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Protein function often depends on the exchange between 
conformational substates. Allosteric ligand binding or distal 
mutations can stabilize specific active-site conformations  
and consequently alter protein function. Observing  
alternative conformations at low levels of electron density,  
in addition to comparison of independently determined  
X-ray crystal structures, can provide mechanistic insights into 
conformational dynamics. Here we report a new algorithm, 
CONTACT, that identifies contact networks of conformationally 
heterogeneous residues directly from high-resolution  
X-ray crystallography data. Contact networks determined for 
Escherichia coli dihydrofolate reductase (ecDHFR) predict 
the observed long-range pattern of NMR chemical shift 
perturbations of an allosteric mutation. A comparison of 
contact networks in wild-type and mutant ecDHFR suggests that 
mutations that alter optimized contact networks of coordinated 
motions can impair catalytic function. CONTACT-guided 
mutagenesis can exploit the structure-dynamics-function 
relationship in protein engineering and design.

Proteins fluctuate between alternative conformations to mediate 
their biological functions1,2. Perturbations that affect the rela-
tive populations of conformations caused by ligand binding3, 
mutation4, post-translational modification5 and temperature6 
can affect biological mechanisms. In addition to causing global 
or local unfolding7, perturbations can affect the structure and 
dynamics of groups of residues within the folded ensemble8. 
Proteins can evolve to exploit these perturbations for regulation: 
binding of ligands or the introduction of mutations at allosteric 
sites can stabilize transiently populated, but functional, alterna-
tive conformations at distant active sites9. However, these low-
population states are difficult to identify with most biophysical 
techniques10, making it challenging to characterize how structural 
fluctuations regulate protein activity by changing the populations 
of different conformers.

Traditionally, X-ray crystallography has provided a single 
static model of a ‘ground state’, which is assumed to represent the  
lowest-energy conformation in the crystal lattice. More ‘dynamic’ 
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interpretations of crystallographic data have historically involved 
modeling an ensemble of independent conformations11–17. Recent 
developments in time-averaged refinement represent the crystallo-
graphic data with an ensemble of tens to hundreds of structures18. 
However, the relationship between individual ensemble members 
and the representation of conformational heterogeneity in the crys-
tal remains a subject of debate15. In contrast to an ensemble model, a 
multiconformer model introduces alternate conformations for a res-
idue only if they are supported by the data (Supplementary Fig. 1).  
We previously developed qFit19, an algorithm used to generate 
multiconformer models to represent conformational heterogeneity 
from high-resolution X-ray diffraction data at levels of electron 
density (below 1S, where S = r.m.s. deviation) that are commonly 
ignored by manual model-building efforts and that are inadequately 
represented by harmonic atomic displacement parameters19,20.

Multiconformer and ensemble analyses of X-ray data can pro-
vide information complementary to NMR8,21,22, simulations23 
and coevolutionary analyses24 to reveal how interactions between 
distant sites enable proteins to respond to perturbations. However, 
tools to uncover and interpret conformational diversity from  
X-ray crystallography data and connect it to structural mechanisms 
for biomolecular dynamics remain underdeveloped. We created 
an algorithm, contact networks through alternate conformation 
transitions (CONTACT), that automatically identifies contact net-
works of conformationally heterogeneous residues—also called 
‘dynamic close packing’17—from X-ray data. Our method can 
connect functional sites, propagate chemical shift differences and 
reveal the structural mechanisms of mutations that affect redis-
tributions of the conformational ensemble. CONTACT networks 
are determined from experimental X-ray data, and our approach 
complements simulation-based methods such as analyzing  
molecular dynamics trajectories25, Monte Carlo simulations26 or 
Rosetta-based analyses27.

RESULTS
Identifying conformational coupling between residues
To identify interacting residues that can respond collectively 
to perturbations, we used our robotics-inspired algorithm 
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qFit19 to optimally fit up to four alternative conformations per 
residue into electron density features, derived from experimen-
tal X-ray data, that are consistent with anharmonic disorder  
(Fig. 1a). CONTACT analyzes the repulsive van der Waals inter-
actions across all alternative conformations in the qFit multicon-
former model (Supplementary Fig. 2). The goal of this analysis 
is to define contact networks of conformationally coupled resi-
dues, in which movement between alternative conformations of 
one residue likely influences the conformations of all other resi-
dues in the contact network. Software for running CONTACT 
is available at http://smb.slac.stanford.edu/CONTACT and as  
Supplementary Software.

CONTACT first identifies ‘pathways’ of van der Waals over-
laps. Each residue (for example, residue i) in turn is moved to an 
alternative conformation, and overlaps of van der Waals radii with 
any neighboring residues (for example, residue j) are identified 
(Fig. 1b). If neighboring residue j can be moved to an alternative 
conformation to reduce the steric overlap (or ‘clashes’) with resi-
due i, the pathway is continued to neighboring residues of residue j 
(for example, residue k, l and so on) until no new clashes are intro-
duced. The relative frequency with which residues can or cannot 
reduce steric overlap is also recorded (Supplementary Fig. 3).

Pathways can include overlapping or nearly overlapping sets of 
residues using different combinations of alternative conforma-
tions. Thus, pathways that share common members indicate con-
formational coupling even if the residues are not directly linked 
in a single pathway. Any pathways that share residues are grouped 
into a single contact network (Fig. 1c). A pathway is therefore a 
single sequence of residues that can be moved between alternative 
conformations such that van der Waals overlaps are reduced after 
each move. A contact network is a set of residues that are linked 
by common pathways.

CONTACT identifies multiple pathways in cyclophilin A
To test whether CONTACT can automatically identify contact 
networks of residues from experimental X-ray data, we first 
examined the human proline isomerase cyclophilin A (CYPA). 
Previous NMR experiments have demonstrated that CYPA under-
goes conformational exchange both during its catalytic cycle and 

in the absence of substrate28. Room-temperature X-ray electron 
density maps revealed extensive alternative side-chain confor-
mations for residues extending from the active site into the core, 
providing a structural rationale for the collective motion inferred 
by NMR4.

A large contact network of nine residues connects the hydro-
phobic core of the protein to the active site (Fig. 1d). This contact 
network (‘red’, as depicted in Fig. 1) generally agrees with findings 
obtained from a visual analysis of room-temperature X-ray data in 
providing a structural mechanism for collective conformational 
exchange detectable by NMR relaxation dispersion experiments28. 
Consistent with the idea that perturbations in the contact network 
will stabilize alternative conformations of other residues in the 
contact network, a mutation (S99T) of a core residue leads to 
chemical shift changes that spread across the red contact network 
and results in a second-order rate constant (kcat/Km) that is ~0.3% 
that of wild type4.

Notably, the red contact network consists of many independ-
ent pathways that connect contact-network residues as reflected 
in the weights of the edges of the network graph (Fig. 1c). The 
large number of pathways suggests that the transition between 
the major and minor forms of the enzyme can occur by multiple 
structurally distinct mechanisms. The idea of multiple transition 
paths in CYPA is supported by recent NMR studies that incor-
porate evidence from the conformational dynamics of several 
mutants29. The contributions of these transitions are difficult to 
separate in the collective exchange fitting procedures of the NMR 
experiment29. Major- and minor-form end states distinguished 
by alternative side-chain conformations may dominate the con-
formational dynamics in the crystal4 and solution28; however, 
CONTACT identifies multiple plausible transition paths.

Analysis of long-range perturbations in G121V ecDHFR
Dihydrofolate reductase (DHFR) is a model system for studying 
the relationship between conformational dynamics and catalytic 
activity30. The solution-state dynamics of the ecDHFR are domi-
nated by the interconversion of the Met20 loop between closed 
and occluded conformations, which allows optimal substrate flux 
through the catalytic cycle31. We obtained X-ray diffraction data 

Figure 1 | Mechanisms for conformational 
exchange in cyclophilin A. (a) X-ray electron 
density map contoured at 1S (blue mesh) 
and 0.3S (cyan mesh) of CYPA fit with 
discrete alternative conformations using qFit. 
Alternative conformations are colored red, 
orange or yellow, with hydrogen atoms added  
in green. (b) Visualizing a pathway in CYPA: 
atoms involved in clashes are shown in spheres 
scaled to van der Waals radii, and clashes 
between atoms are highlighted by dotted lines. 
This pathway originates with the OG atom of 
Ser99 conformation A (99A) and the CE1 atom 
of Phe113 conformation B (113B), which clash 
to 0.8 of their summed van der Waals radii.  
The pathway progresses from Phe113 to Gln63, and after the movement of Met61 to conformation B introduces no new clashes, the pathway is 
terminated. A 90° rotation of the final panel is shown to highlight how the final move of Met61 relieves the clash with Gln63. (c) Networks identified 
by CONTACT are displayed as nodes connected by edges representing contacts that clash and are relieved by alternative conformations. The node number 
represents the sequence number of the residue. Line thickness between a pair of nodes represents the number of pathways that the corresponding 
residues are part of. The pathway in b forms part of the red contact network in CYPA. (d) The six contact networks comprising 29% of residues are 
mapped on the three-dimensional structure of CYPA.
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sets at cryogenic (100 K; 1.15-Å resolution) and room temperature 
(~273 K; 1.35-Å resolution) for the model Michaelis complex E:
NADP+:FOL (Supplementary Table 1). Consistent with the trends 
observed in a larger data set of 35 proteins taken from the Protein 
Data Bank (Fig. 2, Supplementary Table 2, Supplementary  
Figs. 4–6 and Supplementary Note), the room-temperature data 
set exhibits both more (157 versus 70) and longer (5.5 versus 4.3) 
pathways than the cryogenic data set.

The largest contact network from the room-temperature data 
set connects the functionally important FG loop to the NADP-
binding pocket and the adenosine-binding domain (Fig. 3). This 
long-range connection is mediated by the cofactor NADP mol-
ecule, which uniquely connects the two subdomains (Fig. 3a and 
Supplementary Table 3). The electron density map is consistent 
with discrete disorder around the cofactor (Fig. 4a), providing 
further evidence that the bound NADP molecule is a dynamic 
hub. To test this model of conformational coupling of the FG loop 
to the adenosine-binding domain, we examined the chemical shift 
perturbations of a mutation in the FG loop (G121V). The NMR 
data for G121V is consistent with this hypothesis32. Changes in 
15N and/or 1H chemical shifts between wild-type and the G121V 
mutant E:NADP+:FOL complexes propagate from the FG loop to 
the adenosine-binding domain (Fig. 4b). However, because no 
G121V X-ray structure has been published, the structural origin 
of these long-range effects is unclear.

Modeling a valine side chain at position 121 causes severe 
clashes with residues 13–15 and directly impinges upon the red 
ecDHFR contact network (Fig. 4c). The pattern of contacts in 
the network includes FG-loop residue 125 and extends to the 
adenosine-binding domain, resembling the chemical shift per-
turbations between wild-type and G121V ecDHFR. Long-range 
conformational coupling generally corresponds to chemical shift 
propagation, whereas local effects due to increased flexibility of 
the FG loop in the mutant complex are absent. These results sup-
port a physical model underlying the long-range chemical shift 
perturbations: the G121V mutation selectively stabilizes pre-
existing conformations that propagate from the FG loop to the  
adenosine-binding domain. Although the distance encompassed 
by the chemical shift changes is unexpectedly large, a single con-
tact network mediates the direction and extent of long-range 
conformational coupling. In addition to these long-range effects,  
the allosteric mutation G121V destabilizes the catalytically com-
petent closed conformation of the enzyme, stabilizes the occluded 
conformation and reduces kcat to approximately ~0.6% that of 
wild type33.

Several additional lines of evidence support this model. In 
molecular dynamics simulations, the dynamics of residue 121 are 
correlated with the dynamics of residues in the adenosine-binding 
domain34. Sampling of locally unfolded states identified a similar 

pattern of energetic coupling7. NMR spin relaxation experiments 
in the fast (picosecond-to-nanosecond) timescale found that the 
majority of residues with fast dynamics affected by G121V muta-
tion are located in the adenosine-binding domain32,35.

On the basis of our contact network analysis, we predicted that 
removing NADP would disrupt the conformational coupling of 
the FG loop to the adenosine-binding domain. To assess this idea, 
we compared 15N and 1H chemical shifts for the binary wild-
type and G121V E:FOL complexes. In the absence of NADP, we 
observed no major chemical shift perturbations for residues in 
the adenosine-binding domain in the folate binary complexes 
(Fig. 4d and data not shown). Thus, CONTACT provides testable 
hypotheses about how mutations shift conformational ensembles 
and induce long-range chemical shift perturbations observed in 
NMR experiments.

Altered conformational heterogeneity in N23PP/S148A ecDHFR
We used CONTACT to study a double N23PP and S148A mutant 
(N23PP/S148A) of ecDHFR, which was designed to destabilize the 
occluded conformation of the Met20 loop. This mutant populates 
a nearly wild-type structure as defined by a single cryogenic X-ray 
model36. Notably, the N23PP/S148A mutant has a reduced rate of 
hydride transfer (khyd). In contrast to the wild-type enzyme, the 
N23PP/S148A mutant displays no evidence of conformational 
exchange for most active-site residues on the millisecond time-
scale. However, faster (picosecond-to-nanosecond)-timescale  

Path length, 12 pairs

Path length, CT (a.a.)

P
at

h 
le

ng
th

, R
T

 (
a.

a.
) 12

10

8

6

4

2

0
121086420

Network size, 12 pairs

Network size, CT (a.a.)

N
et

w
or

k 
si

ze
, R

T
 (

a.
a.

) 30

25

20

15

10

5

0
302520151050

No. of networks, 12 pairs

No. of networks, CT

N
o.

 o
f n

et
w

or
ks

, R
T

12

10

8

6

4

2

0
121086420

No. of networks, all pairs

No. of networks, CT

N
o.

 o
f n

et
w

or
ks

, R
T

20

15

10

5

0
20151050

No. of paths, 12 pairs

No. of paths, CT
N

o.
 o

f p
at

hs
, R

T

103

103

102

102

101

101
100

100

No. of paths, all pairs

No. of paths, CT

N
o.

 o
f p

at
hs

, R
T

103

103

102

102

101

101
100

100

Network size, all pairs

Network size, CT (a.a.)

N
et

w
or

k 
si

ze
, R

T
 (

a.
a.

) 80
70

50
60

40
30

10
20

0
80706040 503010 200

Path length, all pairs

Path length, CT (a.a.)

P
at

h 
le

ng
th

, R
T

 (
a.

a.
) 12

10

8

6

4

2

0
121086420

Figure 2 | Characteristics of pathways and contact networks are sensitive 
to temperature. Changes to average pathway lengths, contact-network 
sizes, number of pathways and number of contact networks across 12 
closely matched high-resolution (left) or all matched (right) room-
temperature (RT) and cryogenic (CT) data sets are shown. Each data 
point represents paired data sets, with values corresponding to room 
temperature along the vertical axis and cryogenic temperature along the 
horizontal axis. Data points are expected to lie along a 45° line if there 
are no differences between the room and cryogenic temperature pairs. 
a.a., amino acids.
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backbone dynamics remain similar to those of wild type36. 
Although previous experiments indicated that the alteration of 
millisecond conformational dynamics in the mutant influenced 
the chemical step of catalysis, the underlying mechanisms were 
elusive. To further investigate the origins of the reduction in 
hydride transfer rate, we crystallized the N23PP/S148A mutant 
E:NADP+:FOL complex in the same crystal form as wild-type 
ecDHFR and collected a new room-temperature data set to  
1.38-Å resolution (Fig. 5, Supplementary Fig. 7 and 
Supplementary Tables 1 and 4).

Given the minimal structural effects of the mutation and the 
loss of observable millisecond conformational dynamics, we 
expected that CONTACT would reveal a large reduction in path-
ways and a lower number of residues participating in active-site 

contact networks. However, we found an ~500% increase in the 
number of all-atom pathways in N23PP/S148A (806) compared to 
in wild type (157). In both wild-type and N23PP/S148A ecDHFR, 
a large contact network connects the FG loop to the adenosine-
binding domain through the NADP cofactor. However, several 
residues of the Met20 loop were included in the mutant, but not 
wild-type, contact network (Fig. 5a). This result suggests that 
additional nonproductive motions surrounding the active site of 
N23PP/S148A ecDHFR can influence the relative positions of 
the NADP and FOL during the reaction cycle. A second large 
contact network (‘cyan’) in the N23PP/S148A mutant reveals an 
extensive set of connections across the central B-strand of the 
protein (Fig. 5a,b). Whereas in wild-type ecDHFR the connec-
tions across these B-strands are distributed over several contact 

Figure 3 | All-atom contact networks in ecDHFR. (a–c) Contact networks are displayed in surface rendering on the crystal structure of the room-
temperature E:NADP+:FOL complex (Protein Data Bank: 3QL3) above graphs of the largest contact networks. Nine all-atom contact networks comprise 
47% of the residues in the room-temperature model of ecDHFR. (a) The NADP+ cofactor is part of the red contact network, shown in red spheres. Folate, 
part of the yellow contact network, is shown in yellow spheres. The red network connects residue Phe125 in the FG loop to the adenosine-binding domain 
(Ser63–Gln65) exclusively through the NADP cofactor. Residues in the cyan (b) and green (c) contact networks broadly agree with those identified 
undergoing collective exchanges in Carr-Purcell-Meiboom-Gill relaxation dispersion experiments in a process that is distinct from the conformational 
exchange observed near the active site. Consistent with NMR data, the cyan and green contact networks do not contact active-site residues. The salmon 
and blue contact networks (c) are implicated in hinge motions. The orange contact network is implicated in changing hydrogen bonding patterns during 
the closed-to-occluded transition of the Met20 loop. The yellow contact network links active site residues Ile5 and Ile95 to the folate.
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an allosteric mutant (G121V) of ecDHFR.  
(a) 2mFo – DFc electron density map around the  
cofactor and substrate of the room-temperature 
E:NADP+:FOL complex contoured at 0.3S. 
Asymmetric density profiles around oxygen 
atoms (O7N, O3D) of the NADP molecule support 
multiple conformations. (b) Color (yellow, small, 
to red, large) and thickness of the backbone 
tube represents the magnitude of the weighted 
chemical shift differences obtained from wild-type (WT) and a G121V mutant E:NADP+:FOL complex from 0.1–1.0 p.p.m. Residues Ser63, Gln65, Gly67 and 
Thr68 in the adenosine-binding domain exhibit large chemical shift changes despite their location over 23 Å away from the mutation site. (c) Red contact 
network obtained from the room-temperature WT E:NADP+:FOL complex (also in Fig. 3a) in the same orientation. For illustrative purposes, the G121V 
mutation (cyan) is modeled on the WT molecule, abutting the red contact network. (d) Chemical shift differences between binary WT and G121V mutant E:
FOL complexes are localized to the site of mutation, confirming the central role of the NADP cofactor in coupling distant sites in ecDHFR.
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networks (Fig. 4b,c), the entire B-sheet forms a single contact 
network in N23PP/S148A ecDHFR. These results suggest that 
the mutant enzyme exhibits increased active-site heterogeneity 
despite the loss of detectable conformational averaging on the 
millisecond timescale.

To complement the results of CONTACT, we generated an iso-
morphous difference map between the wild-type and N23PP/
S148A data sets. This map revealed that the most prominent 
difference features were located immediately adjacent to the site 
of mutation, corresponding to the change in amino acid identity 
(Asn23 to Pro) or proline insertion (Fig. 5c). However, several 
other features surrounding the active site suggest that the muta-
tions had shifted the conformational distributions of neighboring 
residues. The presence of positive difference density without a 
corresponding negative difference density peak implies increased 
disorder in the mutant electron density map. A single model 
would fail to reveal any differences between the wild-type and 
mutant enzyme, as the mean positions are not altered. Rather, 
one major effect of the mutation is to broaden the conformational 
distributions relative to wild type, thus increasing frustrated, 
 nonproductive motions, involving competing low–free-energy 
conformations that cannot be mutually satisfied, in the mutant 
enzyme. Indeed, difference density around the Met20 loop resi-
dues Met20 and Trp22 revealed elevated conformational hetero-
geneity, and these residues participate in N23PP/S148A, but not 
wild-type, contact networks (Figs. 3 and 5a). Additional difference 
density is observed across the B-sheet contacting the C terminus. 
These results provide a further indication that the mutations can 

alter dynamic properties in distant regions of the molecule and 
that the N23PP/S148A mutation increases conformational het-
erogeneity observable by X-ray crystallography.

DISCUSSION
Our analysis reveals that conformations accessible in the crystal 
are sensitive to perturbations such as temperature and muta-
tions. Researchers behind recent experiments have postulated 
that intramolecular pathways of signaling exist within a protein 
structure24. The physical basis of these pathways and how they 
are insulated from and supported by the surrounding protein 
structure remains unclear. Whereas previous studies have focused 
largely on using the functional response to mutations to delineate 
the boundaries of intramolecular pathways, our results suggest 
that changes to contact networks as a function of data collec-
tion temperature may reveal new insights. For most proteins, we 
observed a decrease in the number and lengths of pathways at 
cryogenic temperature, a result implying that the broader confor-
mational ensembles of residues at room temperature go beyond 
‘filling the voids’ that are provided by expansion of the lattice6. 
Rather, networks of residues collectively sample alternative con-
formational substates. Some cryo-cooling procedures stabilize 
contact networks into specific conformational substates from 
those sampled at room temperature. It is important to note that 
exposure to X-ray radiation can introduce serious radiation dam-
age artifacts that may complicate these analyses. Radiation damage 
is dramatically reduced at cryogenic temperatures. New advances 
in serial femtosecond crystallography may mitigate some of these 
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concerns, retaining the advantages of noncryogenic collection 
with radiation damage protection that exceeds cryogenic tech-
niques37. Thus, new biophysical tools may help circumvent the 
complex trade-off between collecting data below the glass transi-
tion38, which alters conformational heterogeneity, and protecting 
against radiation damage.

In CYPA, a large contact network consists of residues that 
 collectively sample different conformations during the cata-
lytic cycle. A mutation (S99T) outside of the active site reduces 
the extent of the contact network, impairs the kinetics of inter-
conversion and reduces catalytic efficiency. In contrast, in ecDHFR,  
a mutant (N23PP/S148A) with a rigidified Met20 loop has the 
surprising effect of increasing nonproductive, frustrated confor-
mational heterogeneity in the active site. Indeed, frustration is 
thought to play a key role in native state dynamics39. The loss 
of detectable millisecond conformational exchange in the active 
site is due to a decrease in backbone flexibility of the Met20 loop. 
However, local anharmonic side-chain motions, which do not 
generate a large enough chemical shift difference or which occur 
on a timescale inaccessible for detection by a relaxation dispersion 
experiment, have likely increased around the active site and may 
inhibit progress toward the transition state. Further NMR experi-
ments, particularly for side-chain methyl groups, may provide 
additional insights.

Superficially, the S99T mutation of CYPA and the N23PP/
S148A mutation of ecDHFR are similar: both result in losses of 
catalytic activity and micro- to millisecond–timescale conforma-
tional dynamics. However, the CONTACT results offer distinct 
interpretations of these mutations. In CYPA, an overpacked core 
decreases the kinetics of interconversion between conformational 
substates and catalytic rate. In contrast, in ecDHFR, the stabili-
zation of Met20-loop dynamics increases heterogeneity in the 
active site, which likely decreases the rate of hydride transfer. 
Enzyme engineering and design efforts could target residues 
in contact networks for simultaneous sequence optimization 
based on the principle that network residues exert a substantial 
influence on the conformations at other contact-network sites. 
As protein design methods are optimized, the conformational 
dynamics necessary for catalytic cycles (for example, to occlude 
water or prevent product inhibition) will need to be defined and 
engineered. Recently, de novo designed enzymes appear to suffer 
from packing imperfections that allow too much conformational 
heterogeneity, suggesting that contact networks can be targeted 
to improve packing40.

As multiconformer and ensemble models are more widely 
adopted, several improvements to our method could reveal fur-
ther links between conformational flexibility and mechanism. 
Minor improvements in Rfree41 should be carefully evaluated 
against model fit, stereochemistry and, importantly, a biologist’s 
ability to develop structure-based hypotheses of biomolecular 
function. A particular challenge is to determine the extent of con-
formational coupling caused by steric mechanisms, as modeling 
of atomic interactions with a repulsive hard-sphere potential is 
an egregious simplification. As in ecDHFR, in which the NADP 
ligand connects distant sites, it is likely that nonprotein atoms 
play key roles in coupling distant sites; however, qFit does not cur-
rently automatically fit multiconformer small molecules or water 
molecules into the electron density. Despite these simplifications, 
CONTACT analysis of a multiconformer model from a single  

X-ray experiment complements NMR22, long-timescale molecular  
dynamics42, Rosetta sampling27 and comparison of multiple 
independent crystal structures21. Integrated analyses combining 
these approaches will help researchers to derive structural bases  
for conformational dynamics of proteins and to develop new  
hypotheses about how protein motions relate to function.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Protein Data Bank: 4KJL, 4KJK, 4KJJ.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
qFit. To model heterogeneous features in the electron density, 
qFit computes an optimal fit of 1–4 conformations per residue 
together with their occupancies19. No explicit information about 
nonbonded contacts is included in the initial assignment of 
conformations or occupancy. These conformations are subse-
quently connected, allowing for backbone heterogeneity into a 
multiconformer model. The multiconformer models can provide 
evidence of discrete heterogeneity of populations down to ~10%. 
qFit is available as a web server at http://smb.slac.stanford.edu/
qFitServer/qFit.jsp.

We used Phenix v.1.8-1069 to add hydrogens to qFit models 
and for subsequent conventional positional and ADP refine-
ment steps43. The qFit model is prepared for refinement with 
phenix.ready_set using the default parameters, which add riding 
hydrogens. The model is refined without manual intervention 
with phenix.refine using the flags “optimize_xyz_weight=true 
optimize_adp_weight=true main.strategy.individual_sites_real_
space=false main.number_of_macro_cycles=5.”

All other phenix.refine parameters are set to the default values, 
including the occupancy refinement parameter. For models with 
diffraction to greater than 1.55-Å resolution, we also include the 
flag “adp.individual.anisotropic=not water or element H.”

Because phenix.refine optimizes the hydrogen placement to the 
center of X-ray scattering rather than the likely nuclear position, 
hydrogens are stripped after refinement with phenix.pdbtools 
using the flags “modify.remove=element H.”

Hydrogens were then restored to their nuclear positions with 
phenix.ready_set using the default parameters.

Model building and calculation of pathways. The CONTACT 
algorithm (available at http://smb.slac.stanford.edu/CONTACT) 
calculates the most severe van der Waals clash between atoms 
from different residues that are separated by less than the sum 
of the van der Waals radii. This calculation takes into account all 
conformations of all pairs of residues with alternative conforma-
tions, excluding main-chain hydrogen bonded atoms (identified 
by MMDB) and pairs of cysteine residues. In evaluating a mul-
ticonformer model, we use the most severe 30% of these van der 
Waals overlaps to define the threshold value for clashes (Tstress). 
The 30th percentile of van der Waal’s overlap is an adjustable 
parameter in CONTACT. Functional biological insights may be 
obtained at other values of this parameter subject to considering 
resolution, data quality and crystal environment.

Starting at each residue in succession, if we have obtained a 
pathway up to residue i, a residue j is added to the pathway if the 
following two conditions are satisfied: (i) changing conforma-
tion ui at residue position i to conformation ri creates substantial 
(qTstress) overlap E on a conformation uj at residue position j: 
E(ri,uj) q Tstress and (ii) changing conformation uj to conforma-
tion rj at residue position j reduces the most substantial overlap: 
E(ri,rj) < E(ui,rj).

A pathway then continues for the pairwise interactions between 
j and a residue k that satisfies these conditions. This process is 
continued until no more van der Waals overlaps are introduced. 
The CONTACT algorithm can calculate pathways using either 
side-chain atoms only or both main-chain and side-chain atoms. 
The parameter Tstress can be varied (Supplementary Fig. 5). 
Although these alternative conformations need not be kinetically 

or thermodynamically mutually exclusive, the overlap of van der 
Waals radii indicates a likely coupling between the relative popu-
lations of conformations at each site.

Calculation of contact networks for CYPA and ecDHFR. 
Pathways identified by CONTACT are included in the network 
analysis of CYPA, WT ecDHFR and N23PP/S148A ecDHFR in 
the main text at the worst 30th percentile of van der Waals overlap, 
corresponding to 13%, 14% and 14% overlaps, respectively. We 
furthermore required that all clashes in a pathway were reduced to 
10% overlap or less. We built a network graph in which nodes were 
residues with edges indicating contacts identified by CONTACT. In 
analyzing the properties of these connected networks, we consid-
ered only subgraphs with more than three nodes and computed the 
edge weight as the number of distinct pathways between nodes.

Pathways and contact networks calculated from 35 pairs of cry-
ogenic and room-temperature data sets. We used qFit to rebuild 
35 pairs of protein models with available high-resolution (2.0-Å 
or better) X-ray diffraction data collected at room and cryogenic 
temperatures (Supplementary Table 3). The majority were crys-
tallized in nearly identical or very similar conditions. The data 
sets have Rmerge values indicating no unusual radiation damage6. 
When no Rfree set was deposited or could be extracted, we chose a 
test set using the standard parameters in phenix.refine. Structures 
were rebuilt using qFit and then refined as described above.

So that we could examine the effect of severity of van der 
Waals overlap on pathway discovery, the parameter Tstress was 
incremented in 5% steps starting at the worst 5th percentile of 
van der Waals overlaps. The search for additional pathways was 
terminated when its number exceeded 1,000,000. The effect of 
considering a higher percentile is that generally more van der 
Waals overlaps are identified but that these are also less likely 
to be relieved below the threshold to continue the pathway. The 
number of all-atom pathways and their lengths diverge substan-
tially between room and cryogenic temperatures, reaching a peak 
at the 30th–35th percentile overlap (Supplementary Fig. 5).  
For side chain–only pathways, the largest differences in the 
number of pathways between room and cryogenic temperature 
were observed at the 15th and 25th percentiles, but no significant 
difference was found for their lengths (Supplementary Fig. 2).

DHFR chemical shift perturbations. Backbone amide assign-
ments for the E:NADP+:FOL44 and E:FOL45 complexes of 
13C,15N-labeled or 13C,15N,2H-labeled WT and G121V ecDHFR 
were made using standard triple-resonance methods44. Weighted 
average of chemical shift differences were calculated using  
the formula
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ecDHFR X-ray crystallography. WT (E:NADP+:FOL) and 
N23PP/S148A (E:NADP+:FOL) were purified and concentrated 
to 30 mg/mL (ref. 36). Both WT and N23PP/S148A crystals were 
obtained by the hanging drop method by mixing protein 1:1 with 
well solution (100 mM HEPES, pH 7.5, 21% PEG8000, 200 mM 
MgCl2). Data were collected at BL 8.3.1 of the Advanced Light 
Source. For room-temperature data collection, the crystal is 
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mounted using a loop and covered with RT tubing (MITEGEN) 
with 15 ML of a 3:1 mixture of mother liquor to water in the tip. 
The cryojet is set to 273 K and moved such that it lies just outside 
the capillary tube. The beam is heavily attenuated during test 
shots to establish a data collection strategy. During data collec-
tion, the attenuation is reduced by removing all but the aluminum 
foil, and the radiation dose is spread across the large (600 MM ×  
200 MM × 100 MM) needle-shaped crystals by translation after 
each shot using a custom TCL script that interfaces with the 
standard BLUEICE interface. There are no unusual indications 
of radiation damage or problems with mosaic spread due to the 
translation: unit-cell parameters and scale factors are stable during 
data processing, and the overall Rsym is low. The cryogenic data 
set was collected after the addition of 10% PEG400 to the mother 
liquor. Data sets were processed using XIA2 (ref. 46) using the flag 

“-3dii” for XDS47 pipeline. Molecular replacement was performed 
using 1RX2 using Phaser48 through the Phenix GUI43.

43. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for 
macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 
213–221 (2010).

44. Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. & Wright, P.E. 
Backbone dynamics in dihydrofolate reductase complexes: role of loop 
flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 
(2001).

45. Falzone, C.J. et al. 1H, 15N and 13C resonance assignments, secondary 
structure, and the conformation of substrate in the binary folate complex of 
Escherichia coli dihydrofolate reductase. J. Biomol. NMR 4, 349–366 (1994).

46. Winter, G., Lobley, C.M.C. & Prince, S.M. Decision making in xia2.  
Acta Crystallogr. D Biol. Crystallogr. 69, 1260–1273 (2013).

47. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 

658–674 (2007).
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ONLINE METHODS
qFit. To model heterogeneous features in the electron density, 
qFit computes an optimal fit of 1–4 conformations per residue 
together with their occupancies19. No explicit information about 
nonbonded contacts is included in the initial assignment of 
conformations or occupancy. These conformations are subse-
quently connected, allowing for backbone heterogeneity into a 
multiconformer model. The multiconformer models can provide 
evidence of discrete heterogeneity of populations down to ~10%. 
qFit is available as a web server at http://smb.slac.stanford.edu/
qFitServer/qFit.jsp.

We used Phenix v.1.8-1069 to add hydrogens to qFit models 
and for subsequent conventional positional and ADP refine-
ment steps43. The qFit model is prepared for refinement with 
phenix.ready_set using the default parameters, which add riding 
hydrogens. The model is refined without manual intervention 
with phenix.refine using the flags “optimize_xyz_weight=true 
optimize_adp_weight=true main.strategy.individual_sites_real_
space=false main.number_of_macro_cycles=5.”

All other phenix.refine parameters are set to the default values, 
including the occupancy refinement parameter. For models with 
diffraction to greater than 1.55-Å resolution, we also include the 
flag “adp.individual.anisotropic=not water or element H.”

Because phenix.refine optimizes the hydrogen placement to the 
center of X-ray scattering rather than the likely nuclear position, 
hydrogens are stripped after refinement with phenix.pdbtools 
using the flags “modify.remove=element H.”

Hydrogens were then restored to their nuclear positions with 
phenix.ready_set using the default parameters.

Model building and calculation of pathways. The CONTACT 
algorithm (available at http://smb.slac.stanford.edu/CONTACT) 
calculates the most severe van der Waals clash between atoms 
from different residues that are separated by less than the sum 
of the van der Waals radii. This calculation takes into account all 
conformations of all pairs of residues with alternative conforma-
tions, excluding main-chain hydrogen bonded atoms (identified 
by MMDB) and pairs of cysteine residues. In evaluating a mul-
ticonformer model, we use the most severe 30% of these van der 
Waals overlaps to define the threshold value for clashes (Tstress). 
The 30th percentile of van der Waal’s overlap is an adjustable 
parameter in CONTACT. Functional biological insights may be 
obtained at other values of this parameter subject to considering 
resolution, data quality and crystal environment.

Starting at each residue in succession, if we have obtained a 
pathway up to residue i, a residue j is added to the pathway if the 
following two conditions are satisfied: (i) changing conforma-
tion ui at residue position i to conformation ri creates substantial 
(qTstress) overlap E on a conformation uj at residue position j: 
E(ri,uj) q Tstress and (ii) changing conformation uj to conforma-
tion rj at residue position j reduces the most substantial overlap: 
E(ri,rj) < E(ui,rj).

A pathway then continues for the pairwise interactions between 
j and a residue k that satisfies these conditions. This process is 
continued until no more van der Waals overlaps are introduced. 
The CONTACT algorithm can calculate pathways using either 
side-chain atoms only or both main-chain and side-chain atoms. 
The parameter Tstress can be varied (Supplementary Fig. 5). 
Although these alternative conformations need not be kinetically 

or thermodynamically mutually exclusive, the overlap of van der 
Waals radii indicates a likely coupling between the relative popu-
lations of conformations at each site.

Calculation of contact networks for CYPA and ecDHFR. 
Pathways identified by CONTACT are included in the network 
analysis of CYPA, WT ecDHFR and N23PP/S148A ecDHFR in 
the main text at the worst 30th percentile of van der Waals overlap, 
corresponding to 13%, 14% and 14% overlaps, respectively. We 
furthermore required that all clashes in a pathway were reduced to 
10% overlap or less. We built a network graph in which nodes were 
residues with edges indicating contacts identified by CONTACT. In 
analyzing the properties of these connected networks, we consid-
ered only subgraphs with more than three nodes and computed the 
edge weight as the number of distinct pathways between nodes.

Pathways and contact networks calculated from 35 pairs of cry-
ogenic and room-temperature data sets. We used qFit to rebuild 
35 pairs of protein models with available high-resolution (2.0-Å 
or better) X-ray diffraction data collected at room and cryogenic 
temperatures (Supplementary Table 3). The majority were crys-
tallized in nearly identical or very similar conditions. The data 
sets have Rmerge values indicating no unusual radiation damage6. 
When no Rfree set was deposited or could be extracted, we chose a 
test set using the standard parameters in phenix.refine. Structures 
were rebuilt using qFit and then refined as described above.

So that we could examine the effect of severity of van der 
Waals overlap on pathway discovery, the parameter Tstress was 
incremented in 5% steps starting at the worst 5th percentile of 
van der Waals overlaps. The search for additional pathways was 
terminated when its number exceeded 1,000,000. The effect of 
considering a higher percentile is that generally more van der 
Waals overlaps are identified but that these are also less likely 
to be relieved below the threshold to continue the pathway. The 
number of all-atom pathways and their lengths diverge substan-
tially between room and cryogenic temperatures, reaching a peak 
at the 30th–35th percentile overlap (Supplementary Fig. 5).  
For side chain–only pathways, the largest differences in the 
number of pathways between room and cryogenic temperature 
were observed at the 15th and 25th percentiles, but no significant 
difference was found for their lengths (Supplementary Fig. 2).

DHFR chemical shift perturbations. Backbone amide assign-
ments for the E:NADP+:FOL44 and E:FOL45 complexes of 
13C,15N-labeled or 13C,15N,2H-labeled WT and G121V ecDHFR 
were made using standard triple-resonance methods44. Weighted 
average of chemical shift differences were calculated using  
the formula
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ecDHFR X-ray crystallography. WT (E:NADP+:FOL) and 
N23PP/S148A (E:NADP+:FOL) were purified and concentrated 
to 30 mg/mL (ref. 36). Both WT and N23PP/S148A crystals were 
obtained by the hanging drop method by mixing protein 1:1 with 
well solution (100 mM HEPES, pH 7.5, 21% PEG8000, 200 mM 
MgCl2). Data were collected at BL 8.3.1 of the Advanced Light 
Source. For room-temperature data collection, the crystal is 

http://smb.slac.stanford.edu/qFitServer/qFit.jsp
http://smb.slac.stanford.edu/qFitServer/qFit.jsp
http://smb.slac.stanford.edu/CONTACT
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mounted using a loop and covered with RT tubing (MITEGEN) 
with 15 ML of a 3:1 mixture of mother liquor to water in the tip. 
The cryojet is set to 273 K and moved such that it lies just outside 
the capillary tube. The beam is heavily attenuated during test 
shots to establish a data collection strategy. During data collec-
tion, the attenuation is reduced by removing all but the aluminum 
foil, and the radiation dose is spread across the large (600 MM ×  
200 MM × 100 MM) needle-shaped crystals by translation after 
each shot using a custom TCL script that interfaces with the 
standard BLUEICE interface. There are no unusual indications 
of radiation damage or problems with mosaic spread due to the 
translation: unit-cell parameters and scale factors are stable during 
data processing, and the overall Rsym is low. The cryogenic data 
set was collected after the addition of 10% PEG400 to the mother 
liquor. Data sets were processed using XIA2 (ref. 46) using the flag 

“-3dii” for XDS47 pipeline. Molecular replacement was performed 
using 1RX2 using Phaser48 through the Phenix GUI43.

43. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for 
macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 
213–221 (2010).

44. Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. & Wright, P.E. 
Backbone dynamics in dihydrofolate reductase complexes: role of loop 
flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 
(2001).

45. Falzone, C.J. et al. 1H, 15N and 13C resonance assignments, secondary 
structure, and the conformation of substrate in the binary folate complex of 
Escherichia coli dihydrofolate reductase. J. Biomol. NMR 4, 349–366 (1994).

46. Winter, G., Lobley, C.M.C. & Prince, S.M. Decision making in xia2.  
Acta Crystallogr. D Biol. Crystallogr. 69, 1260–1273 (2013).

47. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 

658–674 (2007).
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Supplementary Figure 1 

 

Supplementary Figure 1 | Contrasting an ensemble model and a qFit model of E. Coli dihydrofolate reductase 
ternary complex (E:NADP+:FOL). We generated a phenix.ensemble_refinement model and a qFit model from a 
1.35Å room temperature wild-type ecDHFR (E:NADP+:FOL) data set (Supplementary Table 1). Using 
phenix.ensemble_refine with the protocol described by Gros and coworkers18, we performed a grid search that 
explored the parameters pTLS, wxray_coupled_tbath_offset, and tx. This procedure resulted in ensembles ranging in 
size from 28 to 167 models. The ensemble with the lowest Rfree (0.1917) contained 167 models (pTLS = 0.775, 
wxray = 4.375, tx = 1.5). The qFit model has Rfree = 0.1652, 2.65% lower than the ensemble model. To illustrate the 
differences in the models, five side chains of ecDHFR in a conformationally heterogeneous neighborhood are shown. 
(a) Results from phenix.ensemble_refinement with electron density calculated from 2mFo-Dfc coefficients 
corresponding to the ensemble model contoured at 1 σ (blue) and at 0.3 σ  (green). While the density contours for 
Leu110, His114, and Glu154 seem well-defined, even at 0.3 σ, these side chains exhibit considerably heterogeneity 
in the ensemble. (b) The qFit model, shown for comparison in the same density, models these side chains with 1 
(Leu110), 2 (His114) or 3 (Glu154) conformers that explain the spread in the electron density. The different rotamers 
of Leu156 are clearly distinguishable in the density, and modeled accordingly by qFit. These discrete states of 
Leu156 are difficult to observe in the ensemble model. Similarly, the density of Tyr128 is well-represented by the qFit 
multi-conformer model. The three Tyr128 conformations are furthermore supported by significant spread in the main-
chain density (not shown). 
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Supplementary Figure 2 

 

Supplementary Figure 2 | Flowchart of our algorithm to identify pathways. We first rebuild a starting protein model 
with qFit to identify alternate conformations in the electron density.  Next, hydrogen atoms are added to the qFit 
model. At the ‘Label’ stage, alternate conformations in the qFit model are assigned a label A, B, etc. We use Monte 
Carlo Minimization for label assignment, i.e. labels are optimized (re-assigned) to obtain globally internally consistent 
alternate conformations by minimizing clashes within labels. This is followed by multiple rounds of conventional 
positional and atomic displacement parameter crystallographic refinement with phenix.refine. Then we apply 
CONTACT to calculate pathways based on overlapping van der Waals radii. Finally, residues that share pathways 
are grouped into networks. 
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Supplementary Figure 3 

 

 
Supplementary Figure 3 | Example of frequencies of steric clash relief by residue in CYPA. The top panel shows the 
fraction of trial paths that dead-end at residue i because it is unable to relieve a steric clash. In this case, the entire 
path is invalidated. The bottom panel shows the fraction of final paths that include residue i. 
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Supplementary Figure 4 

 
Supplementary Figure 4 | A scatterplot of the average number of conformers per residue versus networks size for 
35 matched pairs of room temperature and cryogenic data sets. The average number is 2.5 conformers/residue per 
network at RT vs. 2.7 at cryogenic temperature (two-sided t-test p=0.02). For the 12 matched pairs that diffract to 
within 0.2A the average number of alternate conformers/residue per network is 3.1 for RT vs. 2.8 for cryo (p = 0.02) 
We find a small correlation between the size of a network and the average number of conformers (Spearman Rank 
Correlation Coefficient = 0.14, p < 0.01). 
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Supplementary Figure 5 
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Supplementary Figure 5 | Summary statistics of pathways and networks in 35 matched pairs. Room temperature 
(red bars) and cryogenic temperature (blue bars) are indicated in each data set. We calculated the average size of 
networks, the number of pathways and the average length of pathways for each data set at percentiles of van der 
Waals overlaps ranging from 0.05 to 0.5 (horizontal axes).  The graphs depict averages of these statistics for the 70 
data sets. Statistics in the left column above were obtained with main- and side chain (MC+SC) interactions in 
CONTACT turned on, while the right column depicts side chain only interactions (SC Only).  Overall, the graphs 
strongly indicate that for both MC+SC and SC Only interactions the size of networks and the length and number of 
pathways is greater in RT data than in cryogenic data across all levels of van der Waals overlaps. 
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Supplementary Figure 6 

Supplementary Figure 6 | Atomic contacts in cryogenic and room temperature RNase Sa. (a) The cryogenic data 
set 1lni exhibits an alternate main-chain conformation in molecule A around residues A28-A33. The main 
conformation of this fragment is modeled by qFit, but it incorrectly models the alternate Ser31 and omits alternate 
conformations for Gln32 and Asp33 owing to large main-chain amplitude. (b) The alternate main-chain fragment is 
absent in the room temperature data set 1rgg. Alternate conformations for these residues result in a large number of 
additional pathways. In the qFit models Tyr30 is involved in 28% of pathways in 1lni vs. 1% in 1rgg, which propagate 
across the active site to neighboring residues Arg65 and Tyr86 that in turn are involved in more pathways in 1lni than 
in 1rgg (25% vs. 6% resp. 56% vs. 33%). When the correct ‘B’ fragment is inserted in the qFit model, the number of 
pathways exceeds the threshold. Despite the large difference in pathways, networks at cryogenic (c) and room 
temperature (d) are similar and in both cases comprise nearly all residues in the molecule. Cryocooling of RNAse Sa 
may increase static disorder within the crystal. This behavior may reflect restraints in the lattice or the details of the 
glass transition specific to these crystals. 
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Supplementary Figure 7 

A B 

 

 

Supplementary Figure 7 | Additional views of ecDHFR and difference maps. (a) The ecDHFR ternary complex is 
shown in ribbons with folate and NADP+ rendered in sticks.  The site of the proline mutation and insertion (residue 
23) for the N23PPS148A mutant is indicated by a sphere. (b) Alternative coloring for Fig. 5c with yellow indicating 
positive and blue indicating negative difference density. 
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Supplementary Table 1 

 N23PPS148A RT WT RT WT CRYO 

PDB 4KJL 4KJK 4KJJ 

Temperature(K) 273 273 100 

Resolution range (Å) 50  - 1.38 (1.42  - 1.38) 50  - 1.35 (1.4  - 1.35) 50  - 1.15 (1.19  - 1.15) 

Space group P 21 21 21 P 21 21 21 P 21 21 21 

Unit cell 34.64 45.76 98.71  34.32 45.51 98.91 34.04 44.82 98.2 

Total reflections 120725 242424 264643 

Unique reflections 32720 31891 51212 

Multiplicity 3.7 (2.5) 7.6 (3.4) 4.9 (1.2) 

Completeness (%) 98.88 (91.85) 91.58 (48.73) 94.42 (64.25) 

Mean I/sigma(I) 17.74 (2.17) 21.65 (2.42) 22.58 (5.82) 

Wilson B-factor 11.73 12.07 7 

R-sym 0.044 (0.451) 0.067 (0.451) 0.046 (0.281) 

R-factor 0.1476 (0.1854) 0.1255 (0.1864) 0.1314 (0.1229) 

R-free 0.1788 (0.2307) 0.1652 (0.2888) 0.1545 (0.1805) 

Number of atoms 6125 6182 5967 

macromolecules (qFit) 2831 2875 2679 

macromolecules (single 
model) 

1356 1350 1350 

ligands 160 162 160 

water 173 167 346 

Protein residues 157 157 153 

RMS(bonds) 0.011 0.013 0.014 

RMS(angles) 1.32 1.57 1.88 

Ramachandran 
favored (%) 

98 98 98 

Ramachandran 
outliers (%) 

0 0 0 

Average B-factor 12.3 12.4 8 

macromolecules 11.1 11.3 6.6 

solvent 29.4 29.3 19.5 

Supplementary Table 1 | X-ray crystallography data collection and refinement statistics. E:NADP+:FOL complexes at 
room temperature (N23PP/S148A and WT ecDHFR) and at cryogenic temperature for WT ecDHFR. Note that the 
total number of atoms includes all atoms included in the model, but the macromolecule, ligand, and water counts 
include only those atoms refined individually and not hydrogens refined in riding positions. 
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Supplementary Table 2 

 Room Temperature Cryogenic Temperature 

     All-Atom paths SC Only Paths     All-Atom Paths SC Only Paths 

 ID res R/Rfree 

re-refined 

R/Rfree  

qFit 

Number Length Number Length ID res R/Rfree 

re-refined 

R/Rfree 

qFit 

Number 

 

Length Number Length 

1 1a2p 1.5 11.9/13.6 11.5/15.5 26 2.31 42 2.33 1b2x 1.8 16.1/21.0 15.8/20.9 38 2.45 43 2.35 

2 2dn2 1.25 13.9/15.4 14.5/16.5 95 3.01 104 2.53 1a3n 1.8 15.5/19.7 15.6/19.8 70 2.49 69 2.32 

3 1bzr 1.15 11.7/13.3 13.4/16.4 26 3.19 58 3.22 1a6g 1.15 12.9/14.3 14.4/17.1 35 3.60 33 2.85 

4 1bz6 1.2 9.4/10.6 10.7/13.4 216 8.24 85 3.81 1a6k 1.1 12.7/13.7 13.8/16.2 29 3.55 36 3.14 

5 1bzp 1.15 11.4/13.1 13.0/16.2 89 6.44 69 3.17 1a6n 1.15 13.2/14.7 14/15.8 8 2.13 13 2.23 

6 1bx8 1.4 14.1/18.0 13.1/17.1 7 2.14 8 2.00 1bx7 1.2 14.6/16.4 15/18.4 24 3.71 14 2.00 

7 3tgp 1.31 17.0/21.8 17.3/22.1 - - 135 5.80 1ctq 1.26 14.3/17.8 14.9/18.7 203 6.86 96 4.54 

8 1fdn 1.84 12.9/15.9 12.6/16.1 5 2.20 2 2.50 2fdn 0.94 9.6/10.3 12.5/13.5 7 2.14 10 2.60 

9 4gcr♯ 1.47 27.4/31.2 18.4/24.3 9 2.78 17 2.00 1gcs 2 17.8/22.8 17.2/23.8 26 2.77 27 2.56 

10 1gdu 1.07 11.0/12.5 10.8/13.6 91 5.04 69 2.62 1gdq 0.93 11.6/12.3 11.7/12.9 10 2.40 18 2.56 

11 1hbz 1.5 8.8/11.8 9.6/12.2 226 5.60 132 2.88 1gwe 0.88 9.2/9.8 9.9/10.6 - - 183 3.63 

12 1i1x 1.11 9.6/11.2 10.4/12.3 438 8.45 103 3.34 1i1w 0.89 9.6/10.2 10.3/11.1 - - 146 4.82 

13 2jcw 1.7 14.5/16.5 14.7/16.7 28 6.11 39 2.36 1jcv 1.55 15.8/18.4 15.2/18.5 37 4.30 38 2.84 

14 1jxu 0.99 21.7/23.8 22.0/23.8 8 2.88 6 2.50 1jxt 0.89 22.1/23.4 21.7/23.3 6 2.00 9 2.11 

15 1kwn 1.2 10.5/11.4 11.2/12.6 51 4.78 88 3.57 1ly0 1.36 13.0/15.2 12.7/14.8 88 4.44 78 2.45 

16 1l63 1.75 14.1/17.5 14.3/18.3 13 2.31 23 2.22 1lw9 1.45 15.5/19.3 15.8/18.8 4 2.50 4 2.50 

17 1l90 1.75 14.8/19.5 18.8/23.3 8 2.00 15 2.13 3dmv 1.65 15.9/19.1 15.9/19.8 1 2.00 4 2.00 

18 1rgg 1.2 10.2/11.3 11.0/13.2 283 8.21 168 5.04 1lni 1 12.0/12.9 13.1/14.6 1179 9.43 143 5.10 

19 1plc 1.33 12.7/16.1 13.0/16.6 702 9.68 111 5.32 1pnc 1.6 12.1/17.1 14/19.3 13 2.85 20 2.45 

20 1xvm 1.1 13.7/14.8 14.6/16.7 84 4.75 68 2.93 1pq5 0.85 9.8/10.2 11.3/12.2 21 2.81 29 2.93 

21 1tgc 1.8 15.8/19.0 16.3/21.3 14 2.57 10 2.00 1tgt 1.7 17.0/20.9 16.5/21 10 2.00 14 2.00 

22 1wme 1.5 10.9/13.1 11.2/14.0 195 6.41 128 2.78 1wmd 1.47 12.1/14.8 13.1/15.9 185 4.36 136 2.74 

23 1x6p 1.63 14.3/16.5 14.3/16.8 24 3.04 24 2.29 1x6q 1.51 16.1/19.0 15.2/20.2 12 2.50 16 2.19 

24 1yv6 1.78 14.6/19.5 14.6/19.5 12 2.50 15 2.13 1yv4 1.51 13.3/18.2 13/17.5 15 2.67 22 2.64 

25 3qyu 1.54 15.2/17.2 14.0/18.2 21 2.48 17 2.59 2bit 0.99 11.1/15.2 12.2/16.8 12 2.42 12 2.50 

26 2dfc 1.19 10.0/10.3 11.1/12.7 1011 11.12 115 4.69 2dfb 1.11 11.7/12.3 13.3/14.8 18 2.72 30 2.57 

27 3btk 1.85 16.3/19.2 16.0/18.7 42 3.38 64 2.64 2ftl 1.62 18.0/19.9 17.8/20 89 4.78 69 2.29 

28 2wt4 1.8 13.5/17.4 13.4/17.6 92 4.05 57 2.67 2wlt 1.4 11.5/13.6 12.9/15.4 65 4.23 58 2.41 

29 3djg 1.8 14.6/19.5 14.8/19.6 66 2.55 84 2.31 3djj 1.1 10.9/11.5 12.8/14.5 39 2.28 62 2.37 

30 3k0n 1.39 11.8/15.3 12.1/15.1 102 4.85 85 3.65 3k0m 1.25 12.9/14.8 13.2/15.2 29 3.17 35 2.89 
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31 3k0o 1.55 10.4/13.9 10.9/14.0 24 2.96 28 2.64 3k0p 1.65 14.9/17.8 15/17.8 16 2.31 25 2.52 

32 3kyw 1.1 13.6/15.6 13.3/15.3 14 3.43 24 2.67 3kyv 1.1 12.0/13.1 11.8/13.4 9 4.00 22 2.95 

33 4lzt 0.95 10.6/11.8 11.7/12.9 11 2.27 24 2.67 3lzt 0.93 9.9/10.7 10.7/12.1 24 2.88 31 2.35 

34 3zsm 1.25 10.8/14.2 11.7/15.4 36 3.83 55 3.16 3zsl 1.08 15.3/17.9 16.8/19.8 112 6.05 61 3.92 

35 4j5o 1.11 12.3/15.0 12.5/16.1 211 7.16 102 3.45 3s6e 0.95 11.6/12.7 12.1/13.5 93 4.22 79 3.35 

Supplementary Table 2 | Refinement and pathway statistics of 35 matched pairs of protein models collected at room 
and cryogenic temperature. The pathway statistics were calculated at the 30th percentile of van der Waals overlaps. 
Entries `-` in the table indicate that the number of pathways exceeded 1,000,000. The average Rfree of qFit models 
was slightly worse (0.9%) than re-refined deposited models. However, the geometry of the qFit models was slightly 
better, with average bond length RMSDs improved by 0.0005Å and average bond angle RMSDs improved by 0.085 
degrees. #Our automated re-refinement protocol led to unusually high R/Rfree values for the 4gcr PDB model, but 
visual inspection of the resulting model revealed no gross inaccuracies or omissions.  
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Supplementary Table 3 

Network Residues 

Red 7,8,14,18,44,63,64,65,98,99,102,105,113,115,125, NAP 

Cyan 4,78,79,101,103,104,106,107,108,126,127,128,158 

Green 109,112,133,135,137,154,155,156 

Magenta 138,139,141,153 

Yellow 5,94,FOL 

Orange 25,26,147 

Salmon 34,36,38 

Grey 40,52,54 

Blue 58,60,84 

Supplementary Table 3 | Residues in WT E:NADP+:FOL networks. Colors refer to Fig. 3. 
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Supplementary Table 4 

Network Residues 

Red 9,10,13,20,21,22,24,27,43,44,45,48,94,98,99,102,113,115,117,118,119,124,NAP 

Cyan 4,8,93,109,110,111,112,114,133,134,135,136,137,138,139,140,141,152,153,154,155,156,159 

Purple 63,74,75,76,77,78,80,81,82,103,106 

Grey 50,54,59,72 

Supplementary Table 4 | Residues in N23PP/S148A E:NADP+:FOL networks. Numbering corresponds to WT. 
Colors refer to Fig. 5. 
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Supplementary Note 

X-ray data collection temperature perturbs contact networks 

To examine the effect of X-ray data collection temperature on conformational heterogeneity, we 
used CONTACT to analyze matched pairs of room and cryogenic temperature data sets 
(Supplementary Table 4). Because of the combined effect of reduced heterogeneity and 
radiation damage protection, most cryogenic datasets diffract to higher resolution than the 
corresponding room temperature datasets.  Since the ability to resolve discrete alternative 
conformations depends on the resolution of diffraction19,20, we first examined 12 pairs of high 
resolution (better than 1.5! Å) data sets that diffracted to within 0.2 Å, as was the case with 
CypA. We found that pathways are 54% longer (3.43 vs. 5.27 residues, p-value = 0.03) at room 
temperature than at cryogenic temperature, and contact networks are over two times larger 
(11.94 vs. 5.63 residues, p-value = 0.01) (Fig. 2, left column). Networks at room temperature 
on average contain slightly more alternate conformations per residue than those at cryogenic 
temperature (3.1 vs. 2.8, p = 0.02). (Supplementary Fig. 4.)! Consistent with a recently 
proposed idea that protein domains are subdivided into multiple, functionally distinct groups of 
residues (“sectors”), our analysis found that domains are rarely globally coupled24. Rather, 
domains are generally subdivided into a small number of contact networks that are more 
numerous (6 vs. 4.7) but smaller in size at cryogenic temperature (Fig. 2, left column).   
Next, we expanded this analysis to examine 35 matched pairs of datasets diffracting to better 
than 2.0Å resolution. We found that the number of residues in pathways (4.3 vs 3.3, p-value = 
0.01) and contact networks (11.1 vs. 7.3) was greater at room temperature (Fig. 2, right 
column and Supplementary Fig. 5). This further supports the idea that cryogenic cooling can 
have a more widespread effect than simply reducing harmonic motion. A notable exception to 
this trend is a pair of RNase Sa datasets (1rgg/1lni) (Supplementary Table 4). The number of 
pathways at cryogenic temperature is nearly 5 times that of room temperature despite only a 
modest improvement in resolution (1.0Å vs 1.2Å) and ability to resolve alternative 
conformations. However, the residues implicated in these pathways are mostly shared between 
the two datasets (Supplementary Fig. 6).  
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