thousands of 
sequence-function maps for proteins with an enormous range of 
functions. However, the challenge may not be quite as formidable 
as it seems: many disease-related proteins fall into well-studied 
classes, such as transcription factors, protein kinases, surface 
receptors and DNA-repair proteins, which may allow the use of 
some existing, generic assays (Fig. 4). Of course, before such data 
are applied in the clinic, assays to determine protein function 
scores must be vetted for their capacity to reflect disease risk, 
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Figure 3 | Deep mutational scanning in sensitized backgrounds as a strategy 
for uncovering protein features. Hypothetical sequence-function heat maps 
collected under different conditions are shown. Once a deep mutational 
scan has been done, it can be repeated in a sensitized background, which 
can be created by altering the cellular or chemical environment in which 
the scan is conducted. The difference in functional effect for a particular 
mutation in a sensitized background could reveal the importance of an 
amino acid at a given position for the process under study.
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pathogenicity or progression. The jury is still out on which in vitro 
assays will do so adequately. Furthermore, a simple functional 
assay that is amenable to a deep mutational scan cannot be gener-
ated for every protein. The possible rewards for such an approach 
are nevertheless considerable. A large, coordinated project could, 
for example, generate sequence-function maps for a set of cancer-
related proteins, providing an invaluable clinical resource.

unresolved questions
Between the promise and the reality of deep mutational scan-
ning lie many questions. Is there as much useful protein infor-
mation latent within these large data sets as we speculate? It 
is clear already that large-scale mutational data contain a rich 
array of information. But developing analytic methods to reveal 
some of this information, such as protein structure, will probably 
require substantial development. Furthermore, it may be difficult 
to design assays that couple some cell-based properties, such as 
localization or post-translational modification, to the sequencing 
readout required for a deep mutational scan.

For a scan to be effective, the development of an appropriate 
assay for the function of interest is perhaps even more important 
than the methods used for mutagenesis, library construction, 
sequencing and computational analysis. Can the scale of assay 
development match the pace of progress in DNA synthesis and 
sequencing? It is crucial that the selection condition alter or sepa-
rate library members according to their functional capacity, ideally 
across a wide range of activity levels. The assay must enable the 
production of DNA libraries that are amenable to high-throughput 
sequencing, something not every assay does. Although research-
ers can draw on decades of collective experience in crafting these 
functional assays, choosing and calibrating one that works at high 
throughput remains a formidable undertaking.

Will these approaches be put into place soon enough to deal 
with the deluge of human genetic variation now being discovered, 
and will the mutational data generated in vitro adequately reflect 
the complex roles of disease proteins? The concern is that simple 
assays that can be scored at high throughput may not adequately 
reflect human disease. The limits of simple assays must undoubt-
edly be respected. For example, assays for proteins that act  
extracellularly or that are poorly conserved are probably not good 

candidates. Assays for well-conserved intracellular proteins will 
probably be useful, but they will need to be validated to ensure 
they adequately reflect disease risk. Advances in genome editing 
could pave the way for deep mutational scanning experiments 
in human cell lines, partially alleviating this concern, although 
even human cell–based assays are limited in their ability to model 
organ or whole-organism disease phenotypes. We suggest that for 
proteins with simple molecular functions (for example, metabolic 
enzymes), large-scale mutagenesis data might have potential for 
direct use in the clinic. For proteins with complex functions (for 
example, signaling proteins), large-scale mutagenesis data will 
need to be combined with an integrative computational model. 
In either case, extensive sets of protein variants whose activity 
scores can be compared to known disease risk and outcome will 
be needed to establish clinical utility of these data.

In summary, deep mutational scanning can be used to generate 
large-scale mutational data for nearly any protein. Because this 
approach is rooted in a rapidly developing technology—high-
throughput sequencing—it is likely that its power and scope will 
continue to grow. We have highlighted some of the ways in which 
large-scale mutational data could transform protein science. The 
many challenges to this transformation also provide many oppor-
tunities to protein scientists. Understanding the vast number 
of protein variants in humans demands that experimental and 
computational methods be developed. Deep mutational scanning 
strategies provide one avenue to address this need.
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