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Deep mutational scanning: a new style of

protein science

Douglas M Fowler! & Stanley Fields!'~3

Mutagenesis provides insight into proteins, but
only recently have assays that couple genotype to
phenotype been used to assess the activities of as
many as 1 million mutant versions of a protein in a
single experiment. This approach—’deep mutational
scanning’—yields large-scale data sets that can
reveal intrinsic protein properties, protein behavior
within cells and the consequences of human genetic
variation. Deep mutational scanning is transforming
the study of proteins, but many challenges must be
tackled for it to fulfill its promise.

As the central players in the cell’s machinery, pro-
teins have been the subject of numerous mutagenesis
approaches that seek to characterize their functions.
Nonetheless, the ability to measure the effects of muta-
tions in proteins has been limited to a relatively small
number of mutations. But what if it were possible to
know the functional consequences of every possible
amino acid change at each position in a protein or
the biochemical activity of hundreds of thousands of
different protein variants, each containing two, three
or even more mutations? Recent technologies known
collectively as ‘deep mutational scanning’ make muta-
genesis studies of this magnitude a reality.

The key problem that deep mutational scanning
solves is the limited ability to predict the most inform-
ative mutations in a protein to analyze. Changes to
amino acids that are distant from binding or active
sites can have drastic effects on the thermodynamic
stability or enzymatic activity of a protein!. Highly
conservative mutations, whose consequences can
be difficult to predict, may be neutral, deleterious or
hyperactivating?3. Multiple mutations combined can
lead to unexpectedly large increases or decreases in
activity*”. By enabling the impact of mutations to be
examined in an unbiased fashion, deep mutational
scanning can reveal the unexpected. It can also address
otherwise intractable cases in which it is necessary to
measure the activity of a huge number of variants.

For example, functional analyses of genomes and of
protein engineering experiments increasingly demand
this scale of data.

Carrying out a deep mutational scan requires an
assay amenable to a coupled genotype-phenotype
platform (Fig. 1). Such platforms include cell-based
assays, with a protein typically expressed from a plas-
mid or virus, or in vitro systems, such as phage or
ribosome display. A library of mutated variants of the
gene is synthesized, cloned into the appropriate vec-
tor and introduced, for example, into cells where the
protein encoded by the gene carries out a function that
can be selected for. The selection enriches cells with
active protein variants and depletes those with inac-
tive ones. The library is retrieved from both input and
post-selection cells, and the frequency of each variant
in the two libraries is determined by high-throughput
DNA sequencing. The change in the frequency of each
variant from input to selection serves as a measure of
its function. Separation technologies, such as cell sort-
ing, can also be used to place variants into bins, with
the variants in each bin scored by DNA read counts.

The assays amenable to deep mutational scan-
ning vary as widely as the activities that proteins can
show. These include binding of a protein to a peptide,
another protein, DNA, RNA or other ligands and enzy-
matic activities such as phosphorylation or ubiquitina-
tion. Cellular assays can take advantage of a growth
or drug selection or expression of a protein that may
be fluorescent or epitope tagged. In vitro approaches
can enrich active variants on the basis of enzymatic
activity, which can be combined with the use of an
antibody that recognizes a post-translational modi-
fication. Because of the astronomical scale of DNA
sequencing, millions of individual protein variants can
be examined in a single experiment. This approach
has been applied to a growing number of disparate
proteins in a variety of contexts (Table 1). Establishing
the infrastructure to carry out a deep mutational scan
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Figure 1 | Deep mutational scanning generates large-scale mutational
data. Deep mutational scanning draws on high-throughput DNA
sequencing to assess the functional capacity of a large number of protein
variants simultaneously. A library of protein variants is created and
introduced into a system in which the genotype of each variant is linked
to a selectable phenotype, then selection for the function of the protein is
imposed (top). Variants with high activity increase in frequency, whereas
variants with low activity decrease in frequency. High-throughput DNA
sequencing is used to measure the frequency of each variant before and
after selection. These frequency data are analyzed to generate a functional
score for each protein variant (bottom). WT, wild type.

for the first time can be challenging, but it is becoming less so
as reagents, software and methods are developed (see ref. 6 for
protocols).

On the simplest level, the large-scale mutational data that result
from a deep mutational scan reveal the functional consequences
of all possible single mutations. These data can be organized into
a sequence-function map (Fig. 2). Such a map can be viewed as an
all-residue scan, in which each position has been mutated to every
other amino acid. These maps are dense with information, with
each position having a unique pattern of functional effects; most
substitutions are likely to be deleterious, but a few may enhance
activity. In addition to characterizing the effects of single muta-
tions, deep mutational scanning can also examine the effects of
multiple mutations. Collectively, these data can yield insights into
protein structure and function, but gleaning these insights is a
challenge for both experimental and computational biologists.

Inference of fundamental protein properties
A number of biochemical methods are customarily used to
directly assay the fundamental properties of proteins; for exam-
ple, chemical denaturation analyzes thermodynamic stability,
enzyme kinetics reveal mechanism, X-ray crystallography pro-
vides structure, and light scattering measures particle size. These
methods apply purpose-built instrumentation in the context of a
specialized workflow, generally feasible for no more than a hand-
ful of variants.

Instead of using such methods to measure protein properties in
a serial fashion, one might infer some properties from large-scale
mutational data. This approach draws on knowledge derived from
more than a century of study of proteins, including principles of
how they fold and unfold, act in catalysis, interact with solvents
and evolve. For a given protein property, such prior knowledge
has the potential to generate a model or algorithm that relates the
functional consequences of mutations to the property in question,
and the model could be applied to the large-scale data obtained
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in a deep mutational scan (Box 1). This approach could augment
and eventually supplant some traditional methods that are time-,
cost- and labor-intensive. We highlight three areas in which this
approach has progressed.

First, because stabilizing mutations can rescue destabilizing
ones’™, large-scale mutational data can be analyzed to identify
thermodynamically stabilizing mutations. These mutations are
important for engineering proteins for pharmaceutical or indus-
trial uses and are difficult to identify; most mutations are either
neutral or destabilizing. Current methods to identify stabilizing
mutations have limitations, including poor performance for large
or atypical proteins, extensive validation requirements, limited
output and the identification of mutations that, although stabiliz-
ing, also result in an unintended loss of activity'%-12. In previous
work, we developed a computational model that measures the
effectiveness of single mutations in rescuing many other dele-
terious single mutations when they occur together in a doubly
mutated variant!3. We applied this model to measurements of the
peptide-binding capacities of ~50,000 variants of a WW domain
and identified new stabilizing mutations.

Second, because mutations can perturb enzyme function, anal-
ysis of large-scale mutational data can reveal aspects of a protein’s
catalytic mechanism. It is possible to identify rare variants that
have enhanced activity or altered specificity. Such unusual vari-
ants were recently identified on the basis of the ubiquitination
activity of ~100,000 variants of an E3 ubiquitin ligase, and these
hyperactive variants were used to unlock mechanistic details
through further biochemical and structural approaches!4. Other
analyses of enzyme mechanism from large-scale mutagenesis data

Table 1 | Deep mutational scanning targets
Model

Scanned protein Selection

Fab antibody fragment36
YAP65 WW domain337  T7 bacteriophage
E4B ubiquitin ligasel4 T7 bacteriophage
PKA regulatory subunit3® T7 bacteriophage
Synthetic PDZ domain3®  M13 bacteriophage
CcdB16 Escherichia coli

Ribosome display Ligand binding

Ligand binding
Ubiquitination activity
Ligand binding

Ligand binding

Toxin activity

PSD95 PDZ domain“0 E. coli Ligand binding
G protein-coupled E. coli Ligand binding
receptor4!
Designed influenza Saccharomyces cerevisiae  Ligand binding
inhibitor2? surface display
Designed lysozyme S. cerevisige surface Ligand binding
inhibitor4? display
Designed digoxigenin S. cerevisiae surface Small molecule binding
binder43 display
IgG1 CH3 domain“4 S. cerevisiae surface Ligand binding after
display thermal stress
Hsp90 (refs. 45,46) S. cerevisige Growth rate
complementation
Mato2 degron?3 S. cerevisige fusion protein Growth rate
Ubiquitin4’ S. cerevisiae Growth rate
complementation
Pab1 (ref. 17) S. cerevisige Growth rate
complementation
Neuraminidase*® Mammalian cell Oseltamivir resistance
IgG CDRs*9 Mammalian cell display Ligand binding
B-Raf>0 Mammalian cell Vemurafenib resistance

Fab, fragment antigen binding; YAP65, yes-associated protein-65; PKA, protein kinase A;
PSD95, postsynaptic density protein-95; Hsp90, heat-shock protein 90; Mato2, mating type
protein-o2; Pab1, poly(A)-binding protein-1; CDR, complementarity-determining region.
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Figure 2 | Large-scale mutational data illustrate how protein sequence
affects function. A hypothetical sequence-function heat map is shown for
a 25-residue portion of a protein, illustrating the functional consequences
of making every single amino acid mutation at every position. Positions
are indicated numerically, and each mutation is indicated by its single-
letter amino acid abbreviation. The color of each element of the heat map

make use of the observation that the most mutation-intolerant
positions in a protein frequently correspond to residues directly
involved in contacting the substrate or performing catalysis.
Another potential starting point is the pairing of hyperactivat-
ing single mutations with deleterious single mutations that affect
folding, stability, substrate interaction or other properties. For
example, a mutation that enhances catalysis might be expected
to rescue deleterious mutations that destabilize the protein but
not those that block substrate binding.

Third, because mutations can perturb protein structure, large-
scale mutational data can contribute to structural efforts. X-ray
crystallography and nuclear magnetic resonance yield detailed
structures, but do not work for every protein, particularly trans-
membrane proteins and large protein complexes!>. De novo
prediction of protein structure, although useful, cannot rou-
tinely provide useful structures even of average-sized proteins.
Mutational data can help discriminate among predicted protein
structures. For example, the functional consequences of mutation
at each position in the bacterial toxin CcdB correlate with distance
to the protein surface in a known structure. Adkar et al.!® used this
observation to select accurate CcdB structures from among a large
set of predictions on the basis of which positions were buried. In
another example from our own work, positions found to be sensi-
tive to most substitutions except those to hydrophobic amino acids
constituted the core hydrophobic structure of the protein!”.

In the future, large-scale mutational data could facilitate the
prediction of protein secondary structure. Typically, algorithms
base predictions on the amino acid preferences in each type of
secondary structure (o-helix, B-sheet or loop) in a training set
of proteins with known structures'®1°. As an alternative, large-
scale mutational data on proteins with known structures could
also reveal amino acid preferences within structural elements,
and the resulting preferences could be used to enhance structure
prediction algorithms. A provocative challenge is the use of deep
mutational scanning data to generate structural models. We sug-
gest that these data could be analyzed to determine covarying
positions in a protein’s sequence, with the expectation that these
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positions will be close to one another in the three-dimensional
folded structure. These experimentally determined distance con-
straints could then be combined with protein structure modeling
software such as Rosetta to produce a plausible structural model?’.
Indeed, the fact that covariation between positions derived from
the natural evolution of a protein can be used to predict structure
if the multiple sequence alignment for the protein is sufficiently
large?! hints that this approach is feasible.

Analyzing large-scale mutational data is challenging because
the principles by which fundamental protein properties relate to
mutational data are not fully understood (Box 1). In some cases,
lessons learned from the study of a small number of mutations will
generalize well, but in others some refinement of our understand-
ing will be required. Furthermore, these analyses require high-
quality mutational data to succeed. High-throughput methods
are notoriously susceptible to problems with data quality. Thus,
practitioners will need to develop and apply standards, especially
regarding appropriate replication and models for controlling sys-
tematic and stochastic error. Nevertheless, there is a huge poten-
tial payoff: a common method for understanding fundamental
properties of proteins in their native environment.

Understanding how proteins behave in cells

Deep mutational scanning can be conducted in cells and thus
offers the opportunity to marry protein science with cell-based
approaches. Furthermore, the power of the technology is magni-
fied by the fact that, for a particular protein, scans can be redone
in a number of ‘sensitized’ backgrounds or conditions (Fig. 3)—a
veritable ‘Hershey heaven'??, where repeating the same experi-
ment with slight alterations yields novel data. We discuss three
examples of this approach.

First, deep mutational scanning can be used to probe protein-
protein interactions. Structural approaches for studying such
interactions, such as cocrystallization, yield high-resolution infor-
mation, but their throughput is inherently low. High-throughput
approaches, such as yeast two-hybrid or mass spectrometry,
provide little, if any, structural detail. A library of variants can
be screened for interaction in cells that overproduce a partner
protein. The expectation is that a subset of mutations that in the
initial (nonsensitized) screen were deleterious might be neutral
in the presence of excess binding partner, revealing positions in
the protein relevant to the interaction.

Second, mutational scanning can measure the stability in cells
of protein variants that are tagged with a required metabolic
enzyme?3. If the stability of the enzyme depends on the stability
of the variant to which it is fused, then cells harboring a long-
lived variant will have high concentrations of the enzyme and
grow faster. The influence of protein-degradation factors could
be investigated by varying their abundance.

Third, mutational scanning using cell-based protein-
aggregation models could yield details of the biophysical pro-
cesses driving aggregation in vivo. For example, variants of
an aggregation-prone protein could be fused to an essential
enzyme whose activity diminishes as the aggregation state of the
variant increases?%. Furthermore, by again varying the expres-
sion of chaperones and degradation factors, the experimenter
might better understand how these factors identify and degrade
aggregation-prone proteins.
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BOX 1

INTERPRETING LARGE-SCALE MUTATIONAL DATA

The initial stages of data analysis focus on producing a set of high-quality functional scores from raw sequence data®l. In the
simplest case, reads are aligned to a wild-type template, variants are enumerated and functional scores are calculated by taking
the ratio of the frequency of each variant before and after selection3’. More complex cases (for example, those incorporating
time-series data) can be dealt with using linear models!3-14. Nevertheless, clear standards for analyzing deep mutational scanning
data have yet to emerge. Enrich, an interactive software package for accomplishing the first data-analysis phase, is publicly
available, but its use requires command-line expertise®2. Enrich guides users through the process of transforming raw
high-throughput sequencing data into a set of variant functional scores. Enrich also generates a comprehensive sequence-function
map from the data. However, deeper analyses of the functional scores are considerably more challenging and depend on the
questions being asked. In some cases, analytical paradigms are already emerging, including those that examine how multiple
mutations interact and how large-scale mutagenesis data change under different experimental conditions. Data analysis remains

a significant challenge, but not an intractable one.

For example, when engineering a protein or when classifying mutations in a disease-related protein, the experimenter may be
interested only in how single mutations affect protein activity. In this case, data for single amino acid substitutions derived from a
deep mutational scan can be displayed as a heat map relating sequence to function (Fig. 2). Further analysis can yield insights into
topics such as fundamental protein properties, the behavior of proteins inside cells and the paths of protein evolution but is

typically a slow and complex undertaking.

Successful interpretation of deep mutational scanning data starts with proper experimental design. Will the experimenter take
advantage of direct selection for a protein property of interest? Will the analysis require only single mutations, or will multiple
mutations be needed? Will the analysis need large numbers of variants, or will a few thousand suffice? To give an idea of how one
might answer these questions, we highlight three broad experimental designs and give examples of how an experimenter might go

about analyzing the resulting data sets.

Direct selection for a protein property of interest results in the most straightforward analysis of large-scale mutational data.

Examples include measurement of:

e thermodynamic stability of a library of IgG variants, using yeast display selection and thermal denaturation*4;
e in vivo protein stability of a library of yeast degron variants, using a metabolic reporter protein fusion?3; and
¢ inhibitor resistance of a library of BRAF variants, using a cell-based resistance assay®°C.

Knowledge-based inference is a more complex type of analysis and can be applied when direct selection is not possible for the
desired protein property. For example, directly selecting for mutations that change an enzyme’s mechanism would be difficult. Here
the experimenter selects for protein function without using specialized conditions (for example, higher temperature to select for
stability or the presence of an inhibitor to select for resistance) and then carries out an analysis that relates the functional scores

to the property of interest. Examples include identification of:

e thermodynamically stabilizing mutations, identified because they rescue multiple destabilizing mutations?3;

* buried positions, identified because they tolerate fewer substitutions than solvent-exposed ones?6;

e core positions, identified because they exhibit similar patterns of preference for hydrophobic amino acids’; and
¢ mechanism-altering mutations, identified because they are hyperactivating®#.

In even more complex cases, no analytic framework for the mutational data yet exists and will need to be developed.

Examples include:

e benchmarking and improving computational approaches for interpreting human genetic variation;
e improving the correlation of biochemical properties with disease risk;
e enhancing prediction algorithms for de novo protein structure and activity; and

e understanding protein evolution.

Protein evolution and engineering

Experimental evolution approaches offer the opportunity to watch
protein evolution as it occurs, but they have been limited either to
examining a handful of variants or to making population-based
measurements. Owing to the vastness of the sequence landscape,
conclusions arising from these studies have been incomplete
and sometimes contradictory. Protein evolution has also been
treated theoretically, but many predictions remain untested. Deep
mutational scanning approaches, when applied to experimental
evolution of proteins, offer the ability to explicitly and simulta-
neously track the fates of hundreds of thousands of sequences.
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They can thus begin to address fundamental questions?®, such
as: how many paths can evolution take? How many mutations
are required to produce a new function? Are there many distinct
sequences that could evolve to solve the same problem? In short,
these approaches offer the opportunity to experimentally explore
the protein fitness landscapes that shape evolutionary trajectories.
For example, large-scale mutational data on a WW domain!? and
on an HIV protease and reverse transcriptase2® have revealed that
some combinations of mutations within variants interact to pro-
duce unexpectedly large functional effects, such that intramolecu-
lar mutation interaction ‘hotspots’ can be identified within these



© 2014 Nature America, Inc. All rights reserved.

npg

No
sensitization

+ binding
partner

+ drug

+ degradation
factor

!

Amino
acid

St

Position ————»

Figure 3 | Deep mutational scanning in sensitized backgrounds as a strategy
for uncovering protein features. Hypothetical sequence-function heat maps
collected under different conditions are shown. Once a deep mutational
scan has been done, it can be repeated in a sensitized background, which
can be created by altering the cellular or chemical environment in which
the scan is conducted. The difference in functional effect for a particular
mutation in a sensitized background could reveal the importance of an
amino acid at a given position for the process under study.

proteins. High-throughput sequencing of T7 RNA polymerase
evolving to bind new promoter sequences has revealed distinct
classes of convergently evolved solutions?’.

Deep mutational scanning experiments should also be instru-
mental in realizing the promise of protein engineering, which
improves existing proteins, and de novo design, which imagines
new ones with desired features. Currently, efforts in these areas
proceed from rule-based design?® or use blind selection to iden-
tify one or a few variants with improved functionality among a
library. In both cases, deep mutational scanning approaches could
be transformative, enabling the identification of large numbers
of useful mutations that can be combined to refine engineered or
designed proteins. For example, this approach was used to opti-
mize a computationally designed hemagglutinin-binding protein
that inhibits influenza virus?’, resulting in the identification of
five mutations that combined to produce a 25-fold improvement
in affinity. Traditional affinity-maturation approaches would not
have resulted in the final, high-affinity inhibitor because such
approaches cannot effectively explore the staggeringly large
number of mutant combinations required to find a variant with
five mutations. Large-scale mutagenesis data offer the opportunity
to improve the protein-design process by enabling designers to
examine exhaustively where and why their algorithms fail>%30.
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Deep mutational scanning and human genetics

A large component of the genetic basis of disease lies in rare vari-
ation, with every human carrying, on average, ~300 rare, pro-
tein-encoding variants®!. Knowing the functional consequences
of rare mutations in important genes is crucial for many people,
from physicians, pharmacists and patients to casual users of per-
sonalized DNA testing. Most existing experimental approaches
are not practical for assessing the rapidly increasing number of
these rare mutations being identified. They simply cannot achieve
the scale necessary to measure the phenotypic consequences of
the variation that can occur in a typical human protein, which
comprises 375 amino acids subject to 7,500 possible single muta-
tions (including to stop codons)32. The challenge is highlighted
by the fact that 10% of women harboring a missense mutation in
the BRCAI gene, which may predispose them to breast cancer,
are told they harbor a “variant of unknown significance®3. That
BRCAL1, one of the best-studied proteins, still generates such diag-
noses indicates that the situation for the average protein impli-
cated in human disease is far worse. Furthermore, it will not be
possible to repeat the investment of time and money in studying
BRCAL for each of these thousands of other proteins.

Currently, computational prediction of the functional con-
sequences of mutations with programs such as Condel, GERP,
PolyPhen-2 and SIFT is the best researchers can do. But these
computational approaches are limited in their accuracy?*. For
example, when Condel, PolyPhen-2 and SIFT predict the func-
tional consequences of a set of known deleterious mutations, they
produce correct and concordant results in fewer than half the
cases®. Because these tools are based on evolutionary conserva-
tion of individual positions and/or the physicochemical proper-
ties of amino acids, they are relatively successful only on average.
But they fail in an unacceptably large fraction of cases, making
them far from ideal for clinical use.

Large-scale mutational data could empower these computa-
tional approaches. First, these data provide a new resource for
benchmarking computational approaches. Second, analysis of a
modest number of large-scale mutagenesis data sets derived from
proteins with diverse structures and functions could enhance our
understanding of how, in a general sense, mutations affect protein
function. This information should be useful for improving the
accuracy of physicochemical models of the impact of mutations.
Third, large-scale mutagenesis data in model organisms that are
selected for their fitness could even contribute to developing com-
putational models that predict the effects of mutations on a more
complex organism.

In principle, experimental characterization of the functional
consequences of all possible single amino acid substitutions using
a deep mutational scanning approach could obviate the need for
computational inference in interpreting coding variation by fur-
nishing sequence-function maps of disease-related proteins (Fig. 2).
This task seems daunting, as it would require thousands of
sequence-function maps for proteins with an enormous range of
functions. However, the challenge may not be quite as formidable
as it seems: many disease-related proteins fall into well-studied
classes, such as transcription factors, protein kinases, surface
receptors and DNA-repair proteins, which may allow the use of
some existing, generic assays (Fig. 4). Of course, before such data
are applied in the clinic, assays to determine protein function
scores must be vetted for their capacity to reflect disease risk,
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Figure 4 | Sequence-function maps of proteins important in disease.

A schematic of a hypothetical cancer cell is shown; mutations in drug
transporters, drug metabolic enzymes, transcription factors and signaling
proteins all have the capacity to influence the effectiveness of treatment.
Deep mutational scanning of cancer-related proteins could revolutionize
our understanding of the consequences of mutations in these proteins and
enable genomic medicine.

pathogenicity or progression. The jury is still out on which in vitro
assays will do so adequately. Furthermore, a simple functional
assay that is amenable to a deep mutational scan cannot be gener-
ated for every protein. The possible rewards for such an approach
are nevertheless considerable. A large, coordinated project could,
for example, generate sequence-function maps for a set of cancer-
related proteins, providing an invaluable clinical resource.

Unresolved questions

Between the promise and the reality of deep mutational scan-
ning lie many questions. Is there as much useful protein infor-
mation latent within these large data sets as we speculate? It
is clear already that large-scale mutational data contain a rich
array of information. But developing analytic methods to reveal
some of this information, such as protein structure, will probably
require substantial development. Furthermore, it may be difficult
to design assays that couple some cell-based properties, such as
localization or post-translational modification, to the sequencing
readout required for a deep mutational scan.

For a scan to be effective, the development of an appropriate
assay for the function of interest is perhaps even more important
than the methods used for mutagenesis, library construction,
sequencing and computational analysis. Can the scale of assay
development match the pace of progress in DNA synthesis and
sequencing? It is crucial that the selection condition alter or sepa-
rate library members according to their functional capacity, ideally
across a wide range of activity levels. The assay must enable the
production of DNA libraries that are amenable to high-throughput
sequencing, something not every assay does. Although research-
ers can draw on decades of collective experience in crafting these
functional assays, choosing and calibrating one that works at high
throughput remains a formidable undertaking.

Will these approaches be put into place soon enough to deal
with the deluge of human genetic variation now being discovered,
and will the mutational data generated in vitro adequately reflect
the complex roles of disease proteins? The concern is that simple
assays that can be scored at high throughput may not adequately
reflect human disease. The limits of simple assays must undoubt-
edly be respected. For example, assays for proteins that act
extracellularly or that are poorly conserved are probably not good
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candidates. Assays for well-conserved intracellular proteins will
probably be useful, but they will need to be validated to ensure
they adequately reflect disease risk. Advances in genome editing
could pave the way for deep mutational scanning experiments
in human cell lines, partially alleviating this concern, although
even human cell-based assays are limited in their ability to model
organ or whole-organism disease phenotypes. We suggest that for
proteins with simple molecular functions (for example, metabolic
enzymes), large-scale mutagenesis data might have potential for
direct use in the clinic. For proteins with complex functions (for
example, signaling proteins), large-scale mutagenesis data will
need to be combined with an integrative computational model.
In either case, extensive sets of protein variants whose activity
scores can be compared to known disease risk and outcome will
be needed to establish clinical utility of these data.

In summary, deep mutational scanning can be used to generate
large-scale mutational data for nearly any protein. Because this
approach is rooted in a rapidly developing technology—high-
throughput sequencing—it is likely that its power and scope will
continue to grow. We have highlighted some of the ways in which
large-scale mutational data could transform protein science. The
many challenges to this transformation also provide many oppor-
tunities to protein scientists. Understanding the vast number
of protein variants in humans demands that experimental and
computational methods be developed. Deep mutational scanning
strategies provide one avenue to address this need.
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