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Is a species’ genome size 
correlated with its “complexity”?

Species Genome size (Mbp)
E. coli (bacteria) 5.4
S. cerevisiae (yeast) 12.1
A. thaliana (mustard weed) 115
D. melanogaster (fruit fly) 133
D. rerio (zebrafish) 1,688
H. sapiens (human) 3,272
P. aethiopicus (lungfish) 140,000
A. dubia (amoeba) 670,000
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Frog genome sizes

• The ornate burrowing frog, 
Limnodynastes ornatus, has a 
genome several times smaller 
than the human genome (0.9Gb).
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• The European fire-bellied toad, 
Bombina bombina, has a 
genome several times larger 
than the human genome (8Gb).



Number of genes across species
• Hypothesis:  More “complex” organisms will have 

more genes in their genome 

Species # genes
E. coli (bacteria)   ~4,200

S. cerevisiae (yeast)   ~6,600
D. melanogaster (fruit fly) ~13,500
C. elegans (roundworm) ~20,000

A. thaliana (mustard weed) ~24,000
H. sapiens (human)      ???
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How many genes are there 
in the human genome?

Minimum guess: 25,947
Current best 

guess: ~22,000 5



Which animal has the most genes?

• near-microscopic freshwater crustacean 

• ~31,000 genes 

• More than one-third of Daphnia's genes are 
undocumented in any other organism 

• Genome size:  ~200Mb.
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Daphnia pulex

Colbourne, et al., The Ecoresponsive Genome of Daphnia pulex. Science (2011).



Which species has the fewest genes?

• Tiny bacteria 

• 182 genes 

• Genome size:  ~160kb.
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Nakabachi, et al., The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science (2006).

Carsonella ruddii



The Human Genome
• What does the 3.3 billion base pair human genome look 

like? 

• Coding sequences – 22,000 genes make up ~1.2% of 
the total sequence 

• Regulatory sequences – Make up < 5% of the total 
sequence 

• Much of our genome consists of DNA with no known 
function!   

• But don’t call it “junk”.  Let’s just say its complicated!
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Human Protein Coding Exome

• Exome:  ~22,000 genes 

• Gene:  average ~10 exons 

• Exon:  average ~165bp 

• Intron:  average ~2,700bp 

• Total genomic region:  ~50kb!
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Phylogenetics
1.Select a sequence of interest (gene, regulatory region, 

transposable element, or even a whole genome). 

2. Identify homologs: 

• Objects that derive from a common ancestor. 

• Orthologs: thru speciation; paralogs thru duplication. 

3.Align sequences. 

4.Calculate phylogeny.  

5.Determine confidence

}Not necessarily independent!
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We will focus on bifurcating trees.

“External nodes”
“Leaf nodes”{“Lineage”

“branch”
“Taxa”

“Internal node”

“Root”

http://www.nescent.org/images/sow/64.jpg

CREATE PHYLOGENY
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Phylogenetic trees from 
different parts of the genome

Sims G E et al. PNAS 2009;106:17077-17082©2009 by National Academy of Sciences 12



The Neutral Theory
• Forty years ago, Kimura (1968) and King and Jukes 

(1969) proposed that most new mutations are 
neutral (or lethal) and that most genetic variation is 
of no functional relevance. 

• Though highly controversial at the time, the neutral 
theory is now regarded as a good approximation of 
the truth for most species.
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Molecular Clock
• At sites unaffected by natural selection, divergence 

accumulates at a roughly constant rate. 

• We can use orthologous sequence data across 
different species to estimate the time when the 
species split from each other. 

• This is the basis for the field of phylogenetics, 
which seeks to understand the historical and 
evolutionary relationships of all species.
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Phylogenetics
• There are several widely used methods for 

constructing phylogenetic trees: 

• Parsimony-based methods 

• Heuristic methods (e.g., Neighbor-Joining) 

• Maximum-likelihood based methods 

• Bayesian Methods
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Phylogenetics complications
• Some methods cannot handle the large-scale data sets 

that are now commonplace 

• Mutation rates do change over time 

• Multiple mutations at the same nucleotide site can obscure 
evolutionary relationships 

• Analyses of different parts of the genome can lead to 
different phylogenetic trees 

• Horizontal gene transfer (in bacteria) violate the basic 
assumptions of phylogenetics
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Natural Selection

• Genomic approaches to looking for natural 
selection: 

• Codon based models (comparison of 
orthologous sites across many species) 

• Identification of function through conservation
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The Effect of “Positive Selection”
Adaptive


Neutral 

Nearly Neutral 

Mildly Deleterious 

Fairly Deleterious 

Strongly Deleterious
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The Effect of “Positive Selection”
Adaptive


Neutral 

Nearly Neutral 

Mildly Deleterious 

Fairly Deleterious 

Strongly Deleterious

“Selective Sweep”
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The Effect of Negative Selection

Deleterious 
mutations will 
arise in the next 
generation

Chromosomes in 
a population with 
standing variation

Negative selection: 
the action of 
natural selection 
purging deleterious 
mutations.



Codon-based models 
(e.g., Goldman & Yang 1994; Nielsen & Yang 1998)

• Suppose one has sequence data from multiple (>> 
2) species from a single locus. 

• How can one use these data to infer the specific 
sites that have been subject to natural selection? 

• Repeated fixation of functional mutations in coding 
regions over evolutionary timescales can lead to a 
disproportional number of amino acid substitutions 
relative to silent substitutions (synonymous).
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Hypothetical example
• The exons of a single 

gene are sequenced in 5  
species: 

• macaque, baboon, 
orang, chimp and 
human.   

• Between each pair of 
species, there is at most 
one non-synonymous 
change per site.

 Mmu       Pha    Ppy       Ptr        Hsa
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Hypothetical example

• Suppose at one 
codon, we observe the 
following amino acids.

 Mmu       Pha    Ppy       Ptr        Hsa
  Leu        Pro     His       Arg        Arg
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Hypothetical example
• Parsimony:  3 changes 

happen at this position, 
leading to four different 
amino-acid residues. 

• Three (or more) non-
synonymous changes 
at the same codon may 
be unlikely to have 
happened by chance.

 Mmu       Pha    Ppy       Ptr        Hsa
  Leu        Pro     His       Arg        Arg
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Hypothetical example

• Overall sites, suppose 
we observe 8 amino 
acid substitutions. 

• How unlikely is this 
observation?

 Mmu       Pha    Ppy       Ptr        Hsa
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Hypothetical example

• What if we observed 
14 synonymous 
substitutions?

 Mmu       Pha    Ppy       Ptr        Hsa
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NS SYN

Subst

Sites

Hypothetical example

 Mmu       Pha    Ppy       Ptr        Hsa
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NS SYN

Subst 8 14

Sites 300 100

dN=0.027 dS=0.14

• ω=dN/dS 
   =  0.191 

• Fisher Exact Test 
p=0.00019



Definitions
• Define ω as the ratio of the non-synonymous and the 

synonymous substitution rates:  ω=dN/dS. 

• Then: 

•  ω = 0  →  complete constraint 

•  ω < 1  →  selective constraint 

•  ω = 1  →  neutrality 

•  ω > 1  →  selectively advantageous
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A Caveat

• Anisimova et al. (2003) looked at the effect of 
recombination on codon-based likelihood ratio 
tests.  Recombination causes different codons to 
have different topologies and branch lengths 
(especially if closely related species are studied). 

• They found that with high recombination rates the 
type I error rate can be as high as 90 %.
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Incomplete Lineage Sorting
• Hobolth, et al., PLoS Gen (2007): 

• The genealogical relationship of human, 
chimpanzee, and gorilla varies along the genome.

compatible with the fossil record, if the Millennium man and
Sahelanthropus are not on the human lineage.

Whole genome sequences of gorilla and orangutan will
soon supplement the already available whole genome
sequences of human and chimpanzee [19]. These four
genomes are so closely related that alignments of large

contiguous parts of the genomes can be constructed. Analysis
of such large fragments is challenging because different parts
of the alignment will have different evolutionary histories
(and thus different genealogies, see Figure 1) because of
recombination [14,20]. Ideally, one would like to infer the
genealogical changes directly from the data and then analyze
each type of genealogy separately. A natural approach to this
challenge is to move along the alignment, and simultaneously
compute the probabilities of different relationships and
speciation times. While recombination has been considered
in previous likelihood models [14], the spatial information
along the alignment has largely been ignored.
In this paper we describe a hidden Markov model (HMM)

that allows the presence of different genealogies along large
multiple alignments. The hidden states are different possible
genealogies (labeled HC1, HC2, HG, and CG in Figures 1 and
2). Parameters of the HMM include population genetics
parameters such as the HC and human–chimp–gorilla (HCG)
ancestral effective population sizes, NHC and NHCG, and
speciation times s1 and s2 (see Figure 1). We therefore name
our approach a coalescent HMM (coal-HMM). The statistical
framework of HMMs yields parameter estimates with asso-
ciated standard errors, and posterior probabilities of hidden
states [21–23]. We show by simulation studies that the coal-
HMM recovers parameters from the coalescence with
recombination process, and we apply the coal-HMM to five
long contiguous human–chimp–gorilla–orangutan (HCGO)

Figure 1. Genetic and Species Relationships May Differ

Top: Genealogical relationship of human, chimpanzee, gorilla, and orangutan. Speciation times are denoted s1, s1þ s2, and s1þ s2þ s3. Population sizes
of human, chimpanzee, and gorilla are denoted NH, NC, and NG, while the HC and HCG ancestral population sizes are denoted NHC and NHCG.
Bottom: Each of the four hidden states in the coal-HMM corresponds to a particular phylogenetic tree. In state HC1, human and chimpanzee coalesce
before speciation of human, chimpanzee, and gorilla, i.e., before s1 þ s2. In states HC2, HG, and CG, human, chimpanzee, and gorilla coalesce after
speciation of the three species, i.e., after s1 þ s2. In HC2, the human and chimpanzee lineages coalesce first, and then the HC lineage coalesces with
gorilla. In state HG, human and gorilla coalesce first, and in state CG, chimpanzee and gorilla coalesce first. The hidden phylogenetic states cannot be
observed from present-day sequence data, but they can be decoded using the coal-HMM methodology.
doi:10.1371/journal.pgen.0030007.g001

PLoS Genetics | www.plosgenetics.org February 2007 | Volume 3 | Issue 2 | e70295

Genomic Relationships of Great Apes

Author Summary

Primate evolution is a central topic in biology and much information
can be obtained from DNA sequence data. A key parameter is the
time ‘‘when we became human,’’ i.e., the time in the past when
descendents of the human–chimp ancestor split into human and
chimpanzee. Other important parameters are the time in the past
when descendents of the human–chimp–gorilla ancestor split into
descendents of the human–chimp ancestor and the gorilla ancestor,
and population sizes of the human–chimp and human–chimp–
gorilla ancestors. To estimate speciation times and ancestral
population sizes we have developed a new methodology that
explicitly utilizes the spatial information in contiguous genome
alignments. Furthermore, we have applied this methodology to four
long autosomal human–chimp–gorilla–orangutan alignments and
estimated a very recent speciation time of human and chimp
(around 4 million years) and ancestral population sizes much larger
than the present-day human effective population size. We also
analyzed X-chromosome sequence data and found that the X
chromosome has experienced a different history from that of
autosomes, possibly because of selection.
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LYG1: an anti-bacterial enzyme  

 Mmu       Hsa     Rat           Mouse
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NS SYN

Primates 16 5

Rodents 0 25

LYG1: an anti-bacterial enzyme  

 Mmu       Hsa     Rat           Mouse
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• Fisher Exact Test 
p=2.05×10-8

6.1% div 15.1% div



Natural Selection Revisited

• Genomic approaches to looking for natural 
selection: 

• Codon based models (comparison of 
orthologous sites across many species) 

• Identification of function through conservation
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Selective Constraint
• Comparison of the genomes of evolutionarily 

distant species has helped identify: 

• Novel genes 

• Intron/exon boundaries 

• cis- and trans-acting regulatory elements 

• Conserved sequences with unknown function
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• Signs that the aligned sequence is from an exon: 

• Overall level of sequence identity is higher 
than average 

• Distances between fixed differences is often a 
multiple of 3

Random pig-human alignment
 tctgcagtacctgccacgaactcctggtcgacatgatttatttctg 
 ||||||| |||||||| ||||||||||| |||||||||||||| || 
 tctgcagcacctgccatgaactcctggttgacatgatttatttttg 
 
 gaaaaatgacaagctatactgtggcagacattactgtgacagtgag 
 ||| ||||| |||||||||||||||||||||||||||||||| ||| 
 gaagaatgagaagctatactgtggcagacattactgtgacagcgag  
 

{ 9bp { 12bp { 15bp
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Evolutionary Conservation 
as a Tool for Interpretation

• Exome Aggregation Consortium released variant 
lists and frequencies from 60,706 exomes! 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Analysis of protein-coding genetic variation in 60,706 humans 1 
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Evolutionary Conservation as a Tool
• Exome Aggregation Consortium released variant 

lists and frequencies from 60,706 exomes!
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Evolutionary Conservation as a Tool
• Exome Aggregation Consortium released variant lists 

and frequencies from 60,706 exomes! 

• 1 variant ~8bp! 

• Variant observed at 60-90% of all CpG sites in exome!
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1 
Figure! 2.! Mutational! recurrence! at! large! sample! sizes.! a)! Number! of! unique! variants! observed,! by!2 
mutational! context,!as!a! function!of!number!of! individuals! (downJsampled! from!ExAC).!CpG!transitions,!3 
the! most! likely! mutational! event,! begin! reaching! saturation! at! ~20,000! individuals.! B)! Proportion! of!4 
validated!de#novo!variants!from!two!external!datasets!that!are!independently!found!in!ExAC,!separated!by!5 
functional! class! and! mutational! context.! Error! bars! represent! standard! error! of! the! mean.! Colors! are!6 
consistent!in!aJd.!c)!The!site!frequency!spectrum!is!shown!for!each!mutational!context.!d)!For!doubletons!7 
(variants! with! an! allele! count! of! 2),! mutation! rate! is! positively! correlated! with! the! likelihood! of! being!8 
found! in! two! individuals! of! different! continental! populations.! e)! The!mutabilityJadjusted! proportion! of!9 
singletons!(MAPS)!is!shown!across!functional!classes.!Error!bars!represent!standard!error!of!the!mean!of!10 
the!proportion!of!singletons.!11 
!12 
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Evolutionary Conservation 
as a Tool for Interpretation

• Exome Aggregation Consortium released variant 
lists and frequencies from 60,706 exomes! 

• Evolutionary conservation is one way that putatively 
“functional” variants will be identified. 

• Often joint with structural information when 
available.
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PolyPhen-2
• One of the most popular tools for predicting damaging 

effects of missense mutations. 

• Uses 8 sequence-based and 3 structure-based 
predictive features (chosen from initial set of 32).

NATURE METHODS | VOL.7 NO.4 | APRIL 2010 | 249

CORRESPONDENCE

the HumDiv dataset must be close to selective neutrality. Because 
alleles that are mildly but unconditionally deleterious may not 
be fixed in the evolving lineage, no method based on compara-
tive sequence analysis is ideal for discriminating between drasti-
cally and mildly deleterious mutations, which were assigned to 
opposite categories in HumVar data. Another reason is that the 
HumDiv dataset uses extra criteria (Supplementary Methods) to 
avoid possible erroneous annotations of damaging mutations.

PolyPhen-2 calculates the naive Bayes posterior probability 
that a given mutation is damaging and reports estimates of false 
positive (the chance that the mutation is classified as damaging 
when it is in fact nondamaging) and true positive (the chance that 
the mutation is classified as damaging when it is indeed damag-
ing) rates. A mutation is also appraised qualitatively, as benign, 
possibly damaging or probably damaging (Supplementary 
Methods).

The user can choose between HumDiv- and HumVar-trained 
PolyPhen-2. Diagnostics of Mendelian diseases require dis-
tinguishing mutations with drastic effects from other human 
variation, including abundant mildly deleterious alleles. Thus, 
HumVar-trained PolyPhen-2 should be used for this task. In con-
trast, HumDiv-trained PolyPhen-2 should be used to evaluate 
rare alleles at loci potentially involved in complex phenotypes, 
for dense mapping of regions identified by genome-wide associa-
tion studies and for analysis of natural selection from sequence 

data, in which even mildly deleterious alleles must be treated as 
damaging.

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | PolyPhen-2 pipeline and prediction 
accuracy. (a) Overview of the algorithm. MSA, 
multiple sequence alignment. (b) Receiver 
operating characteristic (ROC) curves for 
predictions made by PolyPhen-2 using fivefold 
cross-validation on HumDiv and HumVar3 data, 
using UniRef100 and Swiss-Prot databases for 
the homology search. Also shown are ROC curves 
for PolyPhen on HumDiv and HumVar calculated 
from the difference between position-specific 
independent counts (PSIC) scores1 of the wild-
type and the mutant amino acids. (c) ROC curves 
for PolyPhen-2 trained on HumDiv and tested 
on a subset of HumVar data nonoverlapping 
with HumDiv data. UniRef100 and Swiss-Prot 
databases were used for the homology search. 
Also shown are ROC curves obtained using the 
programs sorting intolerant from tolerant (SIFT)4, 
screening for nonacceptable polymorphisms 
(SNAP)5 and SNPs3D6 on HumVar data. Methods 
other than PolyPhen-2 and PolyPhen could not 
easily be applied to HumDiv data because using 
the same sequences for obtaining both multiple 
alignments and nondamaging replacements 
must be avoided. SIFT was used in conjunction 
with Swiss-Prot database, SNAP and SNPs3D 
were used with their corresponding default 
databases. We used SIFT with Swiss-Prot database 
for homology search since Swiss-Prot does not 
contain sequences of splice forms, sequences of 
human allelic variants and incomplete sequences, 
making it possible to guarantee that allelic 
variants used in testing datasets would not 
appear in multiple-sequence alignments.
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What about the 99%?
• Outside the exome, few tools existed until very recently (like 

within the last few months). 

• Previously, we relied on PhastCons  

• HMM-based method for identifying evolutionarily 
conserved blocks in the genome. 

• and PhyloP 

• A Likelihood Ratio Test method for identifying sites within 
a genome that are conserved or accelerated (compared 
to neutral background). 

• Both are integrated into the UCSC Genome Browser.
41



Ultraconserved Regions

• Comparison of the human, mouse and rat genomes 
identified 481 segments of >200 bp (and more than 5000 
segments of >100bp) that are completely conserved 
(100% identity) across the three species. 

• Over half of these ‘ultraconserved’ segments do not 
occur in exons, and presumably have some sort of 
regulatory or structural function.

Bejerano et al. (2004)42



Ultraconserved Regions
• There are at least two possible explanations for this 

remarkable degree of conservation: 

• Low mutation rate 

• Purifying selection 

• How can we distinguish between these two 
possibilities?
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Predictions for within-species variation

Low mutation rate

• Very few (if any) 
polymorphisms 

• Frequency of any 
observed mutations 
should look like genome-
wide background.

Purifying selection 

• Some polymorphisms 

• Polymorphisms will be at low 
frequency
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Frequency spectrum 
Ultraconserved regions vs. non-synonymous sites

Human Genome Ultraconserved
Elements Are Ultraselected
Sol Katzman,1* Andrew D. Kern,2* Gill Bejerano,2† Ginger Fewell,3 Lucinda Fulton,3
Richard K. Wilson,3 Sofie R. Salama,2,4 David Haussler1,2,4‡

Unexpectedly long regions of extremely
conserved DNA, known as ultracon-
served elements, were first found by com-

paring the human, mouse, and rat genomes (1).

Most are non–protein-coding regions, unique
to vertebrates, and have undergone little or no
evolutionary change since mammal and bird
ancestors diverged about 300 million years ago.
Many may function as distal enhancers for
neighboring developmental genes (2). However,
the reason for their extreme conservation remains
a mystery. They could be unusually large patches
of sites under weak levels of negative selection
(3, 4) or simply mutational cold spots.

We measured the derived (new) allele frequen-
cy (DAF) spectrum for the segregating human
polymorphisms in the ultraconserved regions. It
is markedly shifted toward rare derived alleles, as
is characteristic of regions under negative selection
in which introduced mutations are unlikely to
spread to high frequencies within populations.

We analyzed genomic DNA sequences in
72 individuals (a mixture of European Amer-
icans and African Americans) spanning 315 of
the ultraconserved elements and found 134
segregating sites. We compared the DAFs for
these sites with those in 314 segregating non-
synonymous sites in 211 genes obtained from
47 individuals of similar background available
from the SeattleSNPs consortium (5).

Although the DAF spectrum of the nonsyn-
onymous sites is consistent with that observed pre-
viously, the spectrum for the ultraconserved sites is
qualitatively different (Fig. 1). Large fractions of

both the segregating ultraconserved sites (55%)
and the nonsynonymous sites (41%) are present in
only one allele in one sample. However, only 3%
of the segregating ultraconserved sites exhibit
DAFs of more than 25%, compared with 14% of
the segregating nonsynonymous sites (c2 P value
of 0.002), even after performing a normalization to
a common sample size of 80 chromosomes (6).

To estimate the distribution of selection coeffi-
cients from these DAF spectra, we applied a hierar-
chical Bayesian model in which the mean selection
coefficient for a set of bases is a random variable
whose distribution we estimate via Markov chain
Monte Carlo (MCMC) methods (6). Negative val-
ues imply that derived alleles are deleterious. A
comparison of the posterior distributions (Fig. 1)
shows that the ultraconserved sites are, on average,
under purifying selection that is three times greater
than that acting on nonsynonymous sites. The 95%
credible intervals do not overlap at all.

Such estimates are subject to ascertainment bias,
both in the selection of segregating sites (a bias we
avoid by completely resequencing the entire re-
gion) and implicit in the definition of the ultra-
conserved regions themselves. A region of the
genome containing a segregating site with high

DAF is likely to show a difference between the
reference human genome and the reference ge-
nomes of mouse and rat and hence be excluded
from study. Our probability model compensates for
such bias (fig. S1), which also applies to poly-
morphism studies of other conserved regions. In
addition, a separate analysis shows that our results
are not influenced by different strengths of linkage
between sites within the separate classes analyzed
(6). We can rule out other regional effects because
the bases immediately flanking the ultraconserved
regions have a much lower mean selection co-
efficient (fig. S3).

Previous studies have indicated that con-
served noncoding regions can exhibit selection

coefficients comparable to those
of protein-coding regions (7).
Our analysis shows that selec-
tion in the vertebrate-specific
ultraconserved noncoding regions
is in fact much stronger. These
data argue that ultraconserved
elements are currently, as well
as historically, strongly con-
strained functional elements.

References and Notes
1. G. Bejerano et al., Science 304, 1321

(2004); published online 6 May 2004
(10.1126/science.1098119).

2. L. A. Pennacchio et al., Nature 444,
499 (2006).

3. P. D. Keightley, M. J. Lercher,
A. Eyre-Walker, PLoS Biol. 3, e42
(2005).

4. G. V. Kryukov, S. Schmidt, S. Sunyaev,
Hum. Mol. Genet. 14, 2221 (2005).

5. J. M. Akey et al., PLoS Biol. 2, e286
(2004).

6. Materials and methods are available
on Science Online.

7. J. A. Drake et al., Nat. Genet. 38, 223 (2006).
8. We thank J. Kent, M. Diekhans, D. Thomas, K. Pollard,

C. Lowe [University of California Santa Cruz (UCSC)], J. Reed,
S. Scott (Genome Sequencing Center), W. Schackwitz, J. Martin,
L. Pennacchio (U.S. Department of Energy Joint Genome
Institute), P. Robertson (SeattleSNPs), the UCSC Genome
Browser group, and anonymous reviewers. Funding was
provided by NIH National Human Genome Research Institute
(S.K., A.D.K., G.B., D.H., and R.K.W.) and Howard Hughes
Medical Institute (S.R.S. and D.H.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/317/5840/915/DC1
Materials and Methods
Figs. S1 to S3
Reference

12 March 2007; accepted 28 June 2007
10.1126/science.1142430

BREVIA

1Department of Biomolecular Engineering, University of
California, Santa Cruz, CA 95064, USA. 2Center for Biomolec-
ular Science and Engineering, University of California, Santa
Cruz, CA 95064, USA. 3Genome Sequencing Center, Washing-
ton University School of Medicine, St. Louis, MO 63108, USA.
4Howard Hughes Medical Institute, University of California,
Santa Cruz, CA 95064, USA.

*These authors contributed equally to this work.
†Present address: Department of Developmental Biology
and Department of Computer Science, Stanford University,
Stanford, CA 94305, USA.
‡To whom correspondence should be addressed. E-mail:
haussler@soe.ucsc.edu

134 segregating Ultraconserved sites
 (55% have DAF count=1)

derived allele frequency (DAF) count (of 144)

fr
ac

tio
n 

of
 s

eg
re

ga
tin

g 
si

te
s

0.
00

0.
02

0.
04

0.
06

0.
08

0.
55

0 36 72 108 144

314 segregating Nonsynonymous sites
 (41% have DAF count=1)

derived allele frequency (DAF) count (of 94)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
41

0 24 47 70 94

po
st

er
io

r 
pr

ob
ab

ili
ty

 d
en

si
ty

−10 −8 −6 −4 −2 0 2

Ultraconserved sites
 (peak at −5.0)

Nonsynonymous sites
 (peak at −1.6)

Fig. 1. Ultraconserved elements are under stronger selection than protein-coding regions. (Left and center) Histo-
grams of the derived allele frequency counts for segregating sites in the indicated categories. In each histogram the first
bar, corresponding to singleton heterozygotes (DAF count = 1), is truncated. (Right) The Bayesian posterior distributions
for the mean selection coefficient. The x axis is given in units of a = 2Nes, where Ne is the effective population size and s
is the fitness parameter.
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Ultraconserved Regions
• How critical are these ultraconserved regions for 

the viability and fertility of an individual? 

• Ahituv et al. (2007) created mouse knockouts that 
deleted four of the ultraconserved regions. 

• They chose regions thought to have a regulatory 
role on genes of known function. 

• Surprisingly, they found that the mouse knockouts 
were completely viable and fertile, with no 
observable phenotypic abnormalities!
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Estimated selection coefficients 
(Katzman et al. 2007)

• It only takes weak selection (Ns ~ 5) to produce both a skew in the 
frequency spectrum and a lack of fixed differences across species. 

• However, this corresponds to selection coefficients ~0.05% (N=10,000), 
so it is understandable if there are no obvious phenotypic effects on 
knockout mice.
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chical Bayesian model in which the mean selection
coefficient for a set of bases is a random variable
whose distribution we estimate via Markov chain
Monte Carlo (MCMC) methods (6). Negative val-
ues imply that derived alleles are deleterious. A
comparison of the posterior distributions (Fig. 1)
shows that the ultraconserved sites are, on average,
under purifying selection that is three times greater
than that acting on nonsynonymous sites. The 95%
credible intervals do not overlap at all.

Such estimates are subject to ascertainment bias,
both in the selection of segregating sites (a bias we
avoid by completely resequencing the entire re-
gion) and implicit in the definition of the ultra-
conserved regions themselves. A region of the
genome containing a segregating site with high

DAF is likely to show a difference between the
reference human genome and the reference ge-
nomes of mouse and rat and hence be excluded
from study. Our probability model compensates for
such bias (fig. S1), which also applies to poly-
morphism studies of other conserved regions. In
addition, a separate analysis shows that our results
are not influenced by different strengths of linkage
between sites within the separate classes analyzed
(6). We can rule out other regional effects because
the bases immediately flanking the ultraconserved
regions have a much lower mean selection co-
efficient (fig. S3).

Previous studies have indicated that con-
served noncoding regions can exhibit selection

coefficients comparable to those
of protein-coding regions (7).
Our analysis shows that selec-
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is in fact much stronger. These
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as historically, strongly con-
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What about the 99%?

• Two recent tools have been developed for genome-
wide functional prediction: 

• CADD 

• fitCons
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• Combined Annotation–Dependent Depletion (CADD) 

• A method for objectively integrating 88 diverse 
annotations into a single measure (C score) for each 
possible variant at every position in the genome. 

• CADD is the result of using a support vector machine 
trained to differentiate 14.7 million high-frequency human-
derived alleles from 14.7 million simulated variants.
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T E C H N I C A L  R E P O RT S

Current methods for annotating and interpreting human 
genetic variation tend to exploit a single information type  
(for example, conservation) and/or are restricted in scope (for 
example, to missense changes). Here we describe Combined 
Annotation–Dependent Depletion (CADD), a method for 
objectively integrating many diverse annotations into a single 
measure (C score) for each variant. We implement CADD as  
a support vector machine trained to differentiate  
14.7 million high-frequency human-derived alleles from  
14.7 million simulated variants. We precompute C scores 
for all 8.6 billion possible human single-nucleotide variants 
and enable scoring of short insertions-deletions. C scores 
correlate with allelic diversity, annotations of functionality, 
pathogenicity, disease severity, experimentally measured 
regulatory effects and complex trait associations, and they 
highly rank known pathogenic variants within individual 
genomes. The ability of CADD to prioritize functional, 
deleterious and pathogenic variants across many functional 
categories, effect sizes and genetic architectures is unmatched 
by any current single-annotation method.

A strength of genomic approaches in studying disease is the ability 
to replace informed but biased hypotheses with unbiased but generic 
ones, such as the equal treatment of all genetic variants in genome-
wide association studies (GWAS). However, for both rare variants 
of large effect and common variants of weak effect, the use of prior 
knowledge can be critical for disease gene discovery1–4. For example, 
exome sequencing is an effective discovery strategy because it focuses 
on protein-altering variation, which is enriched for causal effects5.

Although many existing annotation methods are useful for  
prioritizing causal variants to boost discovery power (for example, 
PolyPhen6, SIFT7 and GERP8), current approaches tend to suffer from 
one or more of four major limitations. First, annotation methods vary 
widely with respect to both inputs and outputs. For example, conser-
vation metrics8–10 are defined across the genome but do not use func-
tional information and are not allele specific, whereas protein-based 
metrics6,7 apply only to coding and often only to missense variants, 
thereby excluding >99% of human genetic variation. Second, each 
annotation method has its own metric, and these metrics are rarely 

comparable, making it difficult to evaluate the relative importance  
of distinct variant categories or annotations. Third, annotation  
methods trained on known pathogenic mutations are subject to major 
ascertainment biases and may not be generalizable. Fourth, it is a 
major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
can be measured systematically across the genome assembly (see  
refs. 8–10 and below). Further, selective constraint on genetic variants 
is related to the totality of their phenotype-relevant effects rather than 
to any individual molecular or phenotypic consequence. Measures of 
deleteriousness can therefore provide, in principle, a genome-wide, 
data-rich, functionally generic and organismally relevant estimate 
of variant effect.

RESULTS
Implementation of CADD
We identified differences between human genomes and the inferred 
human-chimpanzee ancestral genome13 where humans carry a  
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pathogenicity of human genetic variants
Martin Kircher1,5, Daniela M Witten2,5, Preti Jain3,4, Brian J O’Roak1,4, Gregory M Cooper3 & Jay Shendure1

1Department of Genome Sciences, University of Washington, Seattle, Washington, USA. 2Department of Biostatistics, University of Washington, Seattle, Washington, 
USA. 3HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA. 4Present address: Department of Molecular and Medical Genetics, Oregon Health  
and Science University, Portland, Oregon, USA. 5These authors contributed equally to this work. Correspondence should be addressed to J.S. (shendure@uw.edu)  
or G.M.C. (gcooper@hudsonalpha.org).

Received 13 July 2013; accepted 13 January 2014; published online 2 February 2014; doi:10.1038/ng.2892

©
20

14
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

NATURE GENETICS ADVANCE ONLINE PUBLICATION 1

T E C H N I C A L  R E P O RT S

Current methods for annotating and interpreting human 
genetic variation tend to exploit a single information type  
(for example, conservation) and/or are restricted in scope (for 
example, to missense changes). Here we describe Combined 
Annotation–Dependent Depletion (CADD), a method for 
objectively integrating many diverse annotations into a single 
measure (C score) for each variant. We implement CADD as  
a support vector machine trained to differentiate  
14.7 million high-frequency human-derived alleles from  
14.7 million simulated variants. We precompute C scores 
for all 8.6 billion possible human single-nucleotide variants 
and enable scoring of short insertions-deletions. C scores 
correlate with allelic diversity, annotations of functionality, 
pathogenicity, disease severity, experimentally measured 
regulatory effects and complex trait associations, and they 
highly rank known pathogenic variants within individual 
genomes. The ability of CADD to prioritize functional, 
deleterious and pathogenic variants across many functional 
categories, effect sizes and genetic architectures is unmatched 
by any current single-annotation method.

A strength of genomic approaches in studying disease is the ability 
to replace informed but biased hypotheses with unbiased but generic 
ones, such as the equal treatment of all genetic variants in genome-
wide association studies (GWAS). However, for both rare variants 
of large effect and common variants of weak effect, the use of prior 
knowledge can be critical for disease gene discovery1–4. For example, 
exome sequencing is an effective discovery strategy because it focuses 
on protein-altering variation, which is enriched for causal effects5.

Although many existing annotation methods are useful for  
prioritizing causal variants to boost discovery power (for example, 
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widely with respect to both inputs and outputs. For example, conser-
vation metrics8–10 are defined across the genome but do not use func-
tional information and are not allele specific, whereas protein-based 
metrics6,7 apply only to coding and often only to missense variants, 
thereby excluding >99% of human genetic variation. Second, each 
annotation method has its own metric, and these metrics are rarely 

comparable, making it difficult to evaluate the relative importance  
of distinct variant categories or annotations. Third, annotation  
methods trained on known pathogenic mutations are subject to major 
ascertainment biases and may not be generalizable. Fourth, it is a 
major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
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is related to the totality of their phenotype-relevant effects rather than 
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genetic variation tend to exploit a single information type  
(for example, conservation) and/or are restricted in scope (for 
example, to missense changes). Here we describe Combined 
Annotation–Dependent Depletion (CADD), a method for 
objectively integrating many diverse annotations into a single 
measure (C score) for each variant. We implement CADD as  
a support vector machine trained to differentiate  
14.7 million high-frequency human-derived alleles from  
14.7 million simulated variants. We precompute C scores 
for all 8.6 billion possible human single-nucleotide variants 
and enable scoring of short insertions-deletions. C scores 
correlate with allelic diversity, annotations of functionality, 
pathogenicity, disease severity, experimentally measured 
regulatory effects and complex trait associations, and they 
highly rank known pathogenic variants within individual 
genomes. The ability of CADD to prioritize functional, 
deleterious and pathogenic variants across many functional 
categories, effect sizes and genetic architectures is unmatched 
by any current single-annotation method.

A strength of genomic approaches in studying disease is the ability 
to replace informed but biased hypotheses with unbiased but generic 
ones, such as the equal treatment of all genetic variants in genome-
wide association studies (GWAS). However, for both rare variants 
of large effect and common variants of weak effect, the use of prior 
knowledge can be critical for disease gene discovery1–4. For example, 
exome sequencing is an effective discovery strategy because it focuses 
on protein-altering variation, which is enriched for causal effects5.

Although many existing annotation methods are useful for  
prioritizing causal variants to boost discovery power (for example, 
PolyPhen6, SIFT7 and GERP8), current approaches tend to suffer from 
one or more of four major limitations. First, annotation methods vary 
widely with respect to both inputs and outputs. For example, conser-
vation metrics8–10 are defined across the genome but do not use func-
tional information and are not allele specific, whereas protein-based 
metrics6,7 apply only to coding and often only to missense variants, 
thereby excluding >99% of human genetic variation. Second, each 
annotation method has its own metric, and these metrics are rarely 

comparable, making it difficult to evaluate the relative importance  
of distinct variant categories or annotations. Third, annotation  
methods trained on known pathogenic mutations are subject to major 
ascertainment biases and may not be generalizable. Fourth, it is a 
major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
can be measured systematically across the genome assembly (see  
refs. 8–10 and below). Further, selective constraint on genetic variants 
is related to the totality of their phenotype-relevant effects rather than 
to any individual molecular or phenotypic consequence. Measures of 
deleteriousness can therefore provide, in principle, a genome-wide, 
data-rich, functionally generic and organismally relevant estimate 
of variant effect.

RESULTS
Implementation of CADD
We identified differences between human genomes and the inferred 
human-chimpanzee ancestral genome13 where humans carry a  
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genetic variation tend to exploit a single information type  
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example, to missense changes). Here we describe Combined 
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major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
can be measured systematically across the genome assembly (see  
refs. 8–10 and below). Further, selective constraint on genetic variants 
is related to the totality of their phenotype-relevant effects rather than 
to any individual molecular or phenotypic consequence. Measures of 
deleteriousness can therefore provide, in principle, a genome-wide, 
data-rich, functionally generic and organismally relevant estimate 
of variant effect.

RESULTS
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derived allele with a frequency of at least 95% (14.9 million SNVs 
and 1.7 million indels). Nearly all of these events are fully fixed in the 
human lineage, with fewer than 5% appearing as nearly fixed poly-
morphisms in the 1000 Genomes Project14 variant catalog (derived 
allele frequency (DAF)  95%). To simulate an equivalent number of 
de novo mutations, we used an empirical model of sequence evolu-
tion with CpG dinucleotide–specific rates and mutation rates locally 
estimated on a 1-Mb scale (Supplementary Note). Mutation rate 
parameters as well as the size distribution for indels were estimated 
from six-way primate genome alignments15.

To generate annotations, we used the Ensembl Variant Effect 
Predictor16 (VEP), data from the ENCODE Project11 and informa-
tion from UCSC Genome Browser tracks17 (Supplementary Table 1).  
Annotations spanned a range of data types, including conservation 
metrics such as GERP8, phastCons9 and phyloP10; regulatory infor-
mation11 such as genomic regions of DNase I hypersensitivity18 and 
transcription factor binding19; transcript information such as dis-
tance to exon-intron boundaries or expression levels in commonly 
studied cell lines11; and protein-level scores such as those generated 
with Grantham20, SIFT7 and PolyPhen6. The resulting variant-by-
annotation matrix contained 29.4 million variants (half fixed or nearly 
fixed human-derived alleles (‘observed’) and half simulated de novo 
mutations (‘simulated’)) and 63 distinct annotations, some of which 
were composites that summarized many underlying annotations 
(Supplementary Tables 1 and 2, and Supplementary Note).

We first assessed the validity of our general approach by construct-
ing a series of univariate models that contrast observed and simulated 
variants using each of the 63 annotations as individual predictors 
(Supplementary Note). Nearly all models were highly predictive 
for distinguishing observed and simulated variants (Supplementary 
Tables 3–5) and were consistent with expectation. For example, we 
found a nearly 20-fold depletion of nonsense variants, a 2-fold deple-
tion of missense variants and no depletion of intergenic or upstream 
or downstream variants (Supplementary Table 6). Nonsense and mis-
sense mutations that occurred near the start sites of coding DNA were 
more depleted than those occurring near the ends (Supplementary 
Table 7), and variants within 20, and espe-
cially within 2, nucleotides of splice junctions 
were also depleted (Supplementary Fig. 1). 

The best-performing individual annotations were protein-level met-
rics such as PolyPhen6 and SIFT7, but these evaluated only missense 
variants (0.63% of all variants in the training data are missense; of 
these, 88% had defined PolyPhen values and 90% had defined SIFT 
values). Conservation metrics were the strongest individual genome-
wide annotations (Supplementary Table 3).

We also examined correlations between annotations 
(Supplementary Fig. 2) and the value of adding interaction terms 
between annotations (Supplementary Fig. 3). Many annotations were 
correlated, and many interactions had area under the curve (AUC) 
values above 0.5, but only a handful of interacting pairs meaningfully 
improved a simple additive model. Overall, these analyses demon-
strate that substantial biological differences are present between the 
observed and simulated variants with respect to the 63 annotations 
and that linear models capture much of this information.

We next trained a support vector machine21 (SVM) with a linear 
kernel on features derived from the 63 annotations, supplemented 
by a limited number of interaction terms (Supplementary Fig. 4, 
Supplementary Tables 1 and 2, and Supplementary Note). Ten 
models, independently trained on observed variants and different 
samples of simulated variants, were highly correlated (all pairwise 
Spearman rank correlations > 0.99; Supplementary Fig. 5). An aver-
age of these models was applied to score all 8.6 billion possible SNVs 
of the human reference genome (GRCh37). To simplify interpreta-
tion in some contexts, we also defined phred-like22 scores (scaled C 
scores) on the basis of the rank of the C score of each variant relative 
to all 8.6 billion possible SNVs, ranging from 1 to 99 (Supplementary 
Note). For example, substitutions with the highest 10% (10−1) of all 
scores—that is, those least likely to be observed human alleles under 
our model—were assigned values of 10 or greater (‘ C10’), whereas 
variants in the highest 1% (10−2), 0.1% (10−3), etc. were assigned 
scores ‘ C20’, ‘ C30’, etc.

Genome-wide properties of C scores
We first calculated the proportion of all possible substitutions with a 
given scaled C score having specific functional consequences (Fig. 1 
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Figure 1 Relationship of scaled C scores and 
categorical variant consequences. (a) Proportion 
of substitutions with a specific consequence 
for each scaled C score bin. (b) Proportion of 
substitutions with a specific consequence after 
first normalizing by the total number of variants 
observed in that category. The legend includes 
in parentheses the median and range of scaled 
C score values for each category. Consequences 
were obtained from Ensembl VEP16 
(Supplementary Note); for example, noncoding 
refers to changes in annotated noncoding 
transcripts. Detailed counts of functional 
assignments in each C score bin are provided in 
Supplementary Table 8. (c) Violin plots of the 
median C scores of potential nonsense (stop-
gain) variants for genes that harbor at least 5 
known pathogenic mutations48 (disease); are 
predicted to be essential23; harbor variants 
associated with complex traits41 (GWAS); harbor 
at least 2 loss-of-function mutations in 1000 
Genomes Project data49 (LoF); encode olfactory 
receptor proteins; or are in a random selection 
of 500 genes (other; Supplementary Note).
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derived allele with a frequency of at least 95% (14.9 million SNVs 
and 1.7 million indels). Nearly all of these events are fully fixed in the 
human lineage, with fewer than 5% appearing as nearly fixed poly-
morphisms in the 1000 Genomes Project14 variant catalog (derived 
allele frequency (DAF)  95%). To simulate an equivalent number of 
de novo mutations, we used an empirical model of sequence evolu-
tion with CpG dinucleotide–specific rates and mutation rates locally 
estimated on a 1-Mb scale (Supplementary Note). Mutation rate 
parameters as well as the size distribution for indels were estimated 
from six-way primate genome alignments15.

To generate annotations, we used the Ensembl Variant Effect 
Predictor16 (VEP), data from the ENCODE Project11 and informa-
tion from UCSC Genome Browser tracks17 (Supplementary Table 1).  
Annotations spanned a range of data types, including conservation 
metrics such as GERP8, phastCons9 and phyloP10; regulatory infor-
mation11 such as genomic regions of DNase I hypersensitivity18 and 
transcription factor binding19; transcript information such as dis-
tance to exon-intron boundaries or expression levels in commonly 
studied cell lines11; and protein-level scores such as those generated 
with Grantham20, SIFT7 and PolyPhen6. The resulting variant-by-
annotation matrix contained 29.4 million variants (half fixed or nearly 
fixed human-derived alleles (‘observed’) and half simulated de novo 
mutations (‘simulated’)) and 63 distinct annotations, some of which 
were composites that summarized many underlying annotations 
(Supplementary Tables 1 and 2, and Supplementary Note).

We first assessed the validity of our general approach by construct-
ing a series of univariate models that contrast observed and simulated 
variants using each of the 63 annotations as individual predictors 
(Supplementary Note). Nearly all models were highly predictive 
for distinguishing observed and simulated variants (Supplementary 
Tables 3–5) and were consistent with expectation. For example, we 
found a nearly 20-fold depletion of nonsense variants, a 2-fold deple-
tion of missense variants and no depletion of intergenic or upstream 
or downstream variants (Supplementary Table 6). Nonsense and mis-
sense mutations that occurred near the start sites of coding DNA were 
more depleted than those occurring near the ends (Supplementary 
Table 7), and variants within 20, and espe-
cially within 2, nucleotides of splice junctions 
were also depleted (Supplementary Fig. 1). 

The best-performing individual annotations were protein-level met-
rics such as PolyPhen6 and SIFT7, but these evaluated only missense 
variants (0.63% of all variants in the training data are missense; of 
these, 88% had defined PolyPhen values and 90% had defined SIFT 
values). Conservation metrics were the strongest individual genome-
wide annotations (Supplementary Table 3).

We also examined correlations between annotations 
(Supplementary Fig. 2) and the value of adding interaction terms 
between annotations (Supplementary Fig. 3). Many annotations were 
correlated, and many interactions had area under the curve (AUC) 
values above 0.5, but only a handful of interacting pairs meaningfully 
improved a simple additive model. Overall, these analyses demon-
strate that substantial biological differences are present between the 
observed and simulated variants with respect to the 63 annotations 
and that linear models capture much of this information.

We next trained a support vector machine21 (SVM) with a linear 
kernel on features derived from the 63 annotations, supplemented 
by a limited number of interaction terms (Supplementary Fig. 4, 
Supplementary Tables 1 and 2, and Supplementary Note). Ten 
models, independently trained on observed variants and different 
samples of simulated variants, were highly correlated (all pairwise 
Spearman rank correlations > 0.99; Supplementary Fig. 5). An aver-
age of these models was applied to score all 8.6 billion possible SNVs 
of the human reference genome (GRCh37). To simplify interpreta-
tion in some contexts, we also defined phred-like22 scores (scaled C 
scores) on the basis of the rank of the C score of each variant relative 
to all 8.6 billion possible SNVs, ranging from 1 to 99 (Supplementary 
Note). For example, substitutions with the highest 10% (10−1) of all 
scores—that is, those least likely to be observed human alleles under 
our model—were assigned values of 10 or greater (‘ C10’), whereas 
variants in the highest 1% (10−2), 0.1% (10−3), etc. were assigned 
scores ‘ C20’, ‘ C30’, etc.

Genome-wide properties of C scores
We first calculated the proportion of all possible substitutions with a 
given scaled C score having specific functional consequences (Fig. 1 
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Figure 1 Relationship of scaled C scores and 
categorical variant consequences. (a) Proportion 
of substitutions with a specific consequence 
for each scaled C score bin. (b) Proportion of 
substitutions with a specific consequence after 
first normalizing by the total number of variants 
observed in that category. The legend includes 
in parentheses the median and range of scaled 
C score values for each category. Consequences 
were obtained from Ensembl VEP16 
(Supplementary Note); for example, noncoding 
refers to changes in annotated noncoding 
transcripts. Detailed counts of functional 
assignments in each C score bin are provided in 
Supplementary Table 8. (c) Violin plots of the 
median C scores of potential nonsense (stop-
gain) variants for genes that harbor at least 5 
known pathogenic mutations48 (disease); are 
predicted to be essential23; harbor variants 
associated with complex traits41 (GWAS); harbor 
at least 2 loss-of-function mutations in 1000 
Genomes Project data49 (LoF); encode olfactory 
receptor proteins; or are in a random selection 
of 500 genes (other; Supplementary Note).
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derived allele with a frequency of at least 95% (14.9 million SNVs 
and 1.7 million indels). Nearly all of these events are fully fixed in the 
human lineage, with fewer than 5% appearing as nearly fixed poly-
morphisms in the 1000 Genomes Project14 variant catalog (derived 
allele frequency (DAF)  95%). To simulate an equivalent number of 
de novo mutations, we used an empirical model of sequence evolu-
tion with CpG dinucleotide–specific rates and mutation rates locally 
estimated on a 1-Mb scale (Supplementary Note). Mutation rate 
parameters as well as the size distribution for indels were estimated 
from six-way primate genome alignments15.

To generate annotations, we used the Ensembl Variant Effect 
Predictor16 (VEP), data from the ENCODE Project11 and informa-
tion from UCSC Genome Browser tracks17 (Supplementary Table 1).  
Annotations spanned a range of data types, including conservation 
metrics such as GERP8, phastCons9 and phyloP10; regulatory infor-
mation11 such as genomic regions of DNase I hypersensitivity18 and 
transcription factor binding19; transcript information such as dis-
tance to exon-intron boundaries or expression levels in commonly 
studied cell lines11; and protein-level scores such as those generated 
with Grantham20, SIFT7 and PolyPhen6. The resulting variant-by-
annotation matrix contained 29.4 million variants (half fixed or nearly 
fixed human-derived alleles (‘observed’) and half simulated de novo 
mutations (‘simulated’)) and 63 distinct annotations, some of which 
were composites that summarized many underlying annotations 
(Supplementary Tables 1 and 2, and Supplementary Note).

We first assessed the validity of our general approach by construct-
ing a series of univariate models that contrast observed and simulated 
variants using each of the 63 annotations as individual predictors 
(Supplementary Note). Nearly all models were highly predictive 
for distinguishing observed and simulated variants (Supplementary 
Tables 3–5) and were consistent with expectation. For example, we 
found a nearly 20-fold depletion of nonsense variants, a 2-fold deple-
tion of missense variants and no depletion of intergenic or upstream 
or downstream variants (Supplementary Table 6). Nonsense and mis-
sense mutations that occurred near the start sites of coding DNA were 
more depleted than those occurring near the ends (Supplementary 
Table 7), and variants within 20, and espe-
cially within 2, nucleotides of splice junctions 
were also depleted (Supplementary Fig. 1). 

The best-performing individual annotations were protein-level met-
rics such as PolyPhen6 and SIFT7, but these evaluated only missense 
variants (0.63% of all variants in the training data are missense; of 
these, 88% had defined PolyPhen values and 90% had defined SIFT 
values). Conservation metrics were the strongest individual genome-
wide annotations (Supplementary Table 3).

We also examined correlations between annotations 
(Supplementary Fig. 2) and the value of adding interaction terms 
between annotations (Supplementary Fig. 3). Many annotations were 
correlated, and many interactions had area under the curve (AUC) 
values above 0.5, but only a handful of interacting pairs meaningfully 
improved a simple additive model. Overall, these analyses demon-
strate that substantial biological differences are present between the 
observed and simulated variants with respect to the 63 annotations 
and that linear models capture much of this information.

We next trained a support vector machine21 (SVM) with a linear 
kernel on features derived from the 63 annotations, supplemented 
by a limited number of interaction terms (Supplementary Fig. 4, 
Supplementary Tables 1 and 2, and Supplementary Note). Ten 
models, independently trained on observed variants and different 
samples of simulated variants, were highly correlated (all pairwise 
Spearman rank correlations > 0.99; Supplementary Fig. 5). An aver-
age of these models was applied to score all 8.6 billion possible SNVs 
of the human reference genome (GRCh37). To simplify interpreta-
tion in some contexts, we also defined phred-like22 scores (scaled C 
scores) on the basis of the rank of the C score of each variant relative 
to all 8.6 billion possible SNVs, ranging from 1 to 99 (Supplementary 
Note). For example, substitutions with the highest 10% (10−1) of all 
scores—that is, those least likely to be observed human alleles under 
our model—were assigned values of 10 or greater (‘ C10’), whereas 
variants in the highest 1% (10−2), 0.1% (10−3), etc. were assigned 
scores ‘ C20’, ‘ C30’, etc.

Genome-wide properties of C scores
We first calculated the proportion of all possible substitutions with a 
given scaled C score having specific functional consequences (Fig. 1 
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categorical variant consequences. (a) Proportion 
of substitutions with a specific consequence 
for each scaled C score bin. (b) Proportion of 
substitutions with a specific consequence after 
first normalizing by the total number of variants 
observed in that category. The legend includes 
in parentheses the median and range of scaled 
C score values for each category. Consequences 
were obtained from Ensembl VEP16 
(Supplementary Note); for example, noncoding 
refers to changes in annotated noncoding 
transcripts. Detailed counts of functional 
assignments in each C score bin are provided in 
Supplementary Table 8. (c) Violin plots of the 
median C scores of potential nonsense (stop-
gain) variants for genes that harbor at least 5 
known pathogenic mutations48 (disease); are 
predicted to be essential23; harbor variants 
associated with complex traits41 (GWAS); harbor 
at least 2 loss-of-function mutations in 1000 
Genomes Project data49 (LoF); encode olfactory 
receptor proteins; or are in a random selection 
of 500 genes (other; Supplementary Note).
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derived allele with a frequency of at least 95% (14.9 million SNVs 
and 1.7 million indels). Nearly all of these events are fully fixed in the 
human lineage, with fewer than 5% appearing as nearly fixed poly-
morphisms in the 1000 Genomes Project14 variant catalog (derived 
allele frequency (DAF)  95%). To simulate an equivalent number of 
de novo mutations, we used an empirical model of sequence evolu-
tion with CpG dinucleotide–specific rates and mutation rates locally 
estimated on a 1-Mb scale (Supplementary Note). Mutation rate 
parameters as well as the size distribution for indels were estimated 
from six-way primate genome alignments15.

To generate annotations, we used the Ensembl Variant Effect 
Predictor16 (VEP), data from the ENCODE Project11 and informa-
tion from UCSC Genome Browser tracks17 (Supplementary Table 1).  
Annotations spanned a range of data types, including conservation 
metrics such as GERP8, phastCons9 and phyloP10; regulatory infor-
mation11 such as genomic regions of DNase I hypersensitivity18 and 
transcription factor binding19; transcript information such as dis-
tance to exon-intron boundaries or expression levels in commonly 
studied cell lines11; and protein-level scores such as those generated 
with Grantham20, SIFT7 and PolyPhen6. The resulting variant-by-
annotation matrix contained 29.4 million variants (half fixed or nearly 
fixed human-derived alleles (‘observed’) and half simulated de novo 
mutations (‘simulated’)) and 63 distinct annotations, some of which 
were composites that summarized many underlying annotations 
(Supplementary Tables 1 and 2, and Supplementary Note).

We first assessed the validity of our general approach by construct-
ing a series of univariate models that contrast observed and simulated 
variants using each of the 63 annotations as individual predictors 
(Supplementary Note). Nearly all models were highly predictive 
for distinguishing observed and simulated variants (Supplementary 
Tables 3–5) and were consistent with expectation. For example, we 
found a nearly 20-fold depletion of nonsense variants, a 2-fold deple-
tion of missense variants and no depletion of intergenic or upstream 
or downstream variants (Supplementary Table 6). Nonsense and mis-
sense mutations that occurred near the start sites of coding DNA were 
more depleted than those occurring near the ends (Supplementary 
Table 7), and variants within 20, and espe-
cially within 2, nucleotides of splice junctions 
were also depleted (Supplementary Fig. 1). 

The best-performing individual annotations were protein-level met-
rics such as PolyPhen6 and SIFT7, but these evaluated only missense 
variants (0.63% of all variants in the training data are missense; of 
these, 88% had defined PolyPhen values and 90% had defined SIFT 
values). Conservation metrics were the strongest individual genome-
wide annotations (Supplementary Table 3).

We also examined correlations between annotations 
(Supplementary Fig. 2) and the value of adding interaction terms 
between annotations (Supplementary Fig. 3). Many annotations were 
correlated, and many interactions had area under the curve (AUC) 
values above 0.5, but only a handful of interacting pairs meaningfully 
improved a simple additive model. Overall, these analyses demon-
strate that substantial biological differences are present between the 
observed and simulated variants with respect to the 63 annotations 
and that linear models capture much of this information.

We next trained a support vector machine21 (SVM) with a linear 
kernel on features derived from the 63 annotations, supplemented 
by a limited number of interaction terms (Supplementary Fig. 4, 
Supplementary Tables 1 and 2, and Supplementary Note). Ten 
models, independently trained on observed variants and different 
samples of simulated variants, were highly correlated (all pairwise 
Spearman rank correlations > 0.99; Supplementary Fig. 5). An aver-
age of these models was applied to score all 8.6 billion possible SNVs 
of the human reference genome (GRCh37). To simplify interpreta-
tion in some contexts, we also defined phred-like22 scores (scaled C 
scores) on the basis of the rank of the C score of each variant relative 
to all 8.6 billion possible SNVs, ranging from 1 to 99 (Supplementary 
Note). For example, substitutions with the highest 10% (10−1) of all 
scores—that is, those least likely to be observed human alleles under 
our model—were assigned values of 10 or greater (‘ C10’), whereas 
variants in the highest 1% (10−2), 0.1% (10−3), etc. were assigned 
scores ‘ C20’, ‘ C30’, etc.

Genome-wide properties of C scores
We first calculated the proportion of all possible substitutions with a 
given scaled C score having specific functional consequences (Fig. 1 
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Figure 1 Relationship of scaled C scores and 
categorical variant consequences. (a) Proportion 
of substitutions with a specific consequence 
for each scaled C score bin. (b) Proportion of 
substitutions with a specific consequence after 
first normalizing by the total number of variants 
observed in that category. The legend includes 
in parentheses the median and range of scaled 
C score values for each category. Consequences 
were obtained from Ensembl VEP16 
(Supplementary Note); for example, noncoding 
refers to changes in annotated noncoding 
transcripts. Detailed counts of functional 
assignments in each C score bin are provided in 
Supplementary Table 8. (c) Violin plots of the 
median C scores of potential nonsense (stop-
gain) variants for genes that harbor at least 5 
known pathogenic mutations48 (disease); are 
predicted to be essential23; harbor variants 
associated with complex traits41 (GWAS); harbor 
at least 2 loss-of-function mutations in 1000 
Genomes Project data49 (LoF); encode olfactory 
receptor proteins; or are in a random selection 
of 500 genes (other; Supplementary Note). 50
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Current methods for annotating and interpreting human 
genetic variation tend to exploit a single information type  
(for example, conservation) and/or are restricted in scope (for 
example, to missense changes). Here we describe Combined 
Annotation–Dependent Depletion (CADD), a method for 
objectively integrating many diverse annotations into a single 
measure (C score) for each variant. We implement CADD as  
a support vector machine trained to differentiate  
14.7 million high-frequency human-derived alleles from  
14.7 million simulated variants. We precompute C scores 
for all 8.6 billion possible human single-nucleotide variants 
and enable scoring of short insertions-deletions. C scores 
correlate with allelic diversity, annotations of functionality, 
pathogenicity, disease severity, experimentally measured 
regulatory effects and complex trait associations, and they 
highly rank known pathogenic variants within individual 
genomes. The ability of CADD to prioritize functional, 
deleterious and pathogenic variants across many functional 
categories, effect sizes and genetic architectures is unmatched 
by any current single-annotation method.

A strength of genomic approaches in studying disease is the ability 
to replace informed but biased hypotheses with unbiased but generic 
ones, such as the equal treatment of all genetic variants in genome-
wide association studies (GWAS). However, for both rare variants 
of large effect and common variants of weak effect, the use of prior 
knowledge can be critical for disease gene discovery1–4. For example, 
exome sequencing is an effective discovery strategy because it focuses 
on protein-altering variation, which is enriched for causal effects5.

Although many existing annotation methods are useful for  
prioritizing causal variants to boost discovery power (for example, 
PolyPhen6, SIFT7 and GERP8), current approaches tend to suffer from 
one or more of four major limitations. First, annotation methods vary 
widely with respect to both inputs and outputs. For example, conser-
vation metrics8–10 are defined across the genome but do not use func-
tional information and are not allele specific, whereas protein-based 
metrics6,7 apply only to coding and often only to missense variants, 
thereby excluding >99% of human genetic variation. Second, each 
annotation method has its own metric, and these metrics are rarely 

comparable, making it difficult to evaluate the relative importance  
of distinct variant categories or annotations. Third, annotation  
methods trained on known pathogenic mutations are subject to major 
ascertainment biases and may not be generalizable. Fourth, it is a 
major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
can be measured systematically across the genome assembly (see  
refs. 8–10 and below). Further, selective constraint on genetic variants 
is related to the totality of their phenotype-relevant effects rather than 
to any individual molecular or phenotypic consequence. Measures of 
deleteriousness can therefore provide, in principle, a genome-wide, 
data-rich, functionally generic and organismally relevant estimate 
of variant effect.

RESULTS
Implementation of CADD
We identified differences between human genomes and the inferred 
human-chimpanzee ancestral genome13 where humans carry a  
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Current methods for annotating and interpreting human 
genetic variation tend to exploit a single information type  
(for example, conservation) and/or are restricted in scope (for 
example, to missense changes). Here we describe Combined 
Annotation–Dependent Depletion (CADD), a method for 
objectively integrating many diverse annotations into a single 
measure (C score) for each variant. We implement CADD as  
a support vector machine trained to differentiate  
14.7 million high-frequency human-derived alleles from  
14.7 million simulated variants. We precompute C scores 
for all 8.6 billion possible human single-nucleotide variants 
and enable scoring of short insertions-deletions. C scores 
correlate with allelic diversity, annotations of functionality, 
pathogenicity, disease severity, experimentally measured 
regulatory effects and complex trait associations, and they 
highly rank known pathogenic variants within individual 
genomes. The ability of CADD to prioritize functional, 
deleterious and pathogenic variants across many functional 
categories, effect sizes and genetic architectures is unmatched 
by any current single-annotation method.

A strength of genomic approaches in studying disease is the ability 
to replace informed but biased hypotheses with unbiased but generic 
ones, such as the equal treatment of all genetic variants in genome-
wide association studies (GWAS). However, for both rare variants 
of large effect and common variants of weak effect, the use of prior 
knowledge can be critical for disease gene discovery1–4. For example, 
exome sequencing is an effective discovery strategy because it focuses 
on protein-altering variation, which is enriched for causal effects5.

Although many existing annotation methods are useful for  
prioritizing causal variants to boost discovery power (for example, 
PolyPhen6, SIFT7 and GERP8), current approaches tend to suffer from 
one or more of four major limitations. First, annotation methods vary 
widely with respect to both inputs and outputs. For example, conser-
vation metrics8–10 are defined across the genome but do not use func-
tional information and are not allele specific, whereas protein-based 
metrics6,7 apply only to coding and often only to missense variants, 
thereby excluding >99% of human genetic variation. Second, each 
annotation method has its own metric, and these metrics are rarely 

comparable, making it difficult to evaluate the relative importance  
of distinct variant categories or annotations. Third, annotation  
methods trained on known pathogenic mutations are subject to major 
ascertainment biases and may not be generalizable. Fourth, it is a 
major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
can be measured systematically across the genome assembly (see  
refs. 8–10 and below). Further, selective constraint on genetic variants 
is related to the totality of their phenotype-relevant effects rather than 
to any individual molecular or phenotypic consequence. Measures of 
deleteriousness can therefore provide, in principle, a genome-wide, 
data-rich, functionally generic and organismally relevant estimate 
of variant effect.

RESULTS
Implementation of CADD
We identified differences between human genomes and the inferred 
human-chimpanzee ancestral genome13 where humans carry a  
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and Supplementary Table 8). Although trained solely on differences 
between observed and simulated variants rather than on sets of known 
disease-causing variants that might introduce ascertainment bias,  
C scores were highest for potential nonsense variants (median of 37) 
and were next highest for missense and canonical splice-site variants 
(median of 15), whereas intergenic variants comprised the variants with 
the lowest C scores (median of 2). However, 76% of potential SNVs 
with C score of 20 were noncoding (falling into categories other than 
missense, nonsense, canonical splice site or stop loss), whereas 74% of 
potential missense and 18% of potential nonsense SNVs had C scores 
<20. Further, within each functional class, there were distinctions that 
are biologically relevant and are likely predictively useful. For example, 
potential nonsense variants—often treated as a homogeneous group in 
disease studies—in olfactory receptor genes had lower scores than vari-
ants in other genes, whereas potential nonsense variants in genes found 
previously to be essential23 had higher scores (Fig. 1, bottom, and 
Supplementary Fig. 6). C scores thus capture a considerable amount of 
information, both in comparisons of functional categories and analysis 
within specific functional categories. Of note, these distinctions were 
absent or muted with other measures, either owing to missingness (for 
example, for missense-only measures) or lack of functional awareness 
(for example, conservation measures cannot distinguish between a 
nonsense and a missense allele at a given position).

We next compared scaled C scores with levels of genetic diversity, 
finding that C scores were negatively correlated with the DAFs of vari-
ants listed by the 1000 Genomes Project14 or the Exome Sequencing 
Project24 (ESP) (Fig. 2a and Supplementary Figs. 7–9), depletion 
of human genetic variation from the 1000 Genomes Project catalog 
(Fig. 2b) and depletion of chimpanzee-derived variants (Fig. 2c). 
Notably, these validation data sets had minimal overlap with the 
observed subset for the training data, which consisted only of fixed 
or nearly fixed (DAF > 95%) human-derived alleles. Furthermore, 
although we could not fully eliminate confounding by these factors, 
the negative correlation between C scores and DAFs for standing 
variation was robust to controlling for variation in background selec-
tion, local GC content, local CpG density and site-based conservation 
(Supplementary Fig. 9).

C scores of functional or pathogenic variants
We next sought to assess the usefulness of CADD in prioritizing func-
tional and disease-relevant variation within five distinct contexts.

First, for KMT2D (MLL2), the gene mutated in Kabuki  
syndrome, C scores enabled the discrimination of a diverse set of 
disease-associated alleles25 from rare, likely benign variants listed in 
ESP24 (Wilcoxon rank-sum test P = 9.9 × 10−94; n = 210 disease asso-
ciated/679 likely benign). Other metrics were markedly inferior in 
terms of accuracy or comprehensiveness (Supplementary Fig. 10).

Second, for HBB, the gene mutated in -thalassemia, C scores of  
disease-associated alleles26—a set of indels (n = 93) and SNVs (n = 119)  
with regulatory/upstream (n = 54), splicing (n = 37), missense (n = 22),  
nonsense (n = 18) and other effects—were significantly and more 
strongly correlated with 3 levels of phenotypic severity than other 
measures (Kruskal-Wallis rank-sum test P = 2.4 × 10−7; n = 48 mild/65 
intermediate/99 severe; Supplementary Fig. 11).

Third, pathogenic variants curated by the US National Institutes 
of Health (NIH) ClinVar database27 were well separated from likely 
benign alleles (ESP24 DAF  5%) matched to the same categorical con-
sequences (Wilcoxon rank-sum test P < 1 × 10−300, n = 8,174 patho-
genic/8,174 likely benign; Fig. 3 and Supplementary Figs. 12–16). 
We note that there was substantial overlap between ClinVar and the 
training data underlying PolyPhen. When the corresponding sites 
were excluded from the test data set or when PolyPhen was excluded 
as a training feature from CADD, C scores continued to outperform 
all or nearly all missense-only metrics and conservation measures 
(Supplementary Fig. 12).

Fourth, C scores strongly correlated with the number of 
observed somatic cancer mutations in TP53 (encoding p53) 
reported to the International Agency for Research on Cancer 
(IARC) (Spearman rank correlation = 0.38, P = 6 × 10−73, n = 2,068;  
Supplementary Note).

Fifth, we examined two enhancers28 and one promoter29 in which 
we previously performed saturation mutagenesis. C scores were  
significantly correlated with experimentally measured fold change in 
absolute expression from individual variants and were overall more 
significantly correlated than measures of sequence conservation 
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Figure 2 Relationship between scaled C scores 
and genetic variation. (a) Mean DAF by scaled  
C score for variants listed by the 1000 Genomes 
Project14 or ESP24. Dashed lines indicate mean 
DAF values, and confidence intervals indicate 
1.96 × s.e.m. for DAFs in each bin. (b) Under-
representation of polymorphic sites in 1000 
Genomes Project data. (c) Under-representation 
of chimpanzee lineage–derived variants. Under-
representation is defined as the proportion of 
1000 Genomes Project (b) or chimpanzee-
derived (c) variants in a specific scaled C score 
bin divided by the frequency with which that 
scaled C score is observed for all possible 
mutations of the human reference assembly  
(10C score/−10). The stronger under-representation 
of chimpanzee-derived variants relative to 1000 
Genomes Project variants is expected given that 
the former are mostly fixed or high-frequency 
variants (and have survived many generations of 
purifying selection), whereas the latter are mostly 
low-frequency variants. Depletion values in b,c 
for C score bins other than 0 are significantly 
different from expectation (binomial proportion 
test, all P < 1 × 10−11).
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and Supplementary Table 8). Although trained solely on differences 
between observed and simulated variants rather than on sets of known 
disease-causing variants that might introduce ascertainment bias,  
C scores were highest for potential nonsense variants (median of 37) 
and were next highest for missense and canonical splice-site variants 
(median of 15), whereas intergenic variants comprised the variants with 
the lowest C scores (median of 2). However, 76% of potential SNVs 
with C score of 20 were noncoding (falling into categories other than 
missense, nonsense, canonical splice site or stop loss), whereas 74% of 
potential missense and 18% of potential nonsense SNVs had C scores 
<20. Further, within each functional class, there were distinctions that 
are biologically relevant and are likely predictively useful. For example, 
potential nonsense variants—often treated as a homogeneous group in 
disease studies—in olfactory receptor genes had lower scores than vari-
ants in other genes, whereas potential nonsense variants in genes found 
previously to be essential23 had higher scores (Fig. 1, bottom, and 
Supplementary Fig. 6). C scores thus capture a considerable amount of 
information, both in comparisons of functional categories and analysis 
within specific functional categories. Of note, these distinctions were 
absent or muted with other measures, either owing to missingness (for 
example, for missense-only measures) or lack of functional awareness 
(for example, conservation measures cannot distinguish between a 
nonsense and a missense allele at a given position).

We next compared scaled C scores with levels of genetic diversity, 
finding that C scores were negatively correlated with the DAFs of vari-
ants listed by the 1000 Genomes Project14 or the Exome Sequencing 
Project24 (ESP) (Fig. 2a and Supplementary Figs. 7–9), depletion 
of human genetic variation from the 1000 Genomes Project catalog 
(Fig. 2b) and depletion of chimpanzee-derived variants (Fig. 2c). 
Notably, these validation data sets had minimal overlap with the 
observed subset for the training data, which consisted only of fixed 
or nearly fixed (DAF > 95%) human-derived alleles. Furthermore, 
although we could not fully eliminate confounding by these factors, 
the negative correlation between C scores and DAFs for standing 
variation was robust to controlling for variation in background selec-
tion, local GC content, local CpG density and site-based conservation 
(Supplementary Fig. 9).

C scores of functional or pathogenic variants
We next sought to assess the usefulness of CADD in prioritizing func-
tional and disease-relevant variation within five distinct contexts.

First, for KMT2D (MLL2), the gene mutated in Kabuki  
syndrome, C scores enabled the discrimination of a diverse set of 
disease-associated alleles25 from rare, likely benign variants listed in 
ESP24 (Wilcoxon rank-sum test P = 9.9 × 10−94; n = 210 disease asso-
ciated/679 likely benign). Other metrics were markedly inferior in 
terms of accuracy or comprehensiveness (Supplementary Fig. 10).

Second, for HBB, the gene mutated in -thalassemia, C scores of  
disease-associated alleles26—a set of indels (n = 93) and SNVs (n = 119)  
with regulatory/upstream (n = 54), splicing (n = 37), missense (n = 22),  
nonsense (n = 18) and other effects—were significantly and more 
strongly correlated with 3 levels of phenotypic severity than other 
measures (Kruskal-Wallis rank-sum test P = 2.4 × 10−7; n = 48 mild/65 
intermediate/99 severe; Supplementary Fig. 11).

Third, pathogenic variants curated by the US National Institutes 
of Health (NIH) ClinVar database27 were well separated from likely 
benign alleles (ESP24 DAF  5%) matched to the same categorical con-
sequences (Wilcoxon rank-sum test P < 1 × 10−300, n = 8,174 patho-
genic/8,174 likely benign; Fig. 3 and Supplementary Figs. 12–16). 
We note that there was substantial overlap between ClinVar and the 
training data underlying PolyPhen. When the corresponding sites 
were excluded from the test data set or when PolyPhen was excluded 
as a training feature from CADD, C scores continued to outperform 
all or nearly all missense-only metrics and conservation measures 
(Supplementary Fig. 12).

Fourth, C scores strongly correlated with the number of 
observed somatic cancer mutations in TP53 (encoding p53) 
reported to the International Agency for Research on Cancer 
(IARC) (Spearman rank correlation = 0.38, P = 6 × 10−73, n = 2,068;  
Supplementary Note).

Fifth, we examined two enhancers28 and one promoter29 in which 
we previously performed saturation mutagenesis. C scores were  
significantly correlated with experimentally measured fold change in 
absolute expression from individual variants and were overall more 
significantly correlated than measures of sequence conservation 
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Figure 2 Relationship between scaled C scores 
and genetic variation. (a) Mean DAF by scaled  
C score for variants listed by the 1000 Genomes 
Project14 or ESP24. Dashed lines indicate mean 
DAF values, and confidence intervals indicate 
1.96 × s.e.m. for DAFs in each bin. (b) Under-
representation of polymorphic sites in 1000 
Genomes Project data. (c) Under-representation 
of chimpanzee lineage–derived variants. Under-
representation is defined as the proportion of 
1000 Genomes Project (b) or chimpanzee-
derived (c) variants in a specific scaled C score 
bin divided by the frequency with which that 
scaled C score is observed for all possible 
mutations of the human reference assembly  
(10C score/−10). The stronger under-representation 
of chimpanzee-derived variants relative to 1000 
Genomes Project variants is expected given that 
the former are mostly fixed or high-frequency 
variants (and have survived many generations of 
purifying selection), whereas the latter are mostly 
low-frequency variants. Depletion values in b,c 
for C score bins other than 0 are significantly 
different from expectation (binomial proportion 
test, all P < 1 × 10−11).
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• A computational approach for estimating the probability 
that a point mutation at each nucleotide position in a 
genome will have a fitness consequence (fitCons). 

• Scores can be interpreted as an evolution-based measure 
of potential genomic function. 

• fitCons scores for three human cell types based on publicly 
available genomic data and made them available as UCSC 
Genome Browser tracks.
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We describe a new computational method for estimating the 
probability that a point mutation at each position in a genome 
will influence fitness. These ‘fitness consequence’ (fitCons) 
scores serve as evolution-based measures of potential genomic 
function. Our approach is to cluster genomic positions 
into groups exhibiting distinct ‘fingerprints’ on the basis of 
high-throughput functional genomic data, then to estimate 
a probability of fitness consequences for each group from 
associated patterns of genetic polymorphism and divergence. 
We have generated fitCons scores for three human cell types 
on the basis of public data from ENCODE. In comparison 
with conventional conservation scores, fitCons scores show 
considerably improved prediction power for cis regulatory 
elements. In addition, fitCons scores indicate that 4.2–7.5% 
of nucleotides in the human genome have influenced fitness 
since the human-chimpanzee divergence, and they suggest that 
recent evolutionary turnover has had limited impact on the 
functional content of the genome.

During the past decade, two major developments—the emergence of 
massively parallel, ultra-cheap DNA sequencing technologies and the 
use of these technologies as digital readouts for functional genomic 
assays—have led to a profusion of data describing various features of 
genomes, epigenomes and transcriptomes1,2. However, investigators 
still have only rudimentary tools for integrating these diverse sources 
of information to obtain useful insights about genomic function and 
evolution. The limitations of current methods are particularly evident 
in the vast noncoding regions of eukaryotic genomes, which, despite 
recent progress3–6, remain poorly annotated and understood. These 
limitations hamper progress in many areas, including molecular 
genetics, disease association and personalized medicine7.

Many computational methods for the functional analysis of 
sequence data are based on the simple but profound observation that 
functionally important nucleotides tend to remain unchanged over 
evolutionary time because mutations at these sites generally reduce 
fitness and are therefore eliminated by natural selection7–15. A major 
strength of these conservation- or constraint-based approaches is that 
they sidestep thorny questions about the relationship between the out-
comes of biochemical experiments and fitness-influencing functional  

roles16–19 by getting at fitness directly through observations of evo-
lutionary change. In essence, the ‘experiment’ considered by these 
methods is the one conducted directly on genomes by nature over 
millennia, and the outcomes of interest are the presence or absence 
of fixed mutations.

These conservation-based methods, however, depend critically on 
the assumption that genomic elements are present at orthologous 
locations and maintain similar functional roles over relatively long 
evolutionary time periods. Evolutionary turnover may cause incon-
sistencies between sequence orthology and functional homology that 
substantially limit this type of analysis. Consequently, investigators 
have developed two major alternative strategies for the identification 
and characterization of functional elements. The first strategy is to 
augment information about interspecies conservation with informa-
tion about genetic polymorphism20–28. The shorter evolutionary time 
scales associated with intraspecies variation make this approach more 
robust to evolutionary turnover and less sensitive to errors in align-
ment and orthology detection. Polymorphic sites tend to be sparse 
along the genome, however, so this approach requires some type 
of pooling of information across genomic positions, which can be 
problematic in the absence of high-quality genomic annotations. The 
second strategy is to forgo the use of evolutionary information and to 
instead predict functional roles from genomic data alone, typically 
with machine learning methods for supervised classification29,30 or 
clustering followed by labeling based on known examples31–33. This 
approach has the limitation that it depends strongly on previously 
characterized elements, which in noncoding regions are typically few 
and perhaps unrepresentative of the genome.

In this report, we introduce a method for genomic analysis that 
combines many of the strengths of these polymorphism-based and 
functional genomic approaches. Like functional genomic methods, 
our approach groups genomic regions according to functional genomic 
fingerprints across multiple assays. Instead of relying on known  
examples for classification, however, we characterize each group by a 
probability of mutational fitness consequences—or fitCons score—
inferred from patterns of genetic variation. These fitCons scores 
are estimated using a recently developed statistical method, called 
Inference of Natural Selection from Interspersed Genomically Coherent 
Elements (INSIGHT), that contrasts patterns of polymorphism  
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• Like conventional evolutionary conservation scores, fitCons 
scores are clearly elevated in known coding and noncoding 
functional elements, but they show considerably better sensitivity 
than conservation scores for many noncoding elements.  

• They perform exceptionally well in distinguishing ChIP-seq-
supported transcription factor binding sites, expression 
quantitative trait loci, and predicted enhancers from putatively 
nonfunctional sequences.  

• The fitCons scores indicate that 4.2-7.5% of nucleotide positions 
in the human genome have influenced fitness since the human-
chimpanzee divergence.
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characterized elements, which in noncoding regions are typically few 
and perhaps unrepresentative of the genome.

In this report, we introduce a method for genomic analysis that 
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Figure 1: Illustration of procedure for calculating fitCons scores. (A) Functional genomic data, such as DNase-seq,
RNA-seq and histone modification data, are arranged along the genome sequence in tracks. (B) Nucleotide positions
in the genome are clustered by joint patterns across these functional genomic tracks. (C) For each cluster, patterns of
polymorphism and divergence are analyzed using INSIGHT [43] to obtain an estimate of the fraction of nucleotides
under natural selection (⇢) in that cluster. This quantity is interpreted as a probability that each nucleotide position
influences the fitness of the organism that carries it, or a fitness consequence (fitCons) score. (D) The fitCons score for
each cluster is assigned to all genomic positions that were included in the cluster. In this way, all nucleotide positions
are assigned a score, but there can be no more distinct scores than there are clusters. Note that, in our initial work,
the clustering is of genomic positions is accomplished by a simple exhaustive partitioning scheme that produces 624
distinct clusters. In future work, however, it may be desirable to iterate between clustering and calculating scores
(dashed line).
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• fitCons will likely be one of the 
most popular tools for genome-
wide functional predictions. 

• In humans…
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methods is the one conducted directly on genomes by nature over 
millennia, and the outcomes of interest are the presence or absence 
of fixed mutations.
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evolutionary time periods. Evolutionary turnover may cause incon-
sistencies between sequence orthology and functional homology that 
substantially limit this type of analysis. Consequently, investigators 
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ment and orthology detection. Polymorphic sites tend to be sparse 
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instead predict functional roles from genomic data alone, typically 
with machine learning methods for supervised classification29,30 or 
clustering followed by labeling based on known examples31–33. This 
approach has the limitation that it depends strongly on previously 
characterized elements, which in noncoding regions are typically few 
and perhaps unrepresentative of the genome.

In this report, we introduce a method for genomic analysis that 
combines many of the strengths of these polymorphism-based and 
functional genomic approaches. Like functional genomic methods, 
our approach groups genomic regions according to functional genomic 
fingerprints across multiple assays. Instead of relying on known  
examples for classification, however, we characterize each group by a 
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along the genome, however, so this approach requires some type 
of pooling of information across genomic positions, which can be 
problematic in the absence of high-quality genomic annotations. The 
second strategy is to forgo the use of evolutionary information and to 
instead predict functional roles from genomic data alone, typically 
with machine learning methods for supervised classification29,30 or 
clustering followed by labeling based on known examples31–33. This 
approach has the limitation that it depends strongly on previously 
characterized elements, which in noncoding regions are typically few 
and perhaps unrepresentative of the genome.

In this report, we introduce a method for genomic analysis that 
combines many of the strengths of these polymorphism-based and 
functional genomic approaches. Like functional genomic methods, 
our approach groups genomic regions according to functional genomic 
fingerprints across multiple assays. Instead of relying on known  
examples for classification, however, we characterize each group by a 
probability of mutational fitness consequences—or fitCons score—
inferred from patterns of genetic variation. These fitCons scores 
are estimated using a recently developed statistical method, called 
Inference of Natural Selection from Interspersed Genomically Coherent 
Elements (INSIGHT), that contrasts patterns of polymorphism  
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We describe a new computational method for estimating the 
probability that a point mutation at each position in a genome 
will influence fitness. These ‘fitness consequence’ (fitCons) 
scores serve as evolution-based measures of potential genomic 
function. Our approach is to cluster genomic positions 
into groups exhibiting distinct ‘fingerprints’ on the basis of 
high-throughput functional genomic data, then to estimate 
a probability of fitness consequences for each group from 
associated patterns of genetic polymorphism and divergence. 
We have generated fitCons scores for three human cell types 
on the basis of public data from ENCODE. In comparison 
with conventional conservation scores, fitCons scores show 
considerably improved prediction power for cis regulatory 
elements. In addition, fitCons scores indicate that 4.2–7.5% 
of nucleotides in the human genome have influenced fitness 
since the human-chimpanzee divergence, and they suggest that 
recent evolutionary turnover has had limited impact on the 
functional content of the genome.

During the past decade, two major developments—the emergence of 
massively parallel, ultra-cheap DNA sequencing technologies and the 
use of these technologies as digital readouts for functional genomic 
assays—have led to a profusion of data describing various features of 
genomes, epigenomes and transcriptomes1,2. However, investigators 
still have only rudimentary tools for integrating these diverse sources 
of information to obtain useful insights about genomic function and 
evolution. The limitations of current methods are particularly evident 
in the vast noncoding regions of eukaryotic genomes, which, despite 
recent progress3–6, remain poorly annotated and understood. These 
limitations hamper progress in many areas, including molecular 
genetics, disease association and personalized medicine7.

Many computational methods for the functional analysis of 
sequence data are based on the simple but profound observation that 
functionally important nucleotides tend to remain unchanged over 
evolutionary time because mutations at these sites generally reduce 
fitness and are therefore eliminated by natural selection7–15. A major 
strength of these conservation- or constraint-based approaches is that 
they sidestep thorny questions about the relationship between the out-
comes of biochemical experiments and fitness-influencing functional  

roles16–19 by getting at fitness directly through observations of evo-
lutionary change. In essence, the ‘experiment’ considered by these 
methods is the one conducted directly on genomes by nature over 
millennia, and the outcomes of interest are the presence or absence 
of fixed mutations.

These conservation-based methods, however, depend critically on 
the assumption that genomic elements are present at orthologous 
locations and maintain similar functional roles over relatively long 
evolutionary time periods. Evolutionary turnover may cause incon-
sistencies between sequence orthology and functional homology that 
substantially limit this type of analysis. Consequently, investigators 
have developed two major alternative strategies for the identification 
and characterization of functional elements. The first strategy is to 
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Annotation-Dependent Depletion (CADD)35, that estimates the  
relative levels of pathogenicity of potential human variants using a 
support vector machine (SVM), many different genomic annotations 
and simulations of nucleotide divergence rates. Where appropriate, 
we also considered RegulomeDB, a scoring system for the regula-
tory potential of variant sites based on combined experimental and 
computational data36, and EnhancerFinder, a kernel-based predic-
tor for developmental enhancers based on multiple data types37. 
We evaluated the performance of these methods in predicting 
three types of functional elements that have putative roles in tran-
scriptional regulation on the basis of different data sets: (i) binding  
sites for various transcription factors supported by ChIP-seq data 
from the Encyclopedia of DNA Elements (ENCODE) Project3,28;  
(ii) high-resolution expression quantitative trait loci (eQTLs)  

capturing complex, non-additive relationships among covariates. For 
example, the scores outside of CDSs increase with marginal DNase-
seq (Fig. 4a) and RNA-seq (Fig. 4b) signals, as expected; yet, a closer 
examination shows that the scores actually decrease with DNase-
seq intensity in the presence of high RNA-seq intensity, owing to an 
implicit partitioning of 5  and 3  UTRs by DNase-seq data (Fig. 4c). 
This example demonstrates that our exhaustive partitioning scheme 
allows the method to capture unanticipated relationships between 
functional genomic covariates and natural selection.

Predictive power for cis regulatory loci 
We evaluated the predictive power of fitCons scores for known cell 
type–specific regulatory elements in comparison with three widely 
used phylogenetic conservation scoring methods, the phastCons12, 
phyloP15 and Genomic Evolutionary Rate Profiling (GERP)13  
programs. In addition, we considered a new program, called Combined 
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Figure 3 Genome browser display showing functional genomic fingerprints and fitCons scores. Shown, from top to bottom, are the exons of the MIER2 
gene; the raw RNA-seq and DNase-seq signals; the 4 discretized tracks used to define the 624 functional genomic fingerprints, including annotation-
based CDSs, RNA-seq signal, DNase-seq signal and chromatin modifications; the fitCons scores based on those fingerprints (dark blue, with lighter 
blues less statistically significant); and, for comparison, phyloP-based conservation scores for mammals. (a) An apparent enhancer, marked by a 
combination of enhancer-associated chromatin modifications and a strong DNase-seq signal, displays elevated fitCons scores but no elevation in 
conservation scores. Many regulatory elements display such a pattern, either because they have arisen recently in evolutionary time or because errors 
in orthology detection or alignment result in spuriously low conservation scores. Here a ChIP-seq–supported transcription factor binding site for AP-1 
(red arrow) and a lung cancer–associated SNP (green arrow) are highlighted. (b) CDS exons show elevated scores according to both fitCons and phyloP. 
(c) The 3  UTR, marked by transcription-associated chromatin modifications, a high RNA-seq signal and an absence of DNase I hypersensitivity or CDS 
annotations, displays moderately elevated fitCons scores and patches of evolutionary conservation. fitCons scores are fairly well correlated with phyloP 
conservation scores15 across the genome, with some notable exceptions in noncoding regions (Supplementary Fig. 1). Browser tracks are publicly 
available on the Cold Spring Harbor Laboratory mirror of the UCSC Genome Browser (hg19 assembly).
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Figure 4 Average fitCons scores as a function of DNase-seq and RNA-
seq intensity. Results represent averages across all non-CDS clusters 
having the marginal or joint property of interest. Error bars represent 
standard errors of the aggregated scores (Online Methods). (a) fitCons 
scores increase with DNase-seq intensity, probably owing to an increasing 
density of cis regulatory elements: 0, no DNase-seq signal; 1, broad 
peaks; 2, narrow peaks. (b) fitCons scores increase with RNA-seq 
intensity: 0, no RNA-seq reads; 1–3, weak to strong RNA-seq signal 
(Online Methods). (c) fitCons scores behave in a non-additive manner as 
joint combinations of DNase-seq and RNA-seq intensity are considered. 
In particular, at medium to high RNA-seq read depth (classes 2 and 3), 
fitCons scores decrease (rather than increase) with increasing DNase-seq 
signal. This unexpected pattern is explained by enrichment for DNase I 
hypersensitivity near the 5  ends of genes. Conditional on a high RNA-seq 
signal, a high DNase-seq signal tends to be associated with the 5  UTRs 
and upstream regions of genes, which are under fairly weak selection, 
whereas a low DNase-seq signal is associated with 3  UTRs, which are 
under stronger selection. Each bar in a summarizes 104 clusters, each bar 
in b summarizes 78 clusters and each bar in c summarizes 26 clusters.


