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Phosphorylation of Ubiquitin:
itin Signaling

Danielle Swaney
Assitant Adjunct Professor, QB3
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e Rationale for mass spectrometry project

* Approaches to study kinase-substrate interactions

* Introduction to mass spectrometry



Ubiquitin is a protein post-translational
modification with a wide variety of roles
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Ubiquitin itself can be modified by other
post-translational modifications
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Lysine acetylation of ubiquitin — blocks
ubiquitin chain elongation
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Ubiquitin PTM code

Ohtake, F. et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO reports (2014). doi:10.15252/embr.201439152



Functions of ubiquitin
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Nearly every S/T/Y on ubiquitin (the most conserved protein) is
phosphorylated and conserved from human to yeast
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Nearly every S/T/Y on ubiquitin is phosphorylated and
conserved from human to yeast

What kinases phosphorylation ubiquitin?
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Nearly every S/T/Y on ubiquitin is phosphorylated and
conserved from human to yeast

What kinases phosphorylation ubiquitin?
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How does phosphorylation regulate ubiquitin function?




How does phosphorylation regulate ubiquitin function?
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Human: Pink1 kinase = Ub S65p = Parkin E3 ligase
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Approaches to study kinase-substrate interactions
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Connecting enzymes and substrates is
challengin



Connecting enzymes and substrates is

>95,000 Phosphosites

challengin

Two lines of evidence

are typically required:
* Overexpression
* Knockdown

How can we connect these?
1. in vivo

> 500 Protein Kinases



Connecting enzymes and substrates is
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Kinase activity profiling approach

Protein fractionation
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Kubota, K. et al. Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat Biotechnol 27, 933—940 (2009
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Kinase activity profiling approach

Protein fractionation

Ubiquitin| Kinase activity | Kinase identification
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PROS: Un-biased
CONS: labor intensive, high-false positive

Kubota, K. et al. Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat Biotechnol 27, 933-940 (2809;§ L



Chemical Biology approach (Shokat method)

Ser/Thr/Tyr-OP0O;
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Riel-Mehan, M. M. & Shokat, K. M. A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks. Chemistry & Biology 21, 585-590 (2014).



Chemical Biology approach (Shokat method)

Ser/Thr/Tyr-OP0O;
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Riel-Mehan, M. M. & Shokat, K. M. A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks. Chemistry & Biology 21, 585-590 (2014).



Chemical Biology approach (Shokat method)
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Riel-Mehan, M. M. & Shokat, K. M. A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks. Chemistry & Biology 21, 585-590 (2014).



Chemical Biology approach (Shokat method)
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Riel-Mehan, M. M. & Shokat, K. M. A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks. Chemistry & Biology 21, 585-590 (2014).




Chemical Biology approach (Shokat method)
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Kinase directed approaches
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Xue, L. & Tao, W. A. Current technologies to identify protein kinase substrates in high throughput. Front. Biol. 8, 216-227 (2013).

In vitro phosphoproteomics



Kinase directed approaches

Phosphopeptide
enrichment

Kinase(+)

CONS: need to know kinase already

PROS: complementary in vivo and in vitro
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In vitro phosphoproteomics

Xue, L. & Tao, W. A. Current technologies to identify protein kinase substrates in high throughput. Front. Biol. 8, 216-227 (2013).



Selection of kinases for this course: protein array approach

Kinase

Kinase-, ATP+ Microarray of candidate Kinase+, ATP+
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Figure 2 Kinase assay based on protein array or peptide array.
Protein/peptide collections are spotted on the microarray, followed
by the incubation with a purified active kinase under the reaction
condition. Phosphorylation is detected by various methods.

Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nat Cell Biol 438, 679—684 (2005).

Xue, L. & Tao, W. A. Current technologies to identify protein kinase substrates in high throughput. Front. Biol. 8, 216—227 (2013).
Newman, R. H. et al. Construction of human activity-based phosphorylation networks. Molecular Systems Biology 9, 655—655 (2013). @



Selection of kinases for this course: protein array approach

PROS: High-throughput 73 TR
CONS: In vitro, prone to high Y& OR X Kinase
false positive rates
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Figure 2 Kinase assay based on protein array or peptide array.
Protein/peptide collections are spotted on the microarray, followed
by the incubation with a purified active kinase under the reaction
condition. Phosphorylation is detected by various methods.

Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nat Cell Biol 438, 679—684 (2005).

Xue, L. & Tao, W. A. Current technologies to identify protein kinase substrates in high throughput. Front. Biol. 8, 216—227 (2013).
Newman, R. H. et al. Construction of human activity-based phosphorylation networks. Molecular Systems Biology 9, 655—655 (2013). @



In short, well-established methods to map kinase-
substrate relationship require one of the following:

(1) Prior knowledge of kinase
-> substrate hunting

(2) A labor intensive brute force approach
- kinase hunting

(3) Serendipitous luck

***note other approaches do exist: phage display, yeast 2-hybrid, genetic interaction. But
they all suffer from one of the primary CONS listed for methods described here.

P\



Selection of kinases for this course: protein array results directing
a kinase-directed approach
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Eromi genes tolproteins

Genes contain
instructions
for making
proteins

‘what are they?
S ‘where are they?
Proteins act alone ,,x,;‘.f H . r z ‘,“";4 N ."“,. o 'hOW many COpIeS are prSent?

or in complexes to™
perform many cellular

i haadh’ what is their function?

From Genes to Proteins when are they made?

www.doegenomes.or . )
) ) ‘what proteins do they interact

with?

*The human genome codes ~ 25,000 .
g *how are they modified?

after modification > 500,000
the human body consists of 10 cells
each cell makes ~ 15,000 different proteins




Mass spectrometry based proteomics
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Proteomics Workflow

d Cells or tissue

Step 1
—>

Extraction

) J
x‘/l\\

Subcellular fractionation Prote

c

Antib

Considerations:
* Qualitative: what proteins are there?
* Quantitative: What differences in proteins or PTMs between conditions?
» Different cell types
* Kinase KO
e Chemical perturbation
* Etc.



Proteomics Workflow

a Cells or tissue Proteins

Step 1 %
Extraction @

Subcellular fractionation Protein interaction

Considerations:

* Native or denaturing?
* Protein purification

* PTM stability



Proteomics Workflow

a Cells or tissue Proteins Peptides
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 PTM purification
* Fractionation to reduce complexity



Proteomics Workflow

a Cells or tissue Proteins Peptides
Step1 Step 2* 5 Step 3*
= &% =
Extraction Digestion

Phosphopeptide enrichment
Immobilized Metal Affinity Chromatography (IMAC)
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Proteomics Workflow

Cells or tissue Proteins Peptides
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Concentration Buffer B (%)

Reversed-Phase HPLC

Load peptides: 100% water, 0.1% formic acid
Elute with increasing gradient of acetonitrile, 0.1% formic acid
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Getting your sample into mass spec —
electrospray ionization
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Needle tip




Electrospray Tip - 20x

Electrospray Tip - 400x




Proteomics Workflow

Proteins

Extraction %@

U d

C

b
/t\\ @w

a Cells or tissue

Step 1 Step 2"

Digestion

Tag

Antlbodx

Subcellular fractionation Protein interaction

Considerations:

Peptides

\ Step 3"
S

\/‘

d o

-~

Affinity

ligand
lonic \
interaction

Antibody-based
PTM

UHPLC

Mass spectrometer

@

Step 4

—@ES|

Chromatogram

Lectin y
0y,
7N A,

A

Intensity

Time

m/z

 Chemical nature of peptides of interest (PTM or un-modified)
 Complexity and dynamic range of mixture
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Quadrupole Mass Spectrometry and Its Applications
P.H. Dawson Ed., Reprinted AIP Press 1995




Mass spec schematic and duty cycle
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“shotgun sequencing”
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Peptide Sequencing (MS/MS)

collision-activated dissociation (CAD)

b* 145 292 405 534 663 778 907 1020 1166
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Mass spec operation animation:



Label-Based Quantitation

A) Label Free B) Metabolic labeling C) Isobaric tagging D) SRM
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Label free quantitation AUC
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Label free quantitation AUC
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What proteins did we identify? MaxQuant software
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Yeast Lysate

10;/0/ Qi%
Conditions: Reduce
o Alkylate UbiquiFin pu_rifiation (His—tag)
C'Ontr0| Digest into peptides y Digest into peptides
* Klnase KO Desalt with SepPak
* Chemical perturbation v v
3W% 9(%1"/0
Measurements: iLyophmze Lyophilizel
e Ubiquitin \/ \/ |
. el . MS le: Phospho- MS sample:
« Ubiquitin phosphorylation wer || peptide UB
venrichment'
* Global proteome
 Global phosphorylation Lyophilize
\/ .
MS sample: MS sample:
PHOS UBphos

l

l

Analyze all samples on mass spectrometer (MS)
Danielle Swaney will convert raw MS data to text files using MaxQuant
Students will recieve text files containing protein and phosphorylation site
identification and the raw MS intensity values for these identifications




Yeast Lysate

sk ok ok ok 5k % 10 N
PRO TIPS d
ARIeky:Jactz Ubiquitin purifiation (His-tag)
Digest into peptides Digest into peptides

4—4—

You are purifying a MINORITY lDesa't with SepPak
population from a complex mixture. BN 90N

lLyophilizel lyophlllzel
Focus on REMOVING as much of what MS sample: i:hospho- l MS sample:

WCL pgptide uB
you don’t what from the sample as nrichment
pOSSible lLyophiIizel

MS sample: MS sample:
PHOS UBphos
Worry less about maintaining 100% l i

of your analyte of interest.

Analyze all samples on mass spectrometer (MS)
Danielle Swaney will convert raw MS data to text files using MaxQuant
Students will recieve text files containing protein and phosphorylation site
identification and the raw MS intensity values for these identifications

Understand where your sample is




