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To increase the power of X-ray crystallography to determine not
only the structures but also the motions of biomolecules, we
developed methods to address two classic crystallographic prob-
lems: putting electron density maps on the absolute scale of e−/Å3

and calculating the noise at every point in the map. We find that
noise varies with position and is often six to eight times lower
than thresholds currently used in model building. Analyzing the
rescaled electron density maps from 485 representative proteins
revealed unmodeled conformations above the estimated noise for
45% of side chains and a previously hidden, low-occupancy inhib-
itor of HIV capsid protein. Comparing the electron density maps in
the free and nucleotide-bound structures of three human protein
kinases suggested that substrate binding perturbs distinct intrinsic
allosteric networks that link the active site to surfaces that recog-
nize regulatory proteins. These results illustrate general approaches
to identify and analyze alternative conformations, low-occupancy
small molecules, solvent distributions, communication pathways,
and protein motions.

electron number density | refinement against perturbed input data |
protein dynamics | molecular motions | Ringer

For the last half-century, X-ray crystallography has played a
critical role in elucidating the 3D structures of biological mol-

ecules. Although crystalline enzymes are often active and crystal-
line proteins show many dynamic features, X-ray diffraction data
are generally interpreted in terms of a single dominant model.
Efforts to characterize the full range of motions accessible in
protein crystals have been hampered by uncertainty about whether
weak electron density represents small populations of alternative
conformations or noise from experimental and model errors (1–3).
The standard practice of calculating electron density on a relative
scale compounds this problem, because different maps cannot
be compared directly to identify potentially meaningful features
missed by the simplifications of structural models.
Electron density maps are contoured on a relative scale, be-

cause X-ray crystallographic diffraction experiments cannot
measure a key, forward-scattered reflection that is swamped by
the transmitted beam. The structure factor of this reflection,
F000, is equal to the total number of electrons in the unit cell,
including the contribution from disordered solvent (4). Because
crystals differ in composition, the absence of F000 puts each map
on a different scale. The standard practice to circumvent this
limitation is to represent electron density in relative units of the
rms deviation of map values from the mean density (1). These
“σ-scaled” maps are sufficient for structural modeling, but it is
difficult to determine which density features are signal vs. noise
because the σ unit has little to do with the uncertainty in the
electron density. It is also impossible to quantitatively compare
features in different maps, because the scale and offset relating σ
to the absolute electron density varies among crystals of different
molecules or even of the same molecular species with different
symmetries or crystallization solvents.
Here we introduce computational methods to place electron

density maps on a common absolute scale and to calculate the
noise at each position in the map. By applying these methods to

a diverse set of 685 structures from the Protein Data Bank
(PDB), we find that noise varies with position and is substantially
lower than the currently accepted threshold for modeling. Above
the noise, in a range of electron density that is generally ignored,
high-resolution electron density maps contain evidence for un-
modeled, low-occupancy ligands, side-chain rotamers, and ensem-
ble shifts. These results illustrate the utility of defining the absolute
scale of electron density for characterizing protein conformational
distributions.

Results
Converting Electron Density to the Absolute Scale. To enable quan-
titative comparisons among electron density maps, we developed
a computational method to calculate F000 and render maps on the
absolute scale in units of e−/Å3 (Materials and Methods). These
electron number density (END) maps were calculated by scaling
the experimental structure factors (Fobs) to structure factors cal-
culated from the model (Fcalc, which are intrinsically on an ab-
solute scale) and adding the average electron density of the crystal
(including bulk solvent and the ordered model) to each map voxel.
In contrast to σ-scaled maps, where zero corresponds to the av-
erage electron density, in END maps, zero corresponds to vacuum
(Fig. S1). This automated computational method closely repro-
duced independently estimated F000 values (5, 6) (Table 1), veri-
fying the accuracy of the approach.

Significance

This work presents computational solutions to two long-
standing problems in protein structure determination using
X-ray crystallography. Together, these methods reveal that the
electron density threshold for discovering alternative protein
and ligand conformations is much lower than the standard
cutoff for structural modeling. Three broad applications illus-
trate that the features present in weak electron density can
reveal important, unanticipated conformational heterogeneity
in proteins. The methods introduced here help convert X-ray
crystallography from the principal technique to obtain “snap-
shots” of biological molecules to an approach that also can
reveal the signatures of molecular motions that are potentially
important for function. These advances have broad implications
for developing drugs and understanding protein mechanisms.

Author contributions: P.T.L., J.M.H., J.S.F., and T.A. designed research; P.T.L., J.M.H., and
J.S.F. performed research; P.T.L. and J.M.H. contributed new reagents/analytic tools; P.T.L.,
J.M.H., J.S.F., and T.A. analyzed data; and P.T.L., J.M.H., J.S.F., and T.A. wrote the paper.

The authors declare no conflict of interest.

Data deposition: The atomic coordinates for the HIV capsid-CAP-1 complex have been
deposited in the Protein Data Bank, www.pdb.org (PDB ID code 4NX4).

*This Direct Submission article had a prearranged editor.
1Present address: California Institute of Quantitative Biosciences (QB3) and Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco,
CA 94158.

2To whom correspondence should be addressed. E-mail: tom@ucxray.berkeley.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1302823110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1302823110 PNAS Early Edition | 1 of 6

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302823110/-/DCSupplemental/pnas.201302823SI.pdf?targetid=nameddest=SF1
http://www.pdb.org
http://www.rcsb.org/pdb/explore/explore.do?structureId=4NX4
mailto:tom@ucxray.berkeley.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302823110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302823110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1302823110


Calculating Noise at Each Map Position. With the electron density
maps on the absolute scale, we searched for an approximate
electron density threshold to distinguish signal from noise. In
contrast to recent theoretical treatments (7–9), the noise level at
every position in the unit cell was determined by empirically
propagating errors from the structure factors into the electron
density map. In this general analytical approach, which we call
refinement against perturbed input data (RAPID), errors in the

experimental measurements [σ(Fobs)] or the model (jFobs − Fcalcj)
(10) were used to add simulated noise to Fobs before rerefining
the structure. Over several trials using different random number
seeds, the RMS change in electron density observed at each point
in the map in response to the changes in Fobs was used to cal-
culate a RAPID map of the spatial distribution of errors in the
electron density (Fig. S2A). To evaluate the typical levels of noise,
we calculated END and RAPID maps for 685 representative
protein structures at 1.0- to 3.5-Å resolution. Across these struc-
tures, the average value for the RAPID map based on model error
(0.12 e−/Å3) is higher than the corresponding average experi-
mental error (0.037 e−/Å3) in all but two cases (Fig. 1A and Fig.
S2B). RAPID maps reveal that noise is variable throughout the
unit cell and highest under molecular features (Fig. S2C).
Comparing the contour in END maps equivalent to the 1 σ

contour typically used for model building revealed that the 1 σ
contour varies by over twofold between 0.4 and 1.0 e−/Å3 (Fig.
1A). Thus, 1 σ in standard maps of different molecules can rep-
resent substantially different numbers of electrons, and the same
contours in different σ-scaled maps generally are not comparable.
END maps overcome this problem. Importantly, the maximum
RMS errors estimated by the RAPID procedure were generally
six- to eightfold lower than σ (Fig. 1B), indicating that the stan-
dard 1 σ threshold for model building overestimates the noise in
electron density.

Modeling a Partially Occupied Inhibitor. To exemplify the utility of
the newly defined noise distributions to search for molecular
features, we explored the 1.50-Å resolution END and RAPID
maps of the HIV capsid protein bound to a drug-like molecule
(PDB ID 2PXR). In standard maps on a relative scale, the ligand

Table 1. Comparison of F000 calculated for END maps to F000
determined by other methods

System Method F000 (e− × 104) Difference (%)

T4 lysozyme* END map 13.1 7.2
Analytical† 12.2

IL-1β‡ END map 9.57 3.1
Analytical§ 9.28

Scorpion Toxin II{ END map 2.44 5.6
Theoreticaljj 2.31

*PDB ID 3DKE.
†Bulk solvent contribution to F000 calculated using the measured density of
the crystallization conditions (1.20 g/cc or 0.391 e−/Å3) and the percent of
unit cell occupied by bulk solvent (39.1%) (5).
‡PDB ID 2NVH.
§Bulk solvent contribution to F000 calculated from the measured density of
crystallization conditions (0.383 e−/Å3) and the percent of unit cell occupied
by bulk solvent (64.7%) (6).
{PDB ID 1AHO.
jjStructures were obtained from a molecular dynamics simulation in which 12
copies of the unit cell were preserved (25). The theoretical F000 was calcu-
lated by dividing the sum of all atomic numbers by 12.

Fig. 1. END and RAPID maps define the absolute scale and
noise level of electron density and expose a hidden ligand. (A)
Histogram of END values corresponding to standard modeling
threshold (1 σ above the mean; gray) in 485 high-resolution
(≤1.7 Å) structures. Mean values for jFo-Fcj RAPID maps rep-
resent errors from the model (red), and mean values for σ(Fobs)
RAPID maps represent experimental error (rose). (B) The 1 σ
threshold overestimates noise by six-to eightfold. Ratio of the
1 σ value to the average value of the noise due to model errors
determined by the RAPID procedure for 685 representative
structures in the Protein Data Bank. (C) Standard σ-weighted
map contoured at 1 σ (blue mesh) shows weak, uninterpretable
electron density features in the CAP-1 binding site of HIV capsid
protein. (D–F) Electron density for END (orange mesh; 0.5 e−/Å3)
and RAPID (gray solid; 0.5 e−/Å3) maps shows where CAP-1 binds
to the HIV capsid protein. The lowest occupancy protein con-
formation (10%) resembles the original model. The ligand was
built in two conformations (at 50% and 40% occupancy). Shifts
in His62 and Gln63 accommodate ligand binding.
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was not apparent at the conventional 1 σ threshold in the elec-
tron density of the complex (Fig. 1C and Fig. S3B). The inhibitor
binding mode was identified in solution using NMR (PDB ID
2JPR) (11), which provides a check on the potential influence of
model bias (12). In contrast to the discontinuous 1 σ density, the
END map contoured at 0.5 e−/Å3, more than twice the mean
RAPID noise level of 0.24 e−/Å3, revealed continuous electron
density for the inhibitor, as well as shifts in the HIV capsid
protein that accompany binding (Fig. 2 D–F and Fig. S3B). In-
cluding the low-occupancy ligands and alternate loop conformations
reduced the average B-factors for the protein atoms in the binding
site and slightly improved the R and Rfree values of the model (Fig.
S3). One of the conformations in the refined crystallographic
model of the inhibitor superimposes well on the NMR model (Fig.
S3C). This example supports the conclusion that the gap between
the standard 1 σ modeling threshold and the RAPID map noise
level contains information about low-occupancy structures.

Alternative Side-Chain Conformations. To gauge the amount of
protein side-chain structural polymorphism detectable above the
noise, we calculated END and RAPID maps for a set of 485
structures at 1.7-Å resolution or better. This resolution cutoff
was chosen to ensure that discrete alternative side-chain con-
formations could be resolved. To automatically identify small
populations of unmodeled conformations, we used the program
Ringer (13) to systematically sample the electron density around
side-chain dihedral angles (χ angles; Fig. S4 A and B). Peaks in
the END maps falling below the noise level defined by the
RAPID maps were ignored. We applied Ringer to 113,285 side
chains unbranched at χ1 and found evidence for peaks at rota-
meric positions for 98.7% of residues, suggesting that sampling
down to the noise level detects both alternate conformations and
hydrogens (Fig. 2A and Fig. S4C). Above 0.4 e−/Å3, the discovery
rate of unmodeled peaks was higher for the unbranched side-
chains than for alanine residues, which lack a Cγ, suggesting that
these features reflect alternative side-chain conformations (Fig. 2B).
To test this idea, we built an additional χ angle from the sec-

ondary peaks identified by Ringer (Fig. 2C). A 3D histogram of
secondary (unmodeled) χ1 and added-χ2 peaks identified by
building from the unmodeled χ1 peak center produced a checker-
board pattern that is enriched in rotameric positions (Fig. 2D; P <
0.0001). In contrast, a similar analysis of alanine peaks above the
noise showed a tripartite χ1 distribution expected for staggered
hydrogens and a random pseudo-χ2 distribution, corresponding to
noise (Fig. 2E). Strikingly, eliminating alanine peaks below 0.4 e−/Å3

suppressed nearly all of the features on the χ1:pseudo-χ2 plot
(Fig. 2F). These results suggest that the END method placed the
maps on a common scale (cf. Fig. 2 E and F), that RAPID maps
capture the major sources of noise (hydrogen signature is visible
in Fig. 2E), and that features above 0.4 e−/Å3 are enriched for
heavy atoms over hydrogens (cf. Fig. 2 D and F) and reflect small
populations of alternative conformations. Using this approach,
which involves directly sampling the electron density rather than
building and refining alternative structures, we detected unmod-
eled, rotameric structural heterogeneity at 45% of side-chains.

Allosteric Communication Networks in Protein Kinases.Recent studies
have emphasized that specific regions of enzymes undergo cou-
pled motions that define functional transitions (14–17). Protein
kinases, for example, are crucial signaling enzymes that catalyze
the transfer of the ATP γ-phosphate to specific substrates, switching
the activities of thousands of proteins in the cell. As such, a critical
problem is to determine how allosteric regulators influence protein-
kinase active sites. To address this question, we explored the con-
sequences of ATP binding on the conformational ensembles of
protein kinases visualized by high-resolution X-ray crystallography.
The effect of Mg2+-ATP binding on kinase motions was iden-

tified and analyzed using END and RAPID maps of calmodulin-

activated human death associated protein kinase (DAPK) (18),
cyclin-dependent kinase 2 (CDK2) (19), casein kinase 2α (CK2α)
(20), and ephrin type-A receptor 3 (EphA3) (21) (Table S1).
Changes in side-chain ensembles between maps of free and ATP-
bound forms were calculated using X-ray data from the PDB.
Side-chain ensemble shifts were not detected in the published

Fig. 2. END and RAPID maps reveal signal for unmodeled, low-population
side-chain conformations. (A) Histogram of unmodeled, secondary χ1 elec-
tron density peaks from Ringer plots above the noise (red) and above 0.4 e−/
Å3 (blue). (B) The discovery rate, calculated as the ratio of the number χ1
secondary electron density peaks (normalized by the total number of χ1
side-chains) to alanine primary electron density peaks (normalized by the
total number of alanines), plotted vs. the lower electron density cutoff (e−/
Å3) in END maps of 485 1.0- to 1.7-Å resolution structures. Values above 0.4
e−/Å3 enrich for alternative, low-occupancy structural features. (C) Unmod-
eled conformations were detected by identifying electron density correla-
tions in dihedral space. Peaks in the electron density (gray mesh; 0.4 e−/Å3)
above the noise (red solid; 0.4 e−/Å3) were identified by sampling χ1 (pink
ring) and χ2 (purple ring) at idealized heavy-atom bond lengths from the χ1
secondary peak (orange sphere). (D) Correlated unmodeled χ1 and χ2 peaks
for side-chains unbranched at χ1 in 485 high-resolution structures. 3D his-
togram of correlated secondary χ1 Ringer peaks and primary χ2 Ringer peaks
built from the unmodeled secondary χ1 peaks for 31,086 side-chains un-
branched at χ1. The nonrandom, low-energy, checkerboard distribution
suggests that unmodeled side-chain conformations are common. (E) For
alanine residues in 485 high-resolution structures, histogram of χ1 and
pseudo-χ2 Ringer peaks above the RAPID noise. The columns of peaks at
χ1 = 60°, 180°, and 240° suggest that the hydrogens are staggered, the noise
peaks are distributed randomly around the pseudo-χ2, and there is no
missing source of noise that swamps the hydrogen signals. The strong cross-
peaks in the left, right, and front corners come from the backbone amide
hydrogen. (F) For alanines in the set of 485 structures, the histogram of χ1
and pseudo-χ2 Ringer peaks above 0.4 e−/Å3. The suppression of features
compared with E provides confidence that the END maps were on a similar
scale and the 0.4 e−/Å3 threshold effectively enriches for alternative con-
formations of longer side-chains.
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molecular models (Fig. S5), but rather using the correlation
coefficients (ccs) of the Ringer (13, 22) plots of the END maps
(Fig. 3 and Figs. S6 and S7). Shifts were confirmed in the elec-
tron density by visual inspection. ATP binding coupled residues
across the active site cleft of all four enzymes, as observed in
NMR studies of cAMP-dependent protein kinase (PKA) in
which Mg2+-ATP alters the distribution and transitions of al-
ternative kinase structures before phosphotransfer (14, 16). In
DAPK, CDK2, and CK2α, however, the changes associated with
ATP binding propagated in distinct directions and resulted in
connected cascades across more than 20 Å.
Although these kinases share 24–29% sequence identity and

adopt the same fold, the structural perturbation pathways differ.
The majority of the side-chain ensemble rearrangements in DAPK
are communicated from the ATP binding site toward the cal-
modulin sensing surface in the C-lobe (23) (Fig. 3 A and E and
Figs. S6A, S7A, and S8A), whereas the majority of the CDK2
perturbations reach toward the cyclin binding surface on the back
of the N-lobe (Fig. 3 B and F and Figs. S6B, S7B, and S8B) (24).
Similarly, ATP binding to CK2α results in coupled ensemble

shifts that extend through the N-lobe to the distinct recognition
site for the CK2β regulatory subunit (Fig. 3C and Figs. S7C and
S8C). Assembly of the heterotetrameric CK2 holoenzyme stabilizes
the active conformation of CK2α (20). In contrast, ensemble shifts
upon ATP binding are localized to the nucleotide-binding site in
EphA3 (Fig. 3D and Figs. S7D and S8D), which is activated not
by “remote control,” but rather by release of the juxtamembrane
segment from the active site, which causes localized intramolecular
conformational changes (21).

Discussion
In contrast to the view that X-ray crystal structures provide static
snapshots of proteins, a variety of studies have emphasized the
signatures of dynamics in crystallographic images. Weak electron
density features visualized after the end of standard refinement
in the high-resolution crystal structures of proline isomerase, Ras
and dihydrofolate reductase, for example, have recently revealed
functional ensembles that matched expectations from NMR data
and mutagenesis (15, 22, 25). Modeling these additional con-
formations has a minor effect on conventional parameters such

Fig. 3. ATP perturbs different allosteric networks in human protein kinases (A) DAPK, (B) CDK2, and (C) CK2α, but causes localized ensemble shifts in (D) EphA3.
Residues with Ringer ccs < 0.85 (spheres) between free and ATP-bound (orange surface) electron density maps indicate shifts in the side-chain ensembles or
rotamer flips. Side-chains that cluster within 4 Å of the nucleotide (red) show allosteric networks connected to the active site. Other clusters are shown in different
colors. The surfaces show atoms in the regulatory protein that are within 4 Å of the kinase. Representative Ringer plots for key residues from the nucleotide-free
(blue line) and bound (red line) END maps for (E) DAPK and (F) CDK2. Ringer plots for the apo (blue fill) and bound (red fill) RAPID maps are shown, as well, to
indicate the distribution of noise. Residues illustrate the coupled ensemble shifts in the allosteric pathways for each protein in response to Mg2+-ATP binding, as
well as the corresponding residue in the other protein as a control. The perturbations connect the kinase active site to distinct regulatory surfaces.
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as Rfree, suggesting the need for alternate metrics and methods of
detecting and representing conformational heterogeneity (26,
27). To better evaluate the extent of polymorphism in the PDB
and develop tools to assess structural heterogeneity, we de-
veloped the END and RAPID methods to place the electron
density on an absolute scale and calculate the noise at each
position in a map. In a set of 685 representative structures, we
found that noise varies with position, is dominated by errors in
the model, and is generally six to eight times lower than the
current threshold for modeling. In the HIV capsid–capsid inhibitor
1 (CAP-1) complex, weak electron density above the noise could be
modeled with multiple ligand conformations.
In END and RAPID maps of high-resolution structures, 45%

of side-chains showed electron density peaks with the stereo-
chemical signatures of small populations of alternative, low-
energy conformations. These signals were apparent above 0.4 e−/Å3

in the electron density and were not the result of explicit mod-
eling of additional conformations. The estimate of 45% of side
chains with unmodeled alternative conformations is ninefold
higher than the ∼5% of structurally polymorphic residues in
current crystallographic models and also higher than the 18% of
polymorphic residues detected using σ-scaled electron density
(13). Because this procedure ignores backbone shifts and con-
firmations with signals below 0.4 e−/Å3, these results represent
a lower bound on the amount of structural polymorphism in
protein crystals. The increase in the number of alternative con-
formations detected reflects access to signal that is gained using
END maps. The signals for these conformations not only cor-
respond mostly to side-chains populating rotameric angles, but
they also occur above the local noise levels in RAPID maps,
indicating that they reflect dynamic structural features rather
than noise.
To explore how regulatory signals propagate to the active site

of protein kinases, we probed how a perturbation at the active
site, the binding of the ATP substrate, alters conformational
distributions in DAPK, CDK2, CK2α, and Eph3a. As a measure of
ensemble shifts that is more sensitive than available models, we
calculated the correlation coefficient of the electron density
distribution around each side-chain dihedral angle between the
free and ATP-bound structures. Strikingly in these four kinases,
these calculations revealed ensemble shifts coupled to the ATP
that link the active site to distinct functional regulatory surfaces.
These distinct shifts are candidates for intrinsic allosteric com-
munication networks between the active and regulatory sites.
Although DAPK, CDK2, and CK2α were not in the active com-
plex with the cognate regulatory protein, these patterns suggest
how substrate binding can perturb the potential intrinsic commu-
nication networks before interactions with regulators. The distinct
structural responses of DAPK, CDK2, and CK2α to ATP binding
suggest that networks and motional boundaries can differ in ho-
mologous proteins along their functional trajectories. Recent
studies have emphasized that residues that covary in evolution
define regions in protein families that correspond to functional
sectors, raising the possibility that physical communication net-
works also are conserved (28). In contrast, analysis of END maps
reveals that nucleotide binding to the protein kinases DAPK,
CDK2, and CK2α generates distinct ensemble shifts that couple to
different regulatory surfaces.
By enabling direct access to structural ensembles, END and

RAPID maps provide tools to explore the roles of structural het-
erogeneity in macromolecular function and evolution. END and
RAPIDmaps enable a unified quantitative interpretation of electron
density that reveals not only low-occupancy ligands but also dy-
namic structural features and alternative solvent constellations.
By analogy to the Beer–Lambert–Bouguer Law in spectroscopy,
which defines the relationship between molecular concentration
and optical absorbance, END maps report the concentration of
scattering electrons at each point in space. A current challenge

remains to automatically model alternative conformations (3, 26, 27).
This information about structural distributions in crystals, when
critically analyzed, offers increased power to X-ray crystallography
to facilitate inhibitor development, visualize structural ensembles,
and connect macromolecular motions to functions. These capa-
bilities open windows into biologically relevant information not
included in current X-ray structural models.

Materials and Methods
Estimation of F000 for END Maps. F000 was obtained by summing the total
number of electrons in the coordinate model and the bulk solvent. An ab-
solute scale-and-offset map for the coordinate model was obtained using
the ATMMAP mode of SFALL from the CCP4 Suite11. The mean value of this
map is <ρatoms>. The structure factors of the bulk solvent mask from phenix.
refine12 were used to estimate <ρbulk>. The histogram of the density from
these structure factors has a mean value of zero and two peaks: one above
the mean, corresponding to solvent density, and one below the mean,
corresponding to vacuum. The shift required to move the negative peak to
0.0, the true vacuum level, is <ρbulk> (Fig. S1A). To obtain the END map,
volume-scale map coefficients were specified from phenix.refine. Once the
map was calculated from absolute-scale coefficients, adding the quantity
<ρatoms> + <ρbulk> to each map voxel converts the map to absolute electron
number density (e−/Å3).

The robustness of this method was evaluated by examining F000 obtained
over the course of automated building and refinement (Fig. S1C). Most of
the deviations in F000 arise from changes in the bulk solvent mask, but F000
converges with increasing phase accuracy, as indicated by the likelihood
weight (figure of merit). Previously, F000 was measured analytically for
crystals of IL-1β and T4 lysozyme (10, 11). Our END method reproduced these
values within 3% and 7%, respectively (Table 1). In addition, we refined
a model of scorpion protein toxin (sPT) against structure factors calculated
from the average electron density of an all-atom molecular dynamics sim-
ulation of the crystal (29, 30). The sum of the total number of electrons for
the structure and all solvent molecules in this simulation was within 5% of
the END method F000. The reproducibility of the END method was evaluated
with a test set of hen egg white lysozyme crystallized over a range of res-
olutions (Fig. S1D). F000 remained fairly consistent across this set (average of
9.9 × 104 ± 0.69 × 104 e−/Å3 or 14% rmsd). These comparisons show that the
END method for estimating F000 is accurate and generally applicable.

RAPID Maps. The theoretical foundation for RAPID maps arises from the
fundamental property of Fourier tranforms that the errors in the coefficients
propagate into the errors in the function. The errors in electron density, σ(ρ),
arise from measurement errors σ(Fobs) and modeling errors (Fobs vs. Fcalc) (10).
To account for the effects of measurement errors, Fobs was perturbed by
σ(Fobs), and a model was refined against these data. This process revealed
the magnitude of the phase error due to σ(Fobs) and the corresponding
change in ρ at each map voxel. The RMS change in ρ from this procedure
yielded the contribution of σ(Fobs) to σ(ρ). Fobs may also be changed by an
amount proportional to σ(Fobs) by simply adding noise and measuring the
response induced in the map.

The contribution from phase error was defined as the change in the phase
from a refined model in response to a change in target amplitude (Fobs).
Absolute-scale values of Fobs, σ(Fobs), and Fcalc were obtained from the
phenix.refine run used to generate the END map. Fobs was perturbed using
SFTOOLS in the CCP4 suite using the following formula:

Fobs′ = Fobs + r • δ;

where r is a random deviate chosen from a Gaussian distribution with mean =
0 and SD = 1, and δ is either σ(Fobs) or jFobs − Fcalcj. Negative values of F′obs
were set to zero. The new set of F′obs was used to refine the atomic coor-
dinates in phenix.refine, generating a new 2mF′obs-DFcalc map (ρ′). This
process was repeated five times, using different random number seeds for r.
The original map (ρ) was subtracted from the five new maps (ρ′), and the
RAPID map value σ(ρ) was defined as the RMS of all five ρ′ − ρ values at each
voxel (Fig. S2A). Five replicates were found sufficient to obtain σ(ρ) to within
35% of the σ(ρ) value from 500 replicates in the test case of PDB ID 2I4A. We
note that this represents the uncertainty in the value of σ(ρ) and not a 35%
error in ρ. For situations where σ(ρ) must be more precise than ρ itself, 50 or
more replicates may be desirable.

To ensure that σ(ρ) was of appropriate magnitude, we confirmed that the
average value of each model-based RAPID map correlated well with the RMS
value of the original mFobs-DFcalc map (Fig. S2B), as expected from Parseval’s
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theorem (31). In all but two examples with unusually high σ(Fobs), the average
σ(ρ) obtained by RAPID using σ(Fobs) was lower than that from jFobs − Fcalcj.
To explore the distribution of noise throughout the RAPID map, we used
Ringer (13) to sample side-chains unbranched at χ1 (Fig. 1C). Unlike the
secondary peaks in the END maps, the primary peaks in RAPID maps were
more randomly distributed, as indicated by high troughs between the slight
rotameric peaks (Fig. S2C). Further analysis showed the rotameric peaks
were predominately located under heavier atoms (e.g., oxygen and sulfur)
but were still well below the signal level of the corresponding voxel in the
END map. Secondary noise peaks showed no enrichment in χ angle space.

Phenix version 1.6.1 (32) and CCP4 version 6.1.3 (33) were used for cal-
culations of both END and RAPID maps. A script to generate the maps is
available at http://bl831.als.lbl.gov/END/RAPID/.

Preparation of Test Sets. Structures and X-ray data were obtained from the
PDB (34). For the 485 X-ray crystal structures in the1.0- to 1.7-Å resolution
set, the R values were less than 0.22, and mutual sequence identity was
<95%. For the 1.0- to 3.5-Å resolution structures, the R values were less than
0.1 times the resolution, the mutual sequence identity was <30%, and the
molecular weight was <80,000 kDa. The list of PDB IDs can be found at
http://ucxray.berkeley.edu/ringer/TestSets/testSets.htm.

Coordinate and structure factor files were converted and refined for five
macrocycles using phenix.refine. When not available, Rfree flags were auto-
matically generated. In addition to default parameters, automatic optimi-
zation of weights was enabled, as were anisotropic B-values for data better
than 1.6-Å resolution. Hydrogens were added to models. The model for the

complex of CAP-1 with HIV capsid protein was built manually with Coot and
subjected to further refinement with phenix.refine.

Ringer Analysis. END and RAPIDmaps were analyzed using Ringer 2.0 (13) and
Chimera 1.4.1 (34), which has been adapted to sample absolute scaled maps
and dynamically filter peaks above noise from RAPID maps. Unless otherwise
stated, default parameters were used. The code for Ringer can be accessed
at http://ucxray.berkeley.edu/ringer.htm. To identify connected clusters in
the protein kinases, ensembles of side-chains were automatically built using
qFit (26). The backbones of the qFit models for the free and ATP-bound
structures were superimposed. All conformations of each residue, in both
free and bound, identified by Ringer as shifting as a result of binding (cc <
0.85) were considered for clustering. Clusters were defined such that the all
residues in a cluster are within 4 Å of each other using the python-cluster
module version 1.1.b3 distributed by SourceForge. The 0.85 cc and 4-Å dis-
tance were chosen because they automatically identified the dynamic net-
work characterized previously in proline isomerase (15).
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Fig. S1. The bulk solvent contribution to F000. (A) The contribution of the bulk solvent to F000 was calculated from the shift (arrow) required to move the
negative electron density peak (blue) to zero (cyan). The negative density peak represents empty space in the map. The mean of the shifted plot (black dashed)
was used to obtain the bulk solvent contribution to F000. This example shows the distribution of solvent electron density for tRNA-guanine transglycosylase
[Protein Data Bank (PDB) ID 3BLD]. (B) Unequal contributions of bulk solvent to F000 occur in different structures. The bulk solvent distribution changes from
structure to structure due to differences in mother-liquor composition and solvent volume. Representative distributions are shown from the coiled-coiled
domain of coronin-1A (green; PDB ID 2AKF) and cholesterol oxidase (magenta; PDB ID 3GYI) and tRNA-guanine transglycosylase. (C) F000 converges during
model refinement. The total F000 value (black line) converges along with the phases—measured by the figure of merit (magenta)—and how well the model fits
the data—as measured by Rwork (blue) and Rfree (green). Factoring the total F000 into the bulk solvent (dots) and model (dashes) components indicates the
majority of the instability results from the bulk solvent optimization during refinement. This example shows the refinement of the structure of ubiquitin (PDB
ID 1UBQ) starting with a poly-alanine model of residues 36–93 from human ubiquilin 3 (PDB ID 1YQB; 36% sequence identity; 0.77 C-α rmsd). The side-chains
were built using the sequence from 1UBQ with Automated Refinement Procedure/weighted Automated Refinement Procedure (ARP/wARP) software (1). The
result of each of these macrocycles was subjected to the standard procedure for calculating END maps. (D) Values of F000 are stable as a function of resolution.
The F000 values (red), as well as the bulk solvent (triangles) and model components (stars), are consistent across 68 hen egg white lysozyme data sets with
a range of resolutions. All 68 structures have 100% sequence identity and are in the P43212 space group with unit cell edges of 78.76 ± 0.43 × 78.76 ± 0.43 ×
37.53 ± 0.50 Å. The phase accuracy as measured by figure of merit (magenta) and model quality as measured by Rwork (blue) and Rfree (green) are plotted for
comparison. A subset of structures (cyan) with highly similar crystallization conditions—50–100 mM sodium acetate and 3–8% (wt/vol) sodium chloride—
confirms that the variation in F000 across the set is due primarily to differences in solvent composition in the crystals.

1. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3(7):1171–1179.
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Fig. S2. Refinement against perturbed input data (RAPID) maps contain the noise distribution of electron number density (END) maps. (A) Flowchart de-
scribing the steps of calculating RAPID maps. The RAPID map contains a point-by-point estimate of the noise at each position in the unit cell. The noise is due to
random errors in the X-ray data and the model phases. (B) Errors in the structural model dominate the errors in the electron density map. Average RAPID map
value where the noise is from mFo-DFc (model-based; red) or from σ(Fobs) (experiment-based; blue) plotted against the root mean square (RMS) values of mFo-
DFc. The model-based RAPID map values correlate strongly with the RMS of mFo-DFc, as predicted by Parseval’s theorem. The experiment-based errors are
generally lower than the corresponding model-based errors, indicating that errors or missing components in the models contribute more than experimental
error to the noise in electron density maps. The values for 685 structures between 1.0- and 3.0-Å resolution are shown. (C) Noise is distributed randomly around
protein structural models. Histogram of the highest (primary; red) and second-highest (secondary; blue dashed) Ringer peaks around side chains unbranched at
χ1 in RAPID maps 485 structures from 1.0- to 1.7-Å resolution show noise peaks distributed nearly evenly between rotameric and nonrotameric positions (1).
Compare with the distribution of signal in END maps in Fig. 2A.

1. Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins 40(3):389–408.
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Fig. S3. Electron density for the HIV capsid protein–capsid inhibitor 1 (CAP-1) complex contains evidence for the bound inhibitor. (A) Fo-Fc difference map in
the binding site. Green represents positive density (2.0 σ) corresponding to features missing from the model and red represents negative density (−2.0 σ) in
which the model is overrepresented. (B) Refined END (orange) and RAPID (gray) maps with both conformations of CAP-1 included in the refinement. Both
maps are contoured at 0.5 e-/Å2. The R/Rfree values dropped from 0.1474/0.2032 to 0.1467/0.1944. The average B-factor for residues 61–64 in the loop above the
CAP-1 binding site decreased from 64.27 to 44.93 Å2. The real-space correlation coefficient of this region of the model increased substantially from 0.351 to
0.613. (C) Superposition of CAP-1 from the crystal structure (cyan) and the NMR structure (purple). The orientation of the head group is almost identical. The
tail is oriented in a slightly different direction, which is precluded by intermolecular packing in the crystals. The rms deviation between the NMR conformation
for the ligand and the closest conformation B from the X-ray structure is 4.54 Å. The rmsd of residues 61–64 is 1.46 Å.

Fig. S4. Nonrandom features above the noise and below the 1 σ threshold provide evidence for unmodeled side-chain ensembles. (A) Signal and noise visu-
alized simultaneously in an electron density map, where signal is from an END map (gray mesh; 0.25 e−/Å3) and noise is from a RAPID map (red solid; 0.25 e−/Å3).
The example shown is Met344 from PDB ID 3BON (1.20-Å resolution). The purple alternate conformation was not included in the original model and was added
to guide the eye. (B) Signal and noise quantified using Ringer to sample electron density in an END Map (black) and a RAPID map (red shading) as a function of
side-chain dihedral angle. Inset: Representative residue described in A with χ1 angle sampling (purple). (C) Unmodeled secondary Ringer peaks for side chains
unbranched at χ1 in electron density slices from END maps of 485 structures between 1.0- and 1.7-Å resolution. Peaks are enriched in rotameric positions above
the 0.4 e−/Å3 cutoff determined to enrich for low-occupancy heavy atoms (black). Peaks between 0.2 and 0.4 e−/Å3 (green) reflect signals from hydrogens, as well.
Noise peaks are more common between 0.0 and 0.2 e−/Å3 (blue). There are no peaks below 0.0 e−/Å3 (magenta). (D) Values for 1 SD (σ) above the average of
electron density (gray) and average RAPID noise resulting from mFo-DFc (model-based; red) or from σ(Fobs) (experiment-based; pink) are influenced by the
resolution of the data. Lower resolution maps (≥2.0-Å resolution; Upper) have broader features with generally lower σ and noise values.
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Fig. S5. Current models do not adequately capture ensemble changes. Residues in the deposited structural models of (A) death associated protein kinase
(DAPK), (B) cyclin-dependent kinase 2 (CDK2), (C) casein kinase 2α (CK2α), and (D) ephrin type-A receptor 3 (EphA3) displaying residues that change rotamers
on nucleotide binding. The primary conformation of each side chain was placed in a bin defined by the rotamers from the Richardson library (1). A rotamer
change was defined as a shift in rotamer bins. Ball-and-stick residues represent the cluster including nucleotide (orange surface).

1. Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins 40(3):389–408.

Fig. S6. Difference map generated by subtracting the measured structure factors (Fobs) for the apo-kinase from those of the kinase bound to ATP for (A) DAPK
and (B) CDK2. Values below the combined RAPID noise maps, calculated using √φ2apo + φ2bound, were not displayed. Difference density is contoured at 0.5
(red) and −0.5 e−/Å3 (blue). In comparing the density shifts in (A) the DAPK structure to the shifts in (B) the CDKII structure, the conclusions from the Ringer
analysis are born out. For example, Leu148 in DAPK shows positive (red) density not captured by the current model (green arrow) representing an unmodeled
alternate conformation in the bound structure. The lack of negative (blue) density in that space indicates that the ensemble is broader in the bound con-
formation. When Leu148 in DAPK is compared with the corresponding Asn136 in CDKII, the dynamic nature of the bound DAPK ensemble is further em-
phasized. Qualitatively similar shifts in ensembles can be seen in Arg150 and Glu107 in DAPK. A backbone shift can also be seen in Thr137 of CDK2. Leu296 in
CDK2 does undergo a rotamer change on ATP binding, a rearrangement that compensates for the backbone shift. In another example, both Leu67 and Arg126
in CDK2 undergo rotamer shifts on ATP binding, indicated by the positive density (red) around the bound conformation (red) and vice versa for apo-CDK2.
However, the corresponding residues in DAPK, Leu93 and Phe138, respectively, have nearly superimposed density. Two other representative residues in this
area, Ile144 and Leu164, also are fairly similar in apo- and ATP-bound DAPK, with some small rearrangements at the tips of the side-chains. In contrast, the
corresponding residues in CKD2, Ile35 and Leu148, respectively, show larger shifts on ATP binding. Taken as a whole, ATP binding causes more changes in
electron density in the front of the DAPK protein that switches on calmodulin binding and less in the back of the N-lobe. In contrast, ATP binding to CDK2
causes larger electron density shifts in the back of the N lobe where the cyclin engages the kinase.
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Fig. S7. ATP perturbs the candidate allosteric network in (A) DAPK, (B) CDK2, and (C) CK2a but causes localized ensemble shifts in (D) EphA3. Analogous back
views of these structures are provided for comparison with Fig. 3. Residues with Ringer correlation coefficients (ccs) < 0.85 (spheres) between free and ATP-
bound (orange surface) electron density maps indicate shifts in the side-chain ensembles or rotamer flips. Residues that cluster within 4 Å of the nucleotide
(red) show the side chains modulated by binding. Other clusters are shown in different colors. The surfaces show atoms in the regulatory protein that are
within 4 Å of the kinase.
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Fig. S8. Regulated complexes of (A) DAPK, (B) CDK2, (C) CKα, and (D) EphA3. The kinase subunits are represented as gray ribbons. The regulatory proteins are
shown in a surface representation.

Table S1. Overview of kinase structures

Kinase Bound cofactors Resolution (Å) Refined R/R-free Space group PDB code

DAPK None 1.5 0.125/0.180 P212121 1JKS
ATP analog + Mn 1.8 0.168/0.205 1IG1

CDK2 None 1.8 0.188/0.229 P212121 1HCL
ATP + Mg 1.9 0.190/0.231 1HCK

CKα None 1.6 0.158/0.192 P212121* 3AT2
ATP analog + Mg 1.3 0.131/0.155 3NSZ

EphA3 None 1.6 0.164/0.189 P21 2QO2
ATP analog + Mg 1.61 0.172/0.214 2QO7

*These crystals were not isomorphous (3AT2: a = 51.64, b = 78.42, c = 79.82; 3NSZ: a = 49.38, b = 62.03, c =
117.06).
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