Influence of CTF on image
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Spherical aberration: Cs
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Figure 2.13 The effect of spherical aberration. Rays passing through the outer zones of the lens
(far from the axis) are refracted more strongly than those paraxial rays passing close to the axis.

These outer rays meet the axis before the Gaussian image plane, and meet that plane a distance
Ar: from the axis. Spherical aberration (or aperture defect) is the most important defect affecting

the quality of high-resolution images.

From John Spence: High-resolution electron microscopy



Chromatic aberration: C.

Gaussian
LI image

Figure 2.14 The effect of chromatic aberration. The faster electrons which have been accelerated
through a potential V + AV are less strongly refracted than lower-energy electrons accelerated

through a potential V. These higher-energy electrons are thus brought to a focus beyond the
Gaussian image plane, which they pass at a distance r; from the axis.

From John Spence: High-resolution electron microscopy



Astigmatism

P
P
S
\,.
(Y
NS

: P’

(/)

Figure 2.15 Astigmatism. The focal length of the lens depends on the azimuthal angle «a of a ray
leaving the object. These rays are in a plane containing the optic axis. Planes at right angles for
the maximum and minimum focal length are shown, with a mean focus f. The difference between
the maximum and minimum focus is the astigmatism constant Cj.

From John Spence: High-resolution electron microscopy
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“You just look at the thing!”

Richard Feynman: There’s plenty of room at the bottom
(December 29, 1959, lecture to American Physical Society):

“It is very easy to answer many of these fundamental biological questions: you just look at the thing!”

“Unfortunately, the present microscope sees at a scale which is just a bit too crude. Make the
microscope one hundred times more powerful, and many problems of biology would be made very
much easier.”

“... the biologists would surely be very thankful to you”



Reconstructing 3D object from 2D projection images
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Molecular electron microscopy of
biological sample

Strong electron scattering power means two things:
1 high vacuum of microscope column;
2 strong scattering with protein sample;

Problems:
1 dehydration of biological sample;
2 radiation damage by high energy beam,;



Molecular electron microscopy of biological sample

Strong scattering by high-energy electrons imposes two challenges to biological samples:
- dehydration caused by high vacuum within electron microscope column destroys biological samples;
- severe radiation damage caused by high-energy electron beam destroys biological samples;

* Shadow casting (Williams & Wycoff, 1945);
* Positive staining (Pease & Baker, 1948);
* Glass knives for microtomy (Hartmann & Latta, 1950);

* Diamond knives (Fernandez-Moran, 1953);
* Negative staining (Hall, 1935);

Frozen hydration preserve structural integrity to atomic level.

Taylor K and Glaeser RM (1974) “Electron
diffraction of frozen, hydrated protein crystals”
Science 186, 1036-1037

Taylor and Glaeser (2008) “Retrospective on the early
development of cryoelectron microscopy of macromolecules
and a prospective on opportunities for the future” Journal of
Structural Biology




Cryo-electron microscopy

Against dehydration:
glucose/trehalose embedding: using glucose to substitute
water, thus maintain hydration in the high vacuum. Only
used for 2D crystal;
Frozen hydration: using plunge freezing to avoid crystal ice.
Mostly for single particle;

» Against radiation damage:
Low-temperature: LN2 (~80K) or LHe (~10K); Challenges
to the instrumentations;
Low-electron dose: Low-dose imaging; Results In
extremely noisy images, challenges for the data
processing;



Structure of unstained crystalline specimen
by electron microscopy

- Substituting water with sugar to prevent dehydration;
- Using crystalline samples to obtain sufficient signals from images recorded with low electron dose;

- Tilting specimen to obtain views of other projections and to calculate 3D reconstruction; &, " |
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Henderson R anglayigihb e pir)dNEEodHDIGRHIS0R, MRPph i BieEREmbYa obtained by electron
microscopy” Nature 257, 28-32.

Unwin N and Henderson R (1975) “Molecular structure determination by electron microscopy of
unstained crystalline specimens” Journal of Molecular Biology 94, 425-440.



Single particle EM:
averaging of low dose image of non-periodic objects

J Frank (1975) “Averaging of low exposure electron micrographs of non-periodic objects” ultramicroscopy 1, 1359.

“We will investigate how the average techniques could be extended to this general case. Of all the possible regular specimen ....,

we are interested in those which form identical particles, sufficiently well separated on the microscope grid so as not to overlap.”.

Frank, J. Goldfarb, W, Eisenberg, D. and Baker, T.S.
(1978) “Reconstruction of glutamine synthetase using
computer averaging” ultramicroscopy 3, 283-290.

“A single low-dose micrograph of a maximally tilted specimen will supply:
all the Fourier information contained in a cone up to that tilt angle”. ¢ R son i B8 . e

Radermacher, M., Wagenknecht, T., Verschoor, A.,
and Frank, J. (1987) “Three-dimensional Structure of

large ribosomal subunit from Escherichia coli’ The
EMBO Journal 6, 1107-1114.

E. coli 50S ribosome by random conical tilt (RCT)




Frozen hydrated specimen preparation for
single particle cryo-EM

Adrian M, Dubochet J, Lepault J & McDowall AW (1984)
Cryo-electron microscopy of viruses. Nature 308, 32-36.
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Single particle cryo-EM

Cryo-EM image ofSetzetmpyuhidiekk anchgeml 20S proteasome



Single particle cryo-EM

3D reconsBogtmut fredbati zdiganteterinesgadion, 2005)

Rabl, Smith, Yu, Chang, Goldberg and Cheng (2008) Molecular Cell



The Nobel Prize 1n
Chemistry 2017
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Elmehed Elmehed Elmehed
Jacques Dubochet Joachim Frank Richard Henderson
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet,
Joachim Frank and Richard Henderson "for developing cryo-electron
microscopy for the high-resolution structure determination of
biomolecules in solution”.



Resolution estimation

In single particle cryoEM the resolution is often estimated by Fourier Shell

Correlation.
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Image averaging

Cryo-EM images are very noisy; have extremely low signal-to-noise ratio. Averaging
of a large number of images are necessary to improve the SNR.




Averaging in darkroom

volod Photographic image

»#4 superposition (averaging) by

S Roy Markham, who shifted
Image and added to the original

in darkroom.

The trick is to know decide much
and which direction to shift the
iImage for superposition.



Averaging in computer.

David DeRosier used
Markham’s lattice to
determine how much to shift,
and performed averaging by
using Adobe Photoshop.




Averaging In 2D crystals

How much and which direction to ship the image can be determined easily
from FT of the image of a 2D crystal.
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What about single molecules

A single particle image data set is a collection of images,
each contains projection images of one molecules. The
orientations and position of particles in all images are
different. Before averaging, one needs to:

* judge how similar is the two particles: cross-correlation
coefficient;

» shifts/rotates one particle to match another by maximizing
ccc: alignment;

» separate different particles for averaging: classification;

Alignment «—> Classification



A digital image is collection of nhumbers in a grid

-3

34

45

34

45

3

2

O 10|~ |H

34

45

32

40

NIDNOTDN

O 10|~ |H




Cross-correlation coefficient

Cross-correlation coefficient is a measure of similarity and
statistical interdependence between two data sets. The
mathematic definition of cross-correlation coefficient is:

DLA(E) - (B A7) -(£)]

P = /2

Where: (f)= 1 é fi(F)

Note that: -l<p<]1



Alignment between two images

Alignment Is a process to search the grids to maximize
the cross-correlation coefficient between two images.
Three parameters are used to define alignment of 2D
images: in-plane shift (x,y) and in-plane rotation angle.

Cross-correlation function based alignment:

* In-plane shift can be determined by determine the peak
position in the translational cross-correlation function
between two images.

» Rotation can be determined by different ways: rotational
cross-correlation function, Radon transform.



Cross-correlation function

The cross-correlation function is the most important tool for
alignment of two images.

The mathematic definition of cross-correlation Is;

Fxg= [ F(DQ(t-1)ck

CC

Q: what happens if shift is more than half of the image size”?



Calculating the cross-correlation
Cross-correlation theorem:

Fx g= [ AOKt- 1) =F{F(F)- F(g)

This formula enable us to calculate the cross-correlation
between two images easily.



How cross-correlation looks like

CCF

The image size is 1024X1024. The peak in the CCF is at
(445,500). How much is the shift?



Radon transform

Radon transform is an efficient
way for determining angular
relationship between two
Images, but it only works well
iIn iImages with high SNR.



More about the cross-correlation function

» Peak searching in the cross-correlation function;
search for a peak is not just finding the point of
highest value in the CCF.

« Keep In mind that one can calculate cross correlation
between any two images, and will always find a point with
highest value.

» Cross-correlation based alignment and averaging always
enhance the features of the reference image.



Demonstration of reference induced bias

Note: The averaged image after reference based alignment is
strongly biased towards the reference.

100 images 1000 images reference

From Niko Gorigorieff



Influence of CTF on image
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Image taken at close to focus

Mao et al, (2012) NSMB




Image taken at close to focus

Mao et al, (2012) NSMB




Ghost structure of HIV trimer

A

Cytoplasmic

Molecular architecture of the uncleaved HIV-1
envelope glycoprotein trimer

Youdong Mao™*, Liping Wang™*, Christopher Gu™®, Alon Herschhorn®®, Anik Désormeaux‘, Andrés Finzi,
Shi-Hua Xiang®, and Joseph G. Sodroski®®*"

‘Department of Cancer Immunclogy and AIDS, Dana-~arber Cancer Institute, Beston, MA 022135; ®Cepartment of Microbiclogy and Immunaobiology, Harvard
Medical School, Boston, MA 02115; “Centre de Recherche du Centre Hospitalicr de FUniversité ce Montréal, Department of Microbiology and Immunology,
Université de Montreal, Montréal, QC, Canada K3A 2B4; “Nebraska Center for Virclogy, School of Vieterinary Medicine and Biomedical Sciences, University of
Nebraska-Lincaln, Lincoln, NE 68583; *Ragon Irstitute of Massachusetts General Hospital, Massachusetts Institute of Technology, énd Herverd, Cambridge,

MA 02138; and 'Depariment of Immunclogy and Infectious Dieases, Harvard Scnool of Pubi'c Health, Beston, MA 02715
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Avoiding the pitfalls of single particle
cryo-electron microscopy: Einstein from noise

Richard Henderson’
Medical Research Council Lobaratory of Molecilar Glology, Cambridge C32 GO United Kingaom

qpi20
outer domain

Finding trimeric HIV-1 envelope glycoproteins R,
Marin van Heel' .

] 2

1n r andom n()lse Leiden Institute of Chemistry, Leiden o .
Universily, 2333 CC Leiden, The Neiherlands .
inner domain

B N EDNAS

. 9
_— ) trimer
. . S ey association
Structure of trimeric HIV-1 Seiramm Subramaniam' | . domain
Laboratory of Cell Biology, Center for | - ' ' :
a Cancer Research, National Cancer Institute, - F ) A
envelope glyCOPrOtEIHS National Institutes of Iiealth, Bethesda, TR gpi20 auler domain e
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* Cryo-EM is not a turn-key technology and it is possible to make massive mistakes!



Single particle cryo-EM of membrane proteins

Structure of
revealed b

otor
319-22.

Insoitol 1,4,
and L-shap:t

vities
155-64.

4.7A resolution, Nature 2015



Multi-reference alignment

For a heterogeneous data set, multiple references are used.
Each images are aligned again each references, and decide
which one yields highest cross-correlation coefficient.



Classification

Classification - a process of dividing a set of images
iInto subsets with similar features.

One can perform classification based on CCC to
determine if the images are similar with each other;

But for a very large data set of very noisy images
(> 50,000 images)?



Hyperspace

An image of mxm pixels can be represented by a vector (or
end point of a vector) in the hyperspace of mxm dimensions.

3| 2
2| 3 3
m. gl=1
f=(F, Fye. ,fm)=2 fa Wnhere: o
o ala.(j=hj="1..m);

Similar to the cross-correlation coefficient, the distance

between two spots in the hyperspace represents the difference
between two images.



A data set Is represented as a cloud in the hyperspace. The
center of the cloud is the average of the all images in the data
set.



A data set Is represented as a cloud in the hyperspace. The

center of the cloud is the average of the all images in the data
set.

An image without any noise is represented by a point.




A data set Is represented as a cloud in the hyperspace. The

center of the cloud is the average of the all images in the data
set.

An image without any noise is represented by a point.
Adding random noise to the image expand the point into a cloud.




A data set Is represented as a cloud in the hyperspace. The
center of the cloud is the average of the all images in the data
set.

The center of the loud is the average.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.

Class 1

Jo0 Class 2

|

Class 3




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.




Classification

Assume images are aligned with each other. The clouds of
particles can be grouped into different groups - classification.

Class 1

Class 2

K-mean classification



Multivariate statistical analysis

Making patterns emerge from data

Multivariate statistical analysis:
Principal Component Analysis
Correspondence Analysis
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Principal component analysis (PCA)
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Eigenvector-eigenvalue equation
Du = Au
where D=(X-X)(X-=-X)

Solution of this equation generate a set of eigenvectors
and eigenvalues.

Significant factors:

Classification based on eigenvector/eigenvalue clustering;



Multivariate statistical analysis & classification of images

Principle Component Analysis




Iterative refinement procedure

Iterative refinement procedure, using reference model based projection matching:

Generate a set of projections

N
3D A better 3D Projection matching
model model with class averages

/

3D reconstruction

A least square approach to find the best solution that matches all data.



Image averaging

Averaging of a large number of identical images improves the SNR. A complete problem is simple to
solve.

1 ~

Averace = Y X
g NE

Observed data (X): images

Sjors Scheres



But we have an incomplete data set

Observed data (X): images
i (e Missing data (Y):
' : Rotations, translations, classes & conformations

How do we find Y?

Sjors Scheres



X.

l

= PJ,

A; (Obsarved Projection) =P, (Rotations, etc) /. (Actual Object)

Sjors Scheres



e Starts from some initial guess (source of model bias) about the structure

i Compare initial guess with each
FUANSE | < experimental image

- Cross- >

correlation

Cross--
correlation

Sjors Scheres best! rotation



[teratively align and average
How big 1s the search space?
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Iterate!

Sjors Scheres




[teratively align and average
How big 1s the search space?
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Iterate!

Sjors Scheres




1) Uses model projections that include noise

Noise

Sjors Scheres



2) Maximizes likelihood with “marginalization” over Y

Need more? See Methods in Enzymology, 482 (2010) Does not assign
discrete “best” values

for the Y unknowns !

(n) Statistical model
A" A

<

Iteratively maximize the
likelihood of observing a
given image (X:), given the

model (@) + and the values
of the unknown
parameters (Y).

© and Y change each cycle.

Sjors Scheres ‘




Resolution revolution

- Dose fractionation image acquisition and motion correction become standard procedures.

- Direct detection camera is being used to produce a number of near atomic resolution
reconstructions: “Resolution Revolution”

Werner Kuhlbrandt
“The Resolution Revolution”,
Science (2014)

Yeast mitochondrial
ribosome, 3.2A

F420-reducing

rat TRPV1 ion channel, 3.4A hydrogenase, 3 44



Technologies that facilitated resolution revolution

® Direct electron detection camera (since 2012):
- Single electron counting significantly improves detective quantum efficiency (DQE);
- High frame rate enables dose fractionation and correction of beam induced image motion;

* New image processing algorithm based on maximum likelihood approach
(first introduced by Fred Sigworth):

- Facilitates better classification of good and “bad” particles;
- Facilitates higher resolution structure determination;

® Modernization of electron microscope technologies:

- Automated high-quality data acquisition;
- Pipelined image processing enabled on-the-fly image processing;

Structure of {he human spliceosome
prior to exon lgation

g Exon junction
complex

MAGOH



