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Abstract
Sampling alternative conformations is key to understanding how proteins work and engi-
neering them for new functions. However, accurately characterizing andmodeling protein
conformational ensembles remain experimentally and computationally challenging.
These challenges must be met before protein conformational heterogeneity can be
exploited in protein engineering and design. Here, as a stepping stone, we describe
methods to detect alternative conformations in proteins and strategies to model these
near-native conformational changes based on backrub-type Monte Carlo moves in
61
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Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve model-
ing of pointmutant side-chain conformations, native side-chain conformational heteroge-
neity, functional conformational changes, tolerated sequence space, protein interaction
specificity, and amino acid covariation across protein–protein interfaces. We include rele-
vant Rosetta command lines and RosettaScripts to encourage the application of these
types of simulations to other systems. Our work highlights that critical scoring and sam-
pling improvements will be necessary to approximate conformational landscapes. Chal-
lenges for the future development of these methods include modeling conformational
changes that propagate away from designed mutation sites and modulating backbone
flexibility to predictively design functionally important conformational heterogeneity.
1. INTRODUCTION

Proteins are constantly fluctuating between alternative conformations
(Frauenfelder, Sligar, & Wolynes, 1991). Processes including folding

(Korzhnev, Religa, Banachewicz, Fersht, & Kay, 2010), ligand binding

(Boehr, Nussinov, & Wright, 2009), and enzymatic catalytic cycles (Nagel &

Klinman, 2009) depend on the movement across the energy landscape.

While protein folding is generally driven by a large energy gap between the

“native” state and the unfolded ensemble, functionally essential conformations

within the “native” state are often separated by smaller energy differences

(Fleishman & Baker, 2012).

Computational modeling of the “native” state can result in either a rep-

resentative single structure or a limited ensemble of conformations. Several

straightforward global and local metrics have been developed to compare

computational predictions of a representative single structure to an experi-

mentally derived X-ray structure (MacCallum et al., 2011). In contrast,

modeling conformational heterogeneity within the “native” state presents sig-

nificant complications. For example, conformational heterogeneity present in

NMR structural ensembles can result from a lack of restraints, limitations in

sampling methods, or genuine heterogeneity (Rieping, Habeck, & Nilges,

2005; Schneider, Brunger, &Nilges, 1999). Additionally, comparisons to sim-

ulations are often necessary to distinguish between multiple motional models

suggested byNMRdynamics observables including residual dipolar couplings

(Meiler, Prompers, Peti, Griesinger, & Bruschweiler, 2001), CPMG relaxa-

tion dispersion (Bouvignies et al., 2011), and side-chain order parameters (S2)

(Li, Raychaudhuri, & Wand, 1996). X-ray crystallography, which is tradi-

tionally interpreted in terms of a single static structure, can also contain infor-

mation about protein conformational heterogeneity (Best, Lindorff-Larsen,

DePristo, & Vendruscolo, 2006; Furnham, Blundell, DePristo, &
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Terwilliger, 2006; Lang et al., 2010; Levin, Kondrashov, Wesenberg, &

Phillips, 2007). All of these experimental data types can be integrated to

improve the computational modeling of protein conformational ensembles.

Ultimately, to connect protein conformational dynamics to function, sim-

ulationsmustbe leveraged toprovide structuralmechanismsconsistentwith the

experimental data. Molecular dynamics simulations present the most obvious

solution to identify the structuralmechanisms of conformational heterogeneity

(Maragakis et al., 2008). However, other than in exceptional cases (Kelley,

Vishal, Krafft, & Pande, 2008; Shaw et al., 2010), the timescales accessible

to molecular dynamics often preclude sampling functional motions. The

computational requirements of molecular dynamics simulations also make it

prohibitive to simultaneously sample sequence space for protein design.

MonteCarlo simulations, for example, as used inRosetta (Leaver-Fayet al.,

2011), can also be used to sample protein conformations but rely on having

moves that result in energetically accessible conformations. Fixed backbone

Monte Carlo simulations, where side-chain conformations are sampled based

on a rotamer library, can provide some indications of local flexibility (DuBay&

Geissler, 2009). However, it is clear that both side-chain and backbone flexi-

bility are necessary to describe and design protein conformational heterogene-

ity (Friedland, Linares, Smith, & Kortemme, 2008; Mandell & Kortemme,

2009). Backbone conformations are less easily discretized compared to side-

chain rotamers, leading to problems in both creating and validating Monte

Carlo backbonemoves.Many strategies to efficiently search throughbackbone

space have been implemented in Rosetta including fragment insertion

(Simons, Kooperberg, Huang, & Baker, 1997), loop closure with cyclic coor-

dinate decent (Canutescu & Dunbrack, 2003), local torsion sampling with

kinematic loop closure (Mandell, Coutsias, & Kortemme, 2009), and backrub

(Davis, Arendall, Richardson, & Richardson, 2006; Smith & Kortemme,

2008). Additionally, these moves can be combined and iterated with sequence

design to enrich for proteins with desired conformational and functional prop-

erties that could not be explored without backbone flexibility.

Here, we describe the application and validation of the backrub sampling

move, which was initially inspired by observations using high-resolution

X-ray crystallography (Davis et al., 2006), in Rosetta (Smith & Kortemme,

2008; Fig. 4.1A–C). To test whether these moves accurately represent protein

conformational heterogeneity, we provide example command lines and scripts

that can be run usingRosetta version 3.5. These commands and scripts examine

how backrub sampling affects predictions of mutant structures, alternative

conformations observedbyX-ray crystallography, peptide-ligandbinding spec-

ificities, andevolutionaryproperties (Fig.4.1D).Thecontinueddevelopmentof
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Figure 4.1 The backrub move and its applications in Rosetta. (A) The Richardson group
originally described the “backrub”move as a rotation around the Cai�1 and Caiþ1 axis by
tdisp, along with simultaneous peptide plane rotations (t1 and t2), without disturbing
other surrounding atom coordinates. (B) By changing the position of the Cai–Cbi bond
vector, this move can couple side-chain rotameric changes with small local backbone
adjustments. (C) In Rosetta, the generalized backrub move is a single rotation that can
also include longer intervals and other backbone atom types as pivots for the rotations.
(D) Implementing backrubs as a Monte Carlo move in Rosetta enables a variety of flex-
ible backbone prediction and design applications that are described in this chapter:
predicting mutant conformations (Fig. 4.2), modeling alternative conformations
(Figs. 4.3 and 4.4), coupling conformational and sequence plasticity (Fig. 4.5), and
designing amino acid covariation at protein interfaces (Fig. 4.6).
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flexible backbone sampling methods that agree with diverse experimental and

evolutionary data will improve our ability to design and engineer new protein

functions that depend on and exploit conformational heterogeneity.

2. ROSETTA MOVES TO MODEL ALTERNATIVE
CONFORMATIONS IN X-RAY DENSITY
2.1. Modeling the Richardson backrub in Rosetta

Unlike other methods for flexible backbone sampling implemented in

Rosetta, which are based on fragment insertion or geometric constraints,

the backrub move derives its motional model from conformational variation

observed in high-resolution X-ray data (Davis et al., 2006). The Richardson

group observed electron density consistent with a concerted backbone reor-

ientation that moves a central side-chain perpendicular to the main-chain
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direction for 3% of total residues in a dataset of ultra-high-resolution crystal

structures. They noted that this move changed the accessible side-chain con-

formations while leaving flanking structure undisturbed.

In Rosetta, the backrub consists of a rotation about an axis defined by the

flanking backbone atoms that changes six internal backbone degrees of free-

dom in the protein, namely the f, c, and the N–Ca–C bond (a) angles at
both pivots (Smith &Kortemme, 2008). In the Richardson formulation, the

pivots were Ca atoms surrounding a single residue (Fig. 4.1A), but the move

can be performed over any backbone atom type over varying length scales

(Fig. 4.1C). Bond angle, rotational angle, and Cb/Ha placement constraints

are included to eliminate the need for costly minimization steps after every

move. In addition, the backrub move in Rosetta can be adapted so that it

obeys detailed balance (Smith & Kortemme, 2008). One notable aspect

of the backrub move is that it makes certain side-chain conformations,

which would not be accessible in the starting backbone conformation,

accessible in the newly accepted backbone conformation (Fig. 4.1B). Such

moves alter the potential to accommodate new side-chain conformations

and mutations at the “backrubbed” position and its local neighbors.

2.2. Modeling the response to mutations
Subtle backbone adjustments are often necessary to accommodate differ-

ences between the wild-type and the mutant side-chain. An initial test of

the backrub move in Rosetta was to compare its performance with fixed

backbone sampling in predicting the conformation of mutated side-chains

(Fig. 4.2). Based on a template of the wild-type structure, a successful pre-

diction of a mutant structure would generate both the conformation of the

mutant side-chain and any changes that propagate away from the mutated

residue. In general, backrub moves decrease the RMSD between the pre-

diction and conformation observed in the mutant crystal structure

(Fig. 4.2). Particularly, dramatic successes are achieved when there would

be a clash to neighboring atoms that is relieved by a small backbone adjust-

ment or when a local backbone move changes the probability of accessing a

new conformation from a backbone dependent rotamer library.

Due to the broad utility of this application for predicting the results of

single or multiple point mutations, we have created a Web server that auto-

mates this task: https://kortemmelab.ucsf.edu/backrub/ (Lauck, Smith,

Friedland, Humphris, & Kortemme, 2010). On the server, the user must

enter the desired PDB, the site of mutation, and the new amino acid iden-

tity. By default, 10 independent simulations are performed but this can be

https://kortemmelab.ucsf.edu/backrub/
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Figure 4.2 Backrub sampling improves the prediction of mutant side-chain conforma-
tion compared to fixed backbone simulations. (A) Example predictions of mutant con-
formations given the wild-type structure, with the indicated PDB codes and point
mutations. The mutant crystal structure is shown in yellow compared to the wild-type
crystal structure (green, left), prediction based on fixed backbone simulations (magenta,
center), or prediction based on backrub flexible backbone sampling (cyan, right). (B) The
overall quantification of the results of fixed backbone and backrub predictions over a set
of 136 buried (SASA<5%) side-chains with conformations differing by more than 0.2 Å
betweenmutant andwild type. Themedian RMSD decreases from 1.17 to 0.98 Å. Shown
are box plots with the median as a black line and the 25–75th percentiles in the shaded
box with outlier-corrected extreme values as dashed lines. (C) A scatter plot represen-
tation of the data in (B) shows that for many mutant structure predictions backrub leads
to large improvements compared to fixed backbone simulations.
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adjusted to 2–50 simulations. For each simulation, the server will attempt

10,000 moves that include backrub rotations of various lengths and angles

centered on the mutated residue, and side-chain moves in a 6 Å shell around

the mutated residue. The resulting conformations are scored with the

Rosetta scoring function and accepted or rejected according to the Metrop-

olis criterion using a kT of 0.6. The lowest scoring conformation out of all

the simulations is returned to the user as the best prediction. Advanced users

can exert greater control over these parameters by using the “backrub”

Rosetta command line program or RosettaScripts (Fleishman et al.,

2011). An example command line for point mutation prediction is as

follows:
�/rosetta/rosetta_source/bin/backrub.linuxgccrelease -database

�/rosetta/rosetta_database/ -s 1CV1.pdb -ex1 -ex2 -extrachi_cutoff

0 -use_input_sc -backrub:ntrials 10000 -nstruct 10 -resfile

1CV1_M111I.resfile -pivot_residues 84 99 102 103 106 107 108 109 110

111 112 113 114 115 118
where the “resfile” sets positions to be mutated and repacked (allowing

rotamer changes), and the pivot residues denote pivots allowed for backrub

moves (necessary files to run the command line with Rosetta version 3.5 are

included as example S1 at http://kortemmelab.ucsf.edu/resources/MIE_

Supplement.tar.gz; results shown in Fig. 4.2 were obtained with Rosetta

revision 18013). For details about command line flags and the resfile syntax,

see the Rosetta manual at http://www.rosettacommons.org/.

2.3. Discovering and modeling alternative conformations
from X-ray data
The backrub move was inspired by manual examination of ultra-high (sub

1 Å) resolution electron density maps (Davis et al., 2006) suggesting that

conformational heterogeneity in X-ray data can be used to develop and val-

idate new sampling methods. Subsequently, Alber and colleagues developed

a method, Ringer (Lang et al., 2010), to automate the discovery of alterna-

tive side-chain conformations in high (sub 2 Å) resolution electron density

maps by sampling around side-chain dihedral angles (Fig. 4.3A). Despite the

limitation that Ringer uses a fixed backbone to define the sampling radius,

they showed that 18% of side-chains have evidence for unmodeled alterna-

tive conformations at electron density levels of 0.3–1s. Concurrently, van
den Bedem, Dhanik, Latombe, and Deacon (2009) developed a comple-

mentary method, qFit, which includes local backbone and side-chain flex-

ibility to compute an optimal fit to the electron density for each residue. The

http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
http://www.rosettacommons.org/
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resulting 1–3 backbone and side-chain conformations per residue are mer-

ged together in a multiconformer qFit model that improves R/Rfree and

maintains excellent geometry statistics. Remarkably, despite an entirely dif-

ferent search procedure from the original observation by the Richardson

group, many alternative conformations identified by qFit can be related

by backrub-like moves (Fig. 4.3B). Collectively, these studies suggest that

electron density maps can provide a more informative representation of

the “native” state than traditionally offered by static X-ray structures.

By examining 30 pairs of matched room temperature and cryogenic

X-ray datasets, Fraser et al. used Ringer and qFit to show that room tem-

perature X-ray data increase the evidence for alternative conformations

compared to data collected at conventional cryogenic temperatures (Fraser

et al., 2011). We reasoned that sampling between these experimentally visu-

alized alternative conformations would assess the ability of fixed backbone or

backrub simulations to access a representative set of conformations that are

significantly populated in the “native” state. To test this idea, we considered

the A and B alternative conformations (Fig. 4.3C) from 30 room temperature

X-ray multiconformer models refined by qFit.

We focused our analysis on alternative conformations with Cb deviations
of 0.2 Å or greater, relative SASAs less than or equal to 30%, and different w1
rotameric bins (152 side-chains). First, we split the multiconformer model

into two separate PDB files, containing all residues without alternative
Figure 4.3 Backrub sampling improves the prediction of alternative side-chain confor-
mations observed in protein crystal structures. (A) Electron density sampling by Ringer
around the w1 of R29 from PDB 1KWN reveals high electron density for the primary con-
formation 60� and a secondary peak (indicated by the black arrow), above the 0.3s
threshold that enriches for alternative conformations (shaded green area), near the
180� rotameric bin. (B) 2mFo-DFc electron density surrounding R29 from PDB 1KWN
contoured at 1s (blue mesh) and 0.3s (cyan mesh). The original PDB model is shown
in yellow, with an alternative conformation identified by Ringer and modeled with qFit
at 25% occupancy shown in green. (C) Example predictions with Rosetta, with the indi-
cated PDB codes and residues. Sampling of side-chain conformations (yellow) starting
from alternative conformations (green, right) is improved by flexible backbone backrub
moves (cyan, right) compared to fixed backbone side-chain only sampling (magenta,
center). (D) The overall quantification of the results, showing that backrub sampling
increases identification of discrete side-chain local minima modeled as alternative con-
formations by qFit compared to fixed backbone models over a set of 152 side-chains
with solvent accessibility less than 30%. The median RMSD decreases from 0.47 to
0.33. Box plots are shown as in Fig. 4.2C. (E) A scatter plot representation of the data
in (D) shows that backrub leads to large improvements compared to fixed backbone
for many alternative conformation predictions.
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conformations and either the “A” conformations or “B” conformations

(e.g., 1kwn_A.pdb and 1kwn_B.pdb). Next, we ran a RosettaScripts

protocol that moves between the starting conformation specified by the flag

–s (in this example, 1kwn_A.pdb) and the target alternative conformation

specified by the flag –in:file:native (in this example, 1kwn_B.pdb). At the

beginning of the protocol, the w angles of a central side-chain are switched

from the starting conformation to the target conformation. This script tests

whether changes in the surrounding side-chains (fixed backbone) or both the

backbone and surrounding side-chains (backrub) better accommodate the

new w angles and find a side-chain conformation close inRMSD to the target

conformation. We tested this protocol in both directions between the A and

B conformations. In the simple example below, the variables w1 through w4
provide the target w angles (here, the w angles of conformation B), and piv1

through piv3 define the positions around the central residue allowed to be

pivots for the backrub move.

The command to run the protocol is
�/rosetta/rosetta_source/bin/rosetta_scripts.linuxgccrelease–

database �/rosetta/rosetta_database -s 1kwn_A.pdb-in:file:

native 1kwn_B.pdb -parser:protocol model_alternate_conform-

ation.xml -parser:script_vars pos¼29 chi1¼-145.522 chi2¼-160.509

chi3¼81.9108 chi4¼175.816 piv1¼28 piv2¼29 piv3¼30
The contents of model_alternate_conformation.xml are

<ROSETTASCRIPTS>

<SCOREFXNS>

Include the bond angle potential scoring term

<score12_backrub weights¼score12_full>

<Reweight scoretype¼mm_bend weight¼1/>

</score12_backrub>

</SCOREFXNS>

<TASKOPERATIONS>

Define the restrictions on the sidechain moves that will occur in

the simulation

<ExtraRotamersGeneric name¼extra_rot ex1¼1 ex2¼2 extrachi_

cutoff¼0/>

<IncludeCurrent name¼input_sc/>

<DesignAround name¼neighbors_only allow_design¼0 design_shell

¼0 repack_shell¼6.0 resnums¼%%pos%%/>

<RestrictToRepacking name¼repack_only/>

<PreventRepacking name¼fix_central_residue resnum¼%%pos%%/>

</TASKOPERATIONS>
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<FILTERS>

Calculates the side-chain RMSD before and after simulation

<SidechainRmsd name¼rmsd threshold¼10 include_backbone¼0

res1_res_num¼%%pos%% res2_res_num¼%%pos%%/>

</FILTERS>

<MOVERS>

Set the chi angles of the residue of interest

<SetChiMover name¼setchi1 chinum¼1 resnum¼%%pos%% angle¼%%

chi1%%/>

<SetChiMover name¼setchi2 chinum¼2 resnum¼%%pos%% angle¼%%

chi2%%/>

<SetChiMover name¼setchi3 chinum¼3 resnum¼%%pos%% angle¼%%

chi3%%/>

<SetChiMover name¼setchi4 chinum¼4 resnum¼%%pos%% angle¼%%

chi4%%/>

Set backrub moves to only occur near residue of interest

<Backrub name¼backrub pivot_residues¼%%piv1%%,%%piv2%%,%%

piv3%% min_atoms¼3 min_atoms¼7/>

Setside-chainmovestoonlyincluderesidueswithin6angstromshell

<Sidechain name¼sidechain task_operations¼extra_rot,input_sc,

fix_central_residue,

neighbors_only,repack_only/>

During Monte Carlo, alternate between backrub moves (75%) and side-

chain moves (25%)

<ParsedProtocol name¼backrub_protocol mode¼single_random>

<Add mover_name¼backrub apply_probability¼0.75/>

<Add mover_name¼sidechain apply_probability¼0.25/>

</ParsedProtocol>

Set up Monte Carlo simulation with 10,000 steps and kT¼0.6

<GenericMonteCarlo name¼backrub_mc mover_name¼backrub_protocol

scorefxn_name¼score12_backrub trials¼10000 temperature¼0.6

preapply¼0/>

</MOVERS>

<PROTOCOLS>

Set the residue of interest to the desired chi angles

<Add mover_name¼setchi1/>

<Add mover_name¼setchi2/>

<Add mover_name¼setchi3/>

<Add mover_name¼setchi4/>

Calculate RMSD before simulation
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<Add filter_name¼rmsd/>

Run backrub simulation

<Add mover_name¼backrub_mc/>

Calculate RMSD after simulation

<Add filter_name¼rmsd/>

</PROTOCOLS>

</ROSETTASCRIPTS>

Necessary files to run this script with Rosetta version 3.5 are included as

example S2 at http://kortemmelab.ucsf.edu/resources/MIE_Supplement.

tar.gz; results shown in Fig. 4.3 were obtained with Rosetta revision 48648.

Similarly to the mutation data set (Fig. 4.2), backrub moves significantly

improve the predictions (Fig. 4.3D and E). Additionally, we tested the effect

of including larger backrub moves or using C and N atoms as pivots in place

of the normal Ca pivot. Applying these larger moves or using additional

pivot atoms did not significantly affect the modeled alternate side-chain

RMSD over the dataset. However, there may be certain residue types, sec-

ondary structures, or local environments that benefit from distinct move sets.

These results suggest that backrub moves help to model “native” state

heterogeneity. While above, we have described the validation of this pro-

cedure on high-resolution room temperature X-ray data, similar strategies

can be applied to cryogenic data, where models will likely contain fewer

alternative conformations, or to low-resolution data, where the electron

density maps do not reveal discrete alternative conformations. Therefore,

flexible backbone sampling strategies in Rosetta may help to improve the

description of the “native” state offered by conventional or low-resolution

X-ray crystallography experiments (Tyka et al., 2011). Such sampling meth-

odologies will have many applications including flexible receptor docking in

drug discovery (Sherman, Day, Jacobson, Friesner, & Farid, 2006).

2.4. Sampling functional alternative conformations in
Cyclophilin A
While the preceding examples utilized backbone flexibility centered on a

single residue, many protein motions require movement of a neighborhood

of residues that may potentially spread across multiple elements of secondary

structure. These movements can create loop, rigid body domain, or side-

chain rearrangements that are crucial for the biological mechanism.

The difficulty of discovering and simulating correlated motions is exem-

plified in the intrinsic conformational exchange of the proline isomerase

Cyclophilin A (CypA; Fraser et al., 2009; Fig. 4.4A). Previous NMR studies

by the Kern group identified a collective exchange process extending from

http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz


B
Backrub B AFixed B A

Fixed A B Backrub A B

Conformation A

Conformation B

A
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conformations. (A) NMR relaxation experiments detect that residues in a dynamic net-
work (cyan transparent surface) undergo a collective exchange between a major and
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cyan) but not fixed backbone (middle, magenta) sampling methods.
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the active site into the core of the protein and established a link between the

rate of conformational exchange and the catalytic cycle of the enzyme

(Eisenmesser et al., 2002, 2005). Room temperature X-ray crystallography

and electron density interpretation using a combination of Ringer and

manual inspectionwere used to reveal that the exchangewas due to a coupled

network of alternative side-chain conformations (Fraser et al., 2009). The

functional importance of the alternative conformation was tested by demon-

strating a parallel reduction in dynamics and catalysis upon mutation of a res-

idue outside the active site (Fraser et al., 2009). Intriguingly, the backbone

movement of Phe113 renders its alternative conformation undetectable by

Ringer, which is limited to fixed backbone sampling (Fig. 4.4B).

Due to the millisecond timescale of this correlated motion, the side-

chain conformational changes cannot be sampled in conventional molecular

dynamics simulations. However, recent accelerated molecular dynamics

simulations that reduce torsional barriers have recapitulated several key ele-

ments of the conformational dynamics during catalysis (Doshi, McGowan,

Ladani, & Hamelberg, 2012). As an initial test of the ability of Rosetta to

model correlated motions between neighboring side-chains in CypA, we

modified the RosettaScripts protocol used to sample alternative conforma-

tions. We defined multiple positions that are allowed to be pivots for bac-

krub and included a call to a “resfile” that specifies the positions whose side-

chains can be repacked. This protocol improves sampling of the alternative

conformation over fixed backbone approaches (Fig. 4.4B).

The command to run the protocol is
�/rosetta/rosetta_source/bin/rosetta_scripts.linuxgccrelease-data-

base�/rosetta/rosetta_database/-s3K0N_A.pdb-in:file:native3K0N_B.

pdb -parser:protocol model_alternate_conformation_F113.xml -resfile

F113.resfile -parser:script_vars chi1¼-53.763 chi2¼-41.4727 chi3¼0

chi4¼0
The contents of model_alternate_conformation_F113.xml are:

<ROSETTASCRIPTS>

<SCOREFXNS>

Include the bond angle potential scoring term

<score12_backrub weights¼score12_full>

<Reweight scoretype¼mm_bend weight¼1/>

</score12_backrub>

</SCOREFXNS>

<TASKOPERATIONS>

<ExtraRotamersGeneric name¼extra_rot ex1¼1 ex2¼2 extrachi_

cutoff¼0/>
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<ReadResfile name¼read_resfile filename¼”F113.resfile”/>

</TASKOPERATIONS>

<FILTERS>

Calculates the side-chain RMSD before and after simulation

<SidechainRmsd name¼rmsd threshold¼10 include_backbone¼0

res1_pdb_num¼113A res2_pdb_num¼113A/>

</FILTERS>

<MOVERS>

Set the chi angles of the residue of interest

<SetChiMover name¼setchi1 chinum¼1 resnum¼113A angle¼%%chi1%%/>

<SetChiMover name¼setchi2 chinum¼2 resnum¼113A angle¼%%chi2%%/>

<SetChiMover name¼setchi3 chinum¼3 resnum¼113A angle¼%%chi3%%/>

<SetChiMover name¼setchi4 chinum¼4 resnum¼113A angle¼%%chi4%%/>

Set backrub moves to only occur near residue of interest

<Backrub name¼backrub

pivot_residues¼54A,55A,56A,59A,60A,61A,

62A,63A,64A,65A,90A,91A,92A,97A,98A,99A,100A,101A,102A,103A,110A,

111A,112A,113A,114A,115A,116A,118A,119A,120A,121A,122A,123A,125A,

126A,127A,128A,129A,130A min_atoms¼3 min_atoms¼7/>

Set side-chain moves to only include residues within 6 angstrom shell

<Sidechain name¼sidechain task_operations¼read_resfile,extra_

rot/>

During Monte Carlo, alternate between backrub moves (75%) and side-

chain moves (25%)

<ParsedProtocol name¼backrub_protocol mode¼single_random>

<Add mover_name¼backrub apply_probability¼0.75/>

<Add mover_name¼sidechain apply_probability¼0.25/>

</ParsedProtocol>

Set up Monte Carlo simulation with 10,000 steps and kT¼0.6

<GenericMonteCarlo name¼backrub_mc mover_name¼backrub_protocol

scorefxn_name¼score12_backrubtrials¼10000temperature¼0.6preapply¼0/>

</MOVERS>

<PROTOCOLS>

Set the residue of interest to the desired chi angles

<Add mover_name¼setchi1/>

<Add mover_name¼setchi2/>

<Add mover_name¼setchi3/>

<Add mover_name¼setchi4/>

Calculate RMSD before simulation

<Add filter_name¼rmsd/>
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Run backrub simulation

<Add mover_name¼backrub_mc/>

Calculate RMSD after simulation

<Add filter_name¼rmsd/>

</PROTOCOLS>

</ROSETTASCRIPTS>

Necessary files to run this scriptwithRosetta version 3.5 are included in the

example S3 at http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.

gz; results shown in Fig. 4.4 were obtained with Rosetta revision 48648.

Here, we have specified neighboring residues that can undergo backrub

moves. Similarly, the ability of backrub to sample functionally important

loop conformations has been demonstrated for triosephosphate isomerase

(TIM; Smith & Kortemme, 2008). To efficiently sample these enzymatic

motions, we used prior knowledge of residues that need conformational

adjustments. Therefore, these strategies present an immediate challenge:

sampling large correlated motions without prior knowledge of what residues

are involved in the motion. One approach is to use unbiased simulations to

identify flexible regions. In the case of TIM, unbiased simulations identify

that the catalytically important loop region is highly flexible, but only sim-

ulations that focus on the loop have been shown to sample the entire range of

motion. Another intermediate on the road to this goal is to include con-

straints from NMR relaxation dispersion experiments, which specify resi-

dues that are experiencing an exchange in chemical environment but do

not provide direct structural information about the exchange. Recent work

using T4 Lysozyme (Bouvignies et al., 2011) suggests that Rosetta fragment

insertion methods biased by experimental chemical shifts can generate struc-

tural descriptions of alternative conformations discovered by NMR. The

success of backrub moves in sampling the enzyme motions of CypA and

TIM indicate that “native” state sampling using backrub moves can likely

be exploited in a similar fashion to link conformational dynamics discovered

by NMR relaxation dispersion experiments with structural mechanisms.

3. SEQUENCE PLASTICITY AND CONFORMATIONAL
PLASTICITY ARE INTERTWINED
The improvements offered by backrub moves in predicting point

mutant structures (Fig. 4.2) suggest that subtle backbone rearrangements

can significantly alter the prediction of tolerated mutations. It follows that

conformational ensembles created through backrub moves would also

http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
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change the potential for sequences predicted to be consistent with a given

protein fold. Indeed, incorporating backbone flexibility increased the over-

lap between sequences predicted to be consistent with the ubiquitin fold and

the evolutionary record (Friedland, Lakomek, Griesinger, Meiler, &

Kortemme, 2009). These results provided further evidence that the relation-

ship between sequence and structural variability can be leveraged to develop

and validate new conformational sampling methods. Both sequence align-

ments of orthologous proteins (natural selection) and sequences enriched

in high-throughput binding experiments, such as phage display or peptide

arrays (artificial selection), can be used to define the sequence variability that

design methods can target.

3.1. Modeling peptide binding specificity
In addition to predicting sequences tolerated by a single protein fold, flexible

backbone methods can improve the prediction of binding specificity in

peptide binding domains such as PDZ, SH3, and WW domains. Phage dis-

play coupled with next-generation sequencing techniques can generate

experimental position weight matrices (PWMs) based on large numbers

of potential sequences (Huang & Sidhu, 2011). A challenge for interpreting

these datasets is to define the structural basis for specificity in binding pockets

that are quite similar. To test how well Rosetta can recapitulate the binding

specificities discovered by these experiments, we sampled conformations of

both the peptide and receptor protein using backrub moves. As observed

previously for sampling the ubiquitin fold family sequences, the temperature

parameter is key for controlling the conformational diversity sampled by the

ensemble (Fig. 4.5A). For applications where there is a larger degree of back-

bone flexibility and corresponding sequence variability, higher temperatures

can be explored. For PDZ domain–peptide interactions, a temperature of

0.6 kT was used (Smith & Kortemme, 2010, 2011). After generating an

ensemble using backrub moves, design can be used to sample sequence

changes of either the receptor or the peptide.

We have automated the sequence tolerance protocol for using flexible

backbone ensembles and sequence design for predicting peptide binding

specificity on a Web server: https://kortemmelab.ucsf.edu/backrub/

(Lauck et al., 2010). Users can also download a “protocol capture” of the

sequence tolerance method, complete with example input/output and

scripts, in the Supplementary Materials accompanying, http://www.

elsevierdirect.com/companions/9780123942920 (Smith & Kortemme,

2011). Given a peptide-bound structure, backrub samplingmethods are used

https://kortemmelab.ucsf.edu/backrub/
http://www.elsevierdirect.com/companions/9780123942920
http://www.elsevierdirect.com/companions/9780123942920


Figure 4.5 Rosetta generates near-native ensembles using backrub sampling. (A) Ca
cartoons of Rosetta generated conformational ensembles using backrub sampling at
different temperatures, compared to the fixed backbone (top left). Higher temperatures
increase the conformational diversity and can increase agreement with experimental
data. The PDZ domain structure is shown in white and peptide in gray. (B) Example
results from the sequence tolerance protocol to predict peptide specificity for four
PDZ domains (DLG1-2, MPDZ-12, MPDZ-13, and Erbin) and one PDZ domain point
mutant (Erbin V83K); peptide positions are indicated using the standard nomenclature
for PDZ domain motifs, with 0 denoting the C-terminal residue, followed by�1,�2, etc.
Without backbone flexibility, Rosetta fails to predict important residue preferences
observed in experimental phage display selections, such as valine at the 0 position
or tryptophan at the �1 position for DLG1-2 and Erbin.
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to generate an ensemble of conformations. For each conformation, a genetic

algorithm is used to design sequences for high-affinity binding. In this proto-

col, the interface energy is given greater weight (Smith & Kortemme, 2010,

2011). To compare these predictions to experimental data, we generate a

sequence logo based on the positional frequencies in the resulting designed

sequences (Fig. 4.5B). Compared to fixed backbone methods, backrub sam-

pling increases the agreement at several positions. Given the adaptable nature

of many protein–protein interfaces, it is clear that flexible backbonemethods

will provide great insight into the structural and energetic basis for binding

specificity. Additionally, asmore datasets onmutant binding domains are col-

lected, there is potential to look for covariation between the sequences tol-

erated between receptor and peptide positions (Ernst et al., 2010).
3.2. Covariation and interface design in two-component
signaling
Testing computational protein design methods based on comparison with

experimental PWMs is informative. However, it involves evaluating amino

acid positions independently from each other and therefore may overlook

some of the intricate details of pair-wise interactions between designed res-

idues. In order to assess howwell flexible backbone design protocols capture

dependencies betweendesigned residues,wedirectly compareddesigned res-

idue covariation to native residue covariation. We chose to examine covari-

ation within the bacterial two-component signaling system, since it has

previously been shown that sensor histidine kinases (HKs) and their cognate

response regulators (RRs) exhibit significant intermolecular covariation at

their protein–protein interface (White, Szurmant, Hoch, & Hwa, 2007).

Designed sequences were obtained by generating a backrub conforma-

tional ensemble of 500 structures starting from the cocrystal structure of

HK853 and RR468 from Thermotoga maritima (Casino, Rubio, & Marina,

2009; PDB 3DGE). Since bacterial HK and RR sequences are highly diver-

gent, we used a temperature of 1.2 kT to produce a conformational ensem-

ble that would yield sufficiently diverse designed sequences. We then

performed sequence design using Monte Carlo simulated annealing on each

structure, which resulted in 500 designed HK and RR sequences.

The command lines for this protocol are as follows:
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Backrub ensemble generation
�/rosetta/rosetta_source/bin/backrub.linuxgccrelease-database�/

rosetta/rosetta_database/ -s 3DGE.pdb -resfile NATAA.res -ex1 -ex2 -

extrachi_cutoff 0 -backrub:mc_kt 1.2 -backrub:ntrials 10000 -nstruct

500 -backrub:initial_pack
Sequence design
�/rosetta/rosetta_source/bin/fixbb.linuxgccrelease -database �/

rosetta/rosetta_database/ -s 3DGE_0001_last.pdb -resfile ALLAA.res

-ex1 -ex2 -extrachi_cutoff 0 -nstruct 1 -overwrite -linmem_ig 10 -

no_his_his_pairE -minimize_sidechains
Necessary files to run these command lines with Rosetta version 3.5 are

included as example S4 at http://kortemmelab.ucsf.edu/resources/

MIE_Supplement.tar.gz; results shown in Fig. 4.6 were obtained with

Rosetta revision 39284.

To compare the sequence features from interface design with those

observed in naturally interacting proteins, we collected alignments of natural

HK andRR sequences from Pfam (PF000512 for HK and PF00072 for RR)

and concatenated all pairs of HKs and RRs that were adjacent in a particular

genome (i.e., pairs with GI numbers differing by 1). To avoid bias from

closely related sequences, we filtered the joint HK/RR alignment for

redundancy using an 80% sequence identity cutoff. We quantified residue

covariation of all intermolecular pairs of amino acid positions in designed

and natural sequences using a mutual-information-based statistic (Dickson,

Wahl, Fernandes, & Gloor, 2010).

We observed significant overlap between the designed and natural highly

covarying intermolecular pairs within the HK/RR complex (Fig. 4.6A).

Mapping the residue pairs that were highly covarying in both designed

and natural sequences onto the structure of the complex revealed that all

of these pairs are localized to the HK/RR interface (Fig. 4.6B). A closer

examination of these pairs shows that each pair forms a physical interaction

across the HK/RR interface (Fig. 4.6C), suggesting that these pairs may be

important for determining specificity in bacterial two-component signaling

systems. Indeed, several of these positions have previously been mutated to

alter the specificity of HK–RR interactions: HK-Thr in Pair 1, HK-Tyr in

Pair 9, and HK-Val in Pair 11 (Skerker et al., 2008). The remaining pairs,

including those that highly covary in designed sequences but not natural

sequences, represent potential opportunities for rewiring two-component

signaling specificity using computational protein design.

http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gz
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Figure 4.6 Rosetta backrub design methods capture features of evolutionary amino
acid covariation. (A) Comparison between designed and natural intermolecular amino
acid covariation for histidine kinases (HKs) and their cognate response regulators (RRs).
Each point represents a pair of amino acid positions. Natural covariation was quantified
using amutual-information-basedmetric for all pairs of positions in amultiple sequence
alignment of HKs concatenated to their cognate RRs. A backrub ensemble of 500 struc-
tures was generated for a HK/RR complex (PDB ID 3DGE) and RosettaDesign was used to
predict one low-energy sequence for each structure in the ensemble. Designed covari-
ation was quantified for all pairs of positions in the resulting multiple sequence align-
ment of 500 sequences. The red lines indicate the threshold cutoff for the top 30
designed covarying intermolecular pairs (horizontal) and the top 30 natural covarying
pairs (vertical). The 12 intermolecular pairs of positions that are highly covarying in both
designed and natural sequences are highlighted in green. (B) The structure of a HK/RR
complex with amino acids that are involved in highly covarying intermolecular pairs in
both natural and designed sequences are shown in green and stick representation. (C)
Close-up of the 12 intermolecular covarying pairs. Each of these 12 pairs of amino acids
forms a physical interaction across the interface of the complex.
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4. FUTURE CHALLENGES

The success of flexible backbone sampling methods in predicting
mutant side-chain (Fig. 4.2) and alternative (Fig. 4.3) conformations indi-

cates the broad utility of these methods in designing sequences compatible

with a target “native” structure. Previous studies have used Rosetta to pro-

vide structural mechanisms for NMR measures of protein dynamics

(Friedland et al., 2008, 2009) and to design mutations that stabilize specific

conformations from a dynamic ensemble (Babor & Kortemme, 2009;

Bouvignies et al., 2011). Additionally, the comparisons to naturally and arti-

ficially selected sequence data suggest that flexible backbone methods can be

leveraged to design libraries for generating proteins with new or improved

functions (Friedland & Kortemme, 2010).

Despite these successes, exploiting backbone flexibility to design confor-

mational heterogeneity, in contrast to design of a single target structure,

remains largely unaddressed. A major challenge in the coming years will be

to adapt these methods to design functionally important protein conforma-

tional dynamics. Examples of these design challenges include: designing loops

to sample multiple conformations that exclude water and permit substrate flux

during an enzymatic catalytic cycle, creating peptide binding domains where

specificity is encoded by distinct binding modes, or generating coupled net-

works of side-chain conformations that respond to an allosteric binding event.

To meet these lofty challenges, scoring functions must be sensitive to the

small gaps that separate these conformations on the energy landscape

(Fleishman et al., 2011). In addition, to avoid having populations biased by

the sampling algorithm and provide better estimates of conformational

entropy, the Monte Carlo move sets must obey detailed balance (Hastings,

1970). In addition to improvements in scoring and thermodynamics, more

sophisticated sampling protocols will likely be needed. Here, we have primar-

ily focused on backrub moves around Ca. However, sampling the “native”

state of some protein environments may benefit from different strategies or

iterations through a combination of sampling moves. Indeed, we have

recently had success at modeling conformational changes that propagate away

from a designed mutation by iteratively switching between different sampling

and scoring strategies during the course of a single simulation (Kapp et al.,

2012). Learning from the successes and failures of these new strategies will

be essential to improve both protein design and our understanding of the rela-

tionship between protein conformational dynamics and function.
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