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Abstract

Many proteins have small molecule-binding pockets that are not easily detectable in the ligand-

free structures. These cryptic sites require a conformational change to become apparent; a cryptic 

site can therefore be defined as a site that forms a pocket in a holo structure, but not in the apo 

structure. Because many proteins appear to lack druggable pockets, understanding and accurately 

identifying cryptic sites could expand the set of drug targets. Previously, cryptic sites were 

identified experimentally by fragment-based ligand discovery, and computationally by long 

molecular dynamics simulations and fragment docking. Here, we begin by constructing a set of 

structurally defined apo-holo pairs with cryptic sites. Next, we comprehensively characterize the 

cryptic sites in terms of their sequence, structure, and dynamics attributes. We find that cryptic 

sites tend to be as conserved in evolution as traditional binding pockets, but are less hydrophobic 
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and more flexible. Relying on this characterization, we use machine learning to predict cryptic 

sites with relatively high accuracy (for our benchmark, the true positive and false positive rates are 

73% and 29%, respectively). We then predict cryptic sites in the entire structurally characterized 

human proteome (11,201 structures, covering 23% of all residues in the proteome). CryptoSite 

increases the size of the potentially “druggable” human proteome from ~40% to ~78% of disease-

associated proteins. Finally, to demonstrate the utility of our approach in practice, we 

experimentally validate a cryptic site in protein tyrosine phosphatase 1B using a covalent ligand 

and NMR spectroscopy. The CryptoSite web server is available at http://salilab.org/cryptosite.

Graphical abstract
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Introduction

Biological function often involves binding of proteins to other molecules, including small 

ligands and macromolecules. Usually, these interactions occur at defined binding sites in the 
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protein structure (1). Knowledge of binding site location has a number of applications (2). 

For example, in drug discovery, binding site localization is often the starting point followed 

by virtual screening or de novo ligand design (3); in cell biology, it facilitates prediction of 

protein substrates, especially when the target protein cannot be reliably related to homologs 

of known function (4).

Binding sites, particularly those for small molecules, are often located in exposed concave 

pockets, which provide an increased surface area that in turn maximizes intra-molecular 

interactions (5). A concave pocket can already exist in a ligand-free structure of a protein; 

such binding sites are called here binding pockets. Sometimes, however, a binding site is flat 

in the absence of a ligand and only forms in the presence of a ligand (ie, induced fit) or only 

opens transiently for short periods of time (ie, conformational selection); such binding sites 

are called cryptic sites (Fig. 1A) (6–11).

Many computational methods have been developed to localize binding pockets on proteins. 

These methods are based on a variety of principles (12): (i) concavity of the protein surface, 

(ii) energy functions including van der Waals terms, (iii) geometrical and physico-chemical 

similarity to known binding pockets, and (iv) composite approaches that use a combination 

of different features (13–15). Unfortunately, only ~60% of protein structures were judged to 

have pockets larger than 250 Å3 (many of which may not be druggable), and could 

potentially be subjected to ligand discovery based on binding pocket knowledge (16, 17).

In contrast to binding pockets, cryptic sites are not easily detectable in a ligand-free structure 

of a protein because they by definition require ligand-induced conformational changes to 

become apparent. For example, large and flat interfaces between interacting proteins were 

considered undruggable, although several examples of protein interfaces undergoing a 

conformational change coupled with binding a small molecule were recently described (18, 

19). Similarly, allosterically regulated sites are sometimes not apparent in the absence of a 

small-molecule allosteric regulator (e.g., p38 MAP kinase (7) and TEM1 β-lactamase (9)).

Currently, the only approaches to cryptic site discovery are exhaustive site-directed small-

molecule tethering by experiment (20–22), long time-scale molecular dynamics simulations 

by computation (6, 8, 23, 24), flexible docking (25, 26), and computational tools for 

identification of small-molecule binding hot spots (10, 27–30). All of these approaches are 

time-consuming, expensive, and/or not always successful. Therefore, there is a need for an 

accurate, automated, and efficient method to predict the location of cryptic pockets in a 

given ligand-free protein structure. Such a method would offer several advantages. First, a 

cryptic site may be the only suitable binding site on the target protein; for example, when 

activation is required and thus the active site cannot be targeted, the active site is not 

druggable, or active site ligands need to be avoided due to adverse off-target effects. Second, 

binding sites may be discovered on structures determined or computed at only moderate 

resolution.

Here, we analyze known cryptic sites and develop a method for predicting cryptic site 

locations to address a number of questions: What are the sequence, structure, and dynamics 

attributes of a cryptic site, especially in comparison to binding pockets? Can we accurately, 
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automatically, and efficiently predict cryptic sites? How common are cryptic sites? Are they 

common enough to significantly expand the druggable proteome? Can we predict cryptic 

sites in specific proteins of clinical significance?

Results and Discussion

Our method development and analysis proceeded according to Figure 1B. In outline, we 

started by creating a representative dataset of 84 known examples of cryptic binding sites, 

92 binding pockets, and 705 concave surface patches from the Protein Data Bank (31) and 

the MOAD database (32) (Methods, SI Text, and Table S1). We selected cryptic sites and 

binding pockets whose ligands are biologically relevant (32). Next, we designed a set of 30 

features that describe sequence, structure, and dynamics of individual residues and their 

neighbors (SI Text and Table S2), based on the crystal structures (15, 33, 34). We then 

compared these attributes between the three types of a site to better understand the 

underlying characteristics of each site. Based on these comparisons, we expanded the set of 

features for proteins containing cryptic sites to 58 (Table S2), describing their crystal 

structures as well as their alternative conformations obtained by molecular dynamics 

simulations using AllosMod (35) (SI Text). Next, we put to test 11 supervised machine-

learning algorithms (36, 37) to classify residues as belonging to a cryptic site or not; the 

accuracy of the best predictive model was assessed using leave-one-out cross-validation on a 

training set as well as using an independent test set. We then predicted cryptic sites in the 

entire structurally characterized human proteome. Finally, we focused on a detailed 

characterization of protein tyrosine phosphatase 1B (PTP1B), a protein that is involved in 

the insulin signaling pathway and is considered a validated therapeutic target for treatment 

of type 2 diabetes (38).

Pocket formation at a cryptic site is driven by small changes in the structure, resulting in a 
conformationally conserved cryptic site regardless of the ligand type

First, we set out to analyze structural changes needed for a binding pocket formation at a 

cryptic site. The dataset of cryptic sites reveals mostly minor structural changes required for 

formation of a detectable pocket. The all-atom RMSD of cryptic binding sites between apo 

and holo conformations ranges between 0.45 Å and 22.45 Å (Fig. S1A) with 67% apo-holo 

pairs differing less than 3 Å in RMSD. The only two apo-holo pairs whose differences in 

RMSD exceed 10 Å are calcium ATPase and calmodulin (PDB IDs: 1SU4–3FGO and 

1CLL–1CTR, respectively). Loop movement is the most prominent type of conformational 

changes (observed in 45% of the binding sites), followed by side-chain rotation (18%), 

domain motion (17%), displacement of secondary structure elements (16%), and N- or C-

terminus flexibility (4%).

To determine whether or not a cryptic site assumes the same bound conformation 

irrespective of the ligand type, we computed similarities between cryptic site conformations 

in a protein bound to at least 5 different ligands (58 proteins). Interestingly, only 26% of 

such cases have an average RMSD exceeding 2 Å (Fig. S1B), even though the average 

Tanimoto distance (calculated by Open Babel (39), SI Text) is low (0.8). This finding 

suggests that the conformation of a given cryptic site generally does not depend strongly on 
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the ligand type (similar analysis of binding pockets yields 9% of cases with an average 

RMSD exceeding 2 Å, and an average Tanimoto distance of 0.7). Moreover, the magnitude 

of the conformational difference within a group of holo structures is not significantly 

correlated with ligand similarity (the correlation coefficient between the all-atom binding 

site RMSD and Tanimoto distance is 0.01; Figs. S1C and S1D). Finally, the average RMSD 

of 1.7 Å between bound cryptic binding sites is significantly lower than the average RMSD 

of 3.0 Å between the unbound and bound conformations (P = 1.4×10−3, based on two-

sample Kolmogorov-Smirnov statistics). Thus, the bound form of the cryptic site is 

surprisingly conformationally conserved with respect to the ligand type (the average RMSD 

values of bound conformations of cryptic sites and binding pockets are 1.7 and 2.0 Å, 

respectively). These observations are consistent with a limited number of protein 

conformational states as well as with the variability in allosterically regulated proteins, 

where the binding of the effector alters the conformational distribution between two or more 

conformational states (40). Indeed, 24 of the 58 cryptic sites are found in proteins that are 

known to be allosterically regulated, with 17 of the 24 annotated as effector binding sites 

(41). 20 of the remaining 34 cryptic sites are found on proteins with two or more different 

binding sites that may or may not be allosteric. The remaining 14 cryptic sites occur on 

enzymes with flexible active sites and receptors for large hydrophobic ligands, where cryptic 

site residues modulate binding site accessibility (e.g., the “portal” hypothesis for glycolipid 

transfer protein, lactoglobulin, and adipocyte lipid binding protein) (42). In other words, a 

cryptic site does not convert from flat to concave to accommodate a number of different 

ligands; rather, cryptic sites may have evolved the ability to convert from flat to concave to 

modulate ligand-binding kinetics, specificity, affinity, and allostery.

Cryptic sites are as flexible as random concave surface patches, but evolutionarily as 
conserved as binding pockets

Next, we analyzed the differences between the sequence, structure, and dynamics attributes 

of cryptic sites, binding pockets, and concave surface patches. While the differences 

between cryptic sites and binding pockets are generally small, 4 characteristics distinguish a 

cryptic site from a binding pocket and/or a concave surface patch: First, a cryptic site 

predominantly localizes at concave protein regions, even though the site itself is not as 

concave in the unbound form as a binding pocket. For example, while the average number of 

protruding atoms at a cryptic site and a binding pocket is 170 and 183 (P = 8.0×10−3) and 

the average convexity value is 2.4 and 1.9 (P = 0.8), the average pocket score is 0.07 and 

0.42 (P = 1.7×10−31), respectively (Table S3). Second, a cryptic site tends to be less 

hydrophobic than a binding pocket, due mostly to an increased frequency of charged 

residues (arginine in particular, P = 1.8×10−5) (Fig. S2A and Table S3). Third, a cryptic site 

is more flexible than a binding pocket, as indicated by significantly higher normalized B-

factors (Fig. S2B). Finally, cryptic site residues are evolutionarily as conserved as those of a 

binding pocket (Fig. S2C), suggesting a similar degree of evolutionary pressure and 

selection on the function of many of these two types of binding sites. Evolutionarily 

conserved residues have been previously associated with low B-factors (43–45); low B-

factors are an indicator of residue rigidity. Both evolutionarily conserved residues and 

residues with low B-factors are often found in functionally important regions of a protein, 

including binding pockets (13, 46). In contrast to binding pockets, cryptic sites conserve 
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conformational flexibility to convert from flat to concave. We found no statistically 

significant differences between properties of ligands of cryptic sites and binding pockets 

(Fig. S3).

Molecular dynamics simulations based on a simplified energy landscape, sequence 
conservation, and fragment docking are sufficient to predict cryptic sites

To test if cryptic sites could be predicted accurately, automatically, and efficiently, we used 

the dataset of apo structures with cryptic sites to train 10 different machine-predictive 

models for the prediction of cryptic site residues, based on the extended set of 58 features 

(Table S2); the datasets with binding pockets and concave surface patches were not used as 

training sets for machine learning. The optimal predictive model and its parameter values 

were selected by maximizing the sensitivity (true positive rate) and the specificity (true 

negative rate) of cryptic site residue prediction, using leave-one-out cross validation on the 

training set of proteins with 84 cryptic binding sites (SI Text, Fig. S4A). The optimal 

predictive model is a support vector machine (SVM) with a quadratic kernel function. By 

removing redundant and irrelevant features using greedy-forward selection that maximizes 

the AUC and by testing the statistical significance of the improvement in the prediction 

accuracy, we selected 3 features, resulting in the AUC of 0.77 (Fig. S4B-D).

Although an SVM operates as a “black-box”, the relative importance of different features 

can be inferred from the order of selection, and may be informative about the cryptic site 

characteristics (47). We find the average pocket score from the molecular dynamics 

simulations is the most informative single feature according to greedy-forward selection 

(AUC = 0.73) as well as the two-sample Kolmogorov-Smirnov test (P = 4.3×10−138) (Fig. 

S2D and Table S2). This feature alone is almost as informative as a subset of 30 crystal 

structure features combined (AUC = 0.74) (Table S2). Therefore, molecular dynamics 

simulations on a simplified energy landscape, which is significantly more computationally 

efficient than a traditional all-atom molecular dynamics simulation (6), often provides 

sufficient information for localizing cryptic sites. The second feature added to the subset of 

the 3 features by the greedy-forward approach was sequence conservation (AUC = 0.74). 

Cryptic site residues are significantly more conserved than the rest of a protein (P = 

3.4×10−67). The third feature, likelihood of binding small-molecule fragments (SI Text), 

also significantly improves the accuracy of the model (AUC = 0.77). Despite the relatively 

small magnitude of the increase in the accuracy, the improvement of adding two additional 

features to the single most informative feature is statistically significant (Figs. S4C and 

S4D). In summary, a cryptic site can be predicted relatively accurately based primarily on 

pocket formation in molecular dynamics simulations, evolutionary conservation, and 

likelihood of binding small-molecule fragments. Independent predictions based on different 

molecular dynamics trajectories are highly similar, with the cross-correlation coefficient 

larger than 0.9 and the average residue score difference of the most variable decile smaller 

than 0.04 (Fig. S5A); the predicted scores vary the most for residues that reside on α-helices 

or β-sheets and are adjacent to flexible parts of a protein. Similarly, predictions for a subunit 

on its own or in the context of a biological assembly are also highly similar, except for the 

subunit-subunit interface residues (Fig. S5B).
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CryptoSite accurately localizes over 96% of cryptic binding sites, outperforming other 
computational methods

To assess the performance of our predictive model, we applied it to the training set using 

leave-one-out cross validation as well as to the test set of 14 apo structures with one or more 

known cryptic sites that were not used during the training or any of the analyses above. The 

prediction capability of the SVM model is satisfactory; we measure an overall AUC of 0.83, 

with respective true positive and false positive rates of 79% and 29% at the residue score 

threshold of 0.05 (Fig. 2A). At higher score thresholds of 0.1 and 0.15, the respective true 

positive and false positive rates are 15% and 55%, and 6% and 28% (in other words, in an 

experimental test of a prediction, on average 7.6, 5.9, and 4.9 residues with the predicted 

residues score higher than 0.05, 0.1, and 0.15, respectively, would need to be tested to find 

at least one true cryptic site residue – a significant improvement over the need to test 19 

randomly chosen residues for the same outcome). CryptoSite can also be applied to low-

resolution atomic structures and comparative models, in addition to high-resolution X-ray 

structures, without a large loss of accuracy. For example, the average cross-correlation 

between cryptic site predictions for a high-resolution X-ray structure and its comparative 

model based on a template with at least 50% sequence identity is approximately 0.7 (SI 

Text, Fig. S6, Table S4). To further dissect the performance of the learning algorithm, we 

evaluated predictions for individual proteins from our training and test sets (Fig. 2B). We 

define a prediction of a cryptic site to be accurate when at least one third of its residues are 

identified (sensitivity > 33%). Predictions above this threshold can arguably guide small-

molecule tethering experiments and more detailed molecular dynamics simulations. 

Remarkably, all 14 proteins in the test set and 75 out of 79 proteins in the cross-validation/ 

training set have all of their cryptic sites identified accurately, resulting in 96% recall 

(Tables S1 and S5); even for 50% sensitivity, the recall is still 88%. The predictions are 

particularly accurate when a large and hydrophobic ligand binds to a cryptic site. For 

example, we identified 98% of cryptic site residues in the acyl-CoA binding site of the fatty 

acid responsive transcription factor and 89% of cryptic site residues in the lipid-binding site 

of β-lactoglobulin (Fig. S7). Our predictive model also accurately predicted cryptic sites in 

18 out of 20 proteins (including the proteins from the cross-validation set) that undergo 

domain movements to expose small-molecule binding sites. For example, more than half of 

the cryptic site residues of GluR2 receptor (100%), exportin 1 (68%), and biotin carboxylase 

were predicted correctly (56%) (Figs. 2C and S7).

Our predictive model also accurately predicts known allosteric cryptic sites in TEM-1 β-

lactamase that are buried in the apo conformation (60%) (Figs. 2C and S7D) and were 

previously studied using extensive molecular dynamics simulations in explicit solvent and 

Markov state models (6, 24). Moreover, both molecular dynamics simulations (23, 25, 48) 

and CryptoSite also successfully predicted known binding sites at difficult-to-drug protein-

protein interaction interfaces, including in interleukin-2 (specificity of 79%), Bcl-XL (73%), 

FK506-binding protein (FKBP12; 73%), HPV regulatory protein E2 (50%), and cell division 

protein ZipA (60%) (Figs. 2C, S7E, and S8C). Finally, we used our testing set to benchmark 

CryptoSite against FTFlex (28, 49), a computational solvent mapping approach for 

prediction of small molecule-binding hot spots that takes into account side chain flexibility. 

CryptoSite is more accurate (Figs. 2A and S8A), especially when a cryptic site is buried 
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(TEM-1 β-lactamase and β-lactoglobulin) or resides in a large protein (exportin 1; 68%) 

(Figs. 2 and S8). In conclusion, CryptoSite is as accurate as approaches based on extensive 

molecular dynamics simulations, but significantly faster (a calculation on an average sized 

protein takes 1–2 days on our webserver) and completely automated. In comparison to 

approaches of similar efficiency (25, 28), CryptoSite is generally more accurate, particularly 

when the location of a cryptic site is buried in the apo state.

False negatives result from large rearrangements

Next, we analyze false negatives and false positives (defined based on the cryptic sites 

annotated in MOAD). Our predictive model failed to predict most cryptic sites that undergo 

large conformational changes and whose pockets are difficult to sample with current 

molecular dynamics approaches, and partial sites that require binding to another protein 

chain to become functional (Fig. S9). In particular, we failed at predicting the cryptic site for 

stabilizing substrates (eg, cyclopiazonic acid) in Ca-ATPase (sensitivity of 6%) that resides 

at the interface between three domains, two of which are ~50 Å apart in the apo 

conformation (Fig. S9A). Similarly, we also failed at predicting an allosteric site in the 

thumb site of HCV RNA polymerase (sensitivity of 0%), a site between two chains of 

kynurenine aminotransferase II (sensitivity of 17%), and an allosteric site in PTP1B 

(sensitivity of 29%) (Fig. S9). In the future, inadequate sampling in AllosMod will be 

addressed by using multiple input structures and/or restraints from experimental data (e.g., 

small-angle X-ray scattering profiles (50), chemical cross-links (51), hydrogen/deuterium 

exchange with mass spectrometry, and electron microscopy density maps (52)).

A false positive prediction can be an unknown cryptic site

While it is difficult to be certain that a predicted cryptic site does not bind a ligand, potential 

false positives include high-scoring isolated residues or terminal regions of truncated 

proteins, which may not be as flexible in fulllength proteins. However, our benchmark 

probably overestimates the false positive rate, because some predicted cryptic sites are in 

fact true binding sites, even though they are not annotated as such in the MOAD database 

(e.g., proteins that bind peptides or other proteins). For example, our predictive model 

identifies the binding site for the light chain of coagulation factor VII in the heavy chain of 

coagulation factor VII; the binding site for guanine-nucleotide exchange factor DBS in 

CDC42 protein; the dimer interfaces in fructose-1,6-bisphosphate aldolase and estrogen-

related receptor γ; the docking site for its N-terminal motif in Bcl-XL; and the phosphate 

binding site in acid-β-glucosidase (Figs. 2C and S7). Excluding protein-protein interface 

residues from the prediction of cryptic sites may reduce the number of false positives; 

however, the improvement appears to be modest, case-dependent, and comes at a cost of 

ignoring cryptic sites that are located at such interfaces (Fig. S5C). In summary, the analysis 

of successes and failures demonstrates the potential of our approach to guide the 

experimental identification of new sites in difficult small-molecule targets.

The druggable proteome is significantly larger than estimated previously

Given the overall accuracy of our approach (above), a large number of predicted cryptic 

sites that are not yet annotated as such in our benchmark might also indicate that there are 
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many cryptic sites yet to be discovered. If so, our predictive model could facilitate finding 

novel binding sites in “undruggable” proteins, and hence expand the druggable proteome 

space. It has been suggested that the human proteome of approximately 20,000 proteins 

contains ~3,000 proteins associated with disease and ~3,000 druggable proteins, with the 

overlap between the two sets of only ~600 – 1,500 (16, 53, 54). To predict how much 

cryptic binding sites expand the druggable proteome space, we first applied a faster version 

of our predictive model (based on a subset of features that are not extracted from molecular 

dynamics simulations, resulting in the speedup factor of 1000 and AUC of 0.74) on 4,421 

human proteins with at least one domain of known structure (11,201 structures in total). 

Next, we counted the numbers of cryptic sites and pockets in each structure (SI Text). 

Pockets were predicted in ~1,900 (43%) proteins, and cryptic sites were predicted in ~3,300 

(74%) proteins. Among the 1,420 disease-associated proteins of known structure, 40% have 

pockets in their crystal structures (in agreement with the previous estimate that the fraction 

of proteins that are both disease-associated and druggable is 20–50% (55)). In contrast to 

pockets, cryptic sites were predicted in 72% of the disease-associated proteins, 38% of 

which have no apparent pockets (Fig. 3A). However, some of the predictions may be false 

positives (the sites may in fact not bind any ligands). Moreover, for some sites, it may be 

very difficult to find a ligand (even if it does exist), and even if the ligand is found, it may 

not be a drug because it does not target the disease-modifying function of a protein or 

because it does not meet clinical development criteria. Nevertheless, the prediction of 

cryptic sites on the disease-associated proteins of known structure indicates that small 

molecules might be used to target significantly more disease-associated proteins than were 

previously thought druggable.

If cryptic sites are more abundant than previously estimated, why does high-throughput 

screening not identify them more often than it does? It has been shown that small-molecule 

libraries are biased towards traditional drug targets, such as G protein-coupled receptors, ion 

channels, and kinases, while they are not as suitable for antimicrobial targets and those 

identified from genomic studies (56). It is conceivable that the existing libraries are also less 

suitable for cryptic sites. Moreover, cryptic sites may tend to bind ligands more weakly than 

binding pockets, due to the need to compensate for the free energy of site formation (57), 

and may thus be ranked lower on the high-throughput screening lists. Therefore, different 

approaches based on larger and more diverse chemical libraries, including small fragments 

(20, 58, 59), peptides, peptidomimetics, and natural products may be needed for more 

efficient discovery of cryptic site ligands. A case in point is the discovery of a number of 

ligands for cryptic allosteric sites and cryptic sites at protein-protein interfaces, such as IL-2, 

caspases, kinase PDK1, and PTP1B, by fragment-based tethering (20–22, 59). Our data 

suggests that cryptic sites are much more prevalent than previously expected. However, 

while such sites do provide additional opportunities for drug discovery, they may not 

ultimately lead to drugs.

Experimental characterization of a predicted cryptic site in PTP1B by NMR spectroscopy

Finally, to demonstrate the practical utility of our approach, we focused on the clinically 

significant protein PTP1B. Targeting PTP1B with small molecules has been challenging due 

to the lack of specificity and bioavailability of substrate mimetics as well as the presence of 
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only a single known allosteric pocket (38, 59, 60). In addition to identifying 4 of the 14 

residues in the known allosteric cryptic site (59), our predictive model also suggested two 

additional putative cryptic sites, a site near the N-terminus and a site relatively close to the 

active site (Fig. 3B). The latter site is interesting for several reasons. First, the predicted 

cryptic site residues form an internal cavity (between residues Ile 67 and Phe 95) in crystal 

structures of PTP1B that is large enough to accommodate a small molecule (volume of ~150 

Å3). Our molecular dynamics simulations suggest that small conformational changes in the 

cavity-forming loops could make the cavity accessible to the solvent and expand its size (up 

to 430 Å3). Second, the site is in proximity of two cysteine residues, Cys 92 and Cys 121, 

that could be targeted covalently in small-molecule fragment screening by tethering (20). In 

fact, Cys 121 is an already known target of a covalent small-molecule modifier and an 

allosteric inhibitor of PTP1B, ABDF, but its mechanism of action remains unclear (61). 

Third, this cryptic site in PTP1B differs from the corresponding region in the closely related 

tyrosine-protein phosphatase non-receptor type 2 (TCPTP) at, for example, position 97 

(glutamate instead of leucine). This difference between PTP homologs could be exploited to 

develop selective inhibitors that avoid the serious adverse effects associated with TCPTP 

inhibition in mice (59). Finally, the cryptic site may be allosterically coupled to the catalytic 

site; examining contacts between pairs of residues (35) suggests extensive coupling between 

the cryptic and catalytic sites (Fig. S10A).

We experimentally studied the binding of ABDF to PTP1B to determine whether or not it 

involves the putative cryptic site. Although PTP1B has three other surface-exposed cysteine 

residues, ABDF covalently attaches specifically to the side chain of Cys 121 (Fig. 3B and 

Fig. S10B). The Cys 121 side chain points towards the interior of the unlabeled protein, so 

binding of ABDF likely requires a conformational change in the protein. We were unable to 

obtain a crystal structure of ABDF-labeled PTP1B, in agreement with other reports that 

ABDF-labeled PTP1B, unlike apo PTP1B, is recalcitrant to crystallization (61). To 

determine whether or not the covalent label causes specific local conformational changes or 

globally perturbs the protein, we collected 1H, 15N TROSY HSQC NMR spectra of both apo 

and ABDF-labeled protein (SI Text and Fig. S10CF). Using previously published backbone 

resonance assignments (62), we observed no perturbation of chemical shifts for a number of 

residues distal to the predicted cryptic site, indicating that the effects are local and that the 

protein remains folded. In contrast, a cluster of residues nearby the predicted cryptic site 

were significantly perturbed (Fig. 3B and Fig. S10C-F). Many other residues near the 

predicted cryptic site that would need to move for ligand binding, including the adjacent β-

sheet and Cys 121 loop, were unassigned due to resonance broadening, which is indicative 

of conformational exchange. Collectively, these results point to structural flexibility in the 

vicinity of the predicted cryptic site and the specific perturbation of residues surrounding the 

predicted binding pocket, validating our prediction.

To conclude, we describe cryptic sites and a method that accurately, automatically, and 

efficiently predicts their locations in protein structures. Our results support the hypothesis of 

ubiquitous cryptic sites and suggest many new small-molecule protein targets, including 

those that are associated with diseases. Moreover, we illustrate how chemical tethering can 

be used to validate cryptic site predictions by discovering cryptic site ligands. Cryptic sites 
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can also be characterized by experimental techniques that measure protein dynamics, such as 

NMR spectroscopy and room-temperature X-ray crystallography (63, 64), as well as by 

discovery of ligands through virtual screening against conformations with pockets computed 

by AllosMod or molecular dynamics simulations. Our approach provides a convenient first 

step for such characterizations.

Materials and Methods

We started by finding cryptic sites in the Protein Data Bank (PDB) (65, 66), as follows. 

First, we gathered structures of protein-ligand complexes as well as structures of proteins in 

ligand-free (unbound) conformations. We define binding residues as the residues with at 

least one atom within 5 Å from any atom of a ligand in the bound conformation (a binding 

site). Second, we removed the redundant protein occurrences in the dataset by applying 

sequence identity threshold of 40% (SI Text). Finally, we evaluated each binding site in the 

unbound conformation using pocket scores based on two pocket-detection algorithms, 

Fpocket and ConCavity (13, 14). Binding sites with bad pocket sores in the unbound 

conformation and good pocket scores in the bound conformation were defined as cryptic 

sites, whereas those with good pocket scores in both conformations were defined as binding 

pockets (Tables S1 and S5). More details and methods are available in SI Text. The web 

server for predicting cryptic binding sites is available at http://salilab.org/cryptosite 

(username: reviewer, password: reviewerpw).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Bona fide cryptic sites identified by comparison of apo and holo protein 

structures.

• Features distinguishing cryptic sites and binding pockets identified.

• Efficient and accurate prediction of cryptic sites developed.

• Cryptic sites predicted for all human proteins of known structure.

• The “druggable” human proteome may be larger than previously estimated.
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Figure 1. 
(a) Examples of a pocket and cryptic site in p38 MAP kinase. The nucleotide-binding site of 

the p38 MAP kinase is a pocket visible in both bound (holo; blue ribbon; PDB ID: 2ZB1) 

and unbound (apo; grey ribbon; PDB ID: 2NPQ) conformations. The ligand, biphenyl amide 

inhibitor, is depicted as blue spheres. On the other hand, the site in the C-lobe domain that 

binds octyglucoside lipid (green spheres) becomes a visible pocket only after the movement 

of the α- helix at the left of the structure (marked with the double-headed arrow). The small 

molecules are shown as they bind in the holo structures. UCSF Chimera software was used 

for the visualization (67). (b) Flowchart summarizing the analyses in this study. We started 

by creating a representative dataset of 84 known examples of cryptic binding sites, 92 

binding pockets, and 705 concave surface patches from the Protein Data Bank (31) and the 

MOAD database (32). Next, we designed a set of 58 features that describe sequence, 

structure, and dynamics of individual residues and their neighbors. We then compared these 

attributes between the three types of a site to better understand the underlying characteristics 

of each site. Next, we used machine-learning algorithms to classify residues as belonging to 
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a cryptic site or not. We then predicted cryptic sites in the entire structurally characterized 

human proteome (Materials and Methods, SI Text).
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Figure 2. 
The accuracies of our predictive model, FTFlex, and Fpocket are measured as the area under 

the receiver-operating characteristic (ROC) curve based on predictions on all proteins in the 

test set (a), as well as based on sensitivity (true positive rate) and specificity (true negative 

rate) values from predictions on individual proteins (b). (a) Only ~45% and ~80% of cryptic 

site residues were detected by Fpocket and FTFlex, respectively; the area under the ROC 

curve was calculated by connecting the end of the ROC curve and the upper-right corner as 

a straight line. The accuracy of CryptoSite is comparable to that of FTFlex when small 
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pockets that could fit small-molecule fragments are already present in the apo state of a 

cryptic site (this is the case in 10 out of 14 testing examples). However, CryptoSite is more 

accurate than FTFlex when a cryptic site is buried or resides in a large protein (Fig. S8A). 

(b) Sensitivities and specificities were determined for each protein in our test set (larger data 

points with black circle) and training set (smaller data points) based on leave-one-out cross-

validation. The classification of the residues is based on the score threshold of 0.1. The two 

empty circles denote two predictions (one failed) of cryptic sites in proteins with more than 

one cryptic site. (c) The cryptic sites from our dataset are marked by green rectangles, and 

the computed scores that a residue is in a cryptic site are shown on the blue-to-red color 

scale. The small molecules that bind into the known cryptic sites are superposed from the 

alignment to the bound conformations and represented as yellow sticks.
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Figure 3. 
Cryptic binding sites are predicted to expand the size of the druggable proteome. (a) The 

percentage of proteins for which no binding sites (grey), only cryptic sites (green), only 

binding pockets (blue), and both cryptic sites and binding pockets (orange) were predicted 

for all human proteins with known structure (left pie chart) and for a subset of disease-

associated proteins (right pie chart). Shown are the results of the fast version of our 

predictive model that does not take into account features based on molecular dynamics 

simulations. (b) Cryptic binding sites in PTP1B. Ribbon (left and center) and surface (right) 

representations of the PTP1B structure (PDB ID: 2F6V) are colored based on the cryptic site 

score as in Fig. 2C. Residues with definitive chemical shift changes (|Δδ|) upon ABDF 

labeling (khaki) cluster around the cryptic and ABDF binding sites, whereas residues whose 

chemical shifts definitively do not change (purple) are more distal. The panel also shows 

positions and average volumes of the pockets (grey mesh) that are at least partially open 

more than 50% of the time, as observed in the molecular dynamics simulation at 300 K.
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Supporting information 

SI Text 

The data set generation. We started by collecting all crystal structure PDB IDs of protein-ligand 

complexes from Binding MOAD (1) (downloaded on 2-27-2012); we only considered as ligands 

organic small molecules of biological relevance, excluding water and other solvent molecules, 

counterions, buffer components, metal ions, and crystallographic additives. We defined a binding 

site by selecting residues with at least one atom less than 5 Å away from any of the ligand atoms. 

Next, we searched for the structures of the same protein without any ligands at a given binding 

site, following these steps and criteria: 

(i) we aligned all protein chain sequences from the Binding MOAD database to all 

protein chain sequences from PDB that are longer than 50 residues using the blastp 

algorithm (2), and then selected pairs with 100% sequence identity as apo-holo pair 

candidates (504,647 pairs);  

(ii) we removed pairs for which either of the two structures was determined at worse 

than 2.5 Å resolution; 

(iii) we removed pairs with ligands in apo structures that have at least one atom closer 

than 10 Å to any atom in the holo binding site; 

(iv) we grouped apo-holo pairs with identical sequences into clusters and for each cluster 

selected a single pair with the lowest all-atom binding site RMSD as the cluster 

representative (this resulted in 46,436 pairs); 

(v) we further removed apo structures that contain other proteins, peptides, or nucleic 

acids bound within 10 Å from the ligand of interest, superimposed from the holo 

structure; 

(vi) we removed apo-holo pairs that contained multiple copies of a ligand at the holo 

binding site, that contained amino acid ligands, or pairs whose holo binding sites 

contained less than 5 residues (21,928 pairs remained); 

(vii) we removed apo-holo pairs with sequence gaps in apo structures longer than 3 

residues or less than 5 Å away from the binding site; 

(viii) we grouped protein sequences into clusters of 40% protein sequence identity, and 

then further split these clusters into groups of proteins that bind similar ligands (we 

defined ligand similarity by the Tanimoto distance using linear path fingerprints (FP2) 

from Open Babel (3), followed by selecting the pair with the lowest all-atom RMSD 

from each group as the cluster representative; 

(ix) and finally, we removed all apo-holo pairs with Cα-RMSD > 10 Å. This filtering 

resulted in a set of 4,766 apo-holo structure pairs. 
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We next utilized two pocket detection algorithms, ConCavity (4) and Fpocket (5), to evaluate the 

“goodness” of pockets in the apo and holo structures. The output of the Fpocket algorithm is a list 

of pockets with corresponding druggability scores, with each pocket defined as a set of 

coordinates depicting centers of fitting (alpha) spheres. We define the Fpocket residue pocket 

score as the maximum druggability score among the alpha spheres within 5 Å of the residue, or 0 

if there are no alpha spheres (and hence pockets) in its neighbourhood. In contrast, ConCavity 

already provides a score on a per-residue basis, which we define as the ConCavity residue 

pocket score without additional processing. We use both Fpocket and ConCavity residue pocket 

scores to define cryptic sites and binding pockets. Cryptic sites are defined as sites with an 

average residue pocket score of less than 0.1 in the apo form and more than 0.4 in the holo form. 

Similarly, we defined binding pockets as binding sites with an average residue pocket score of 

more than 0.4 for the apo and holo forms, and Qi (6) between the apo and holo forms larger than 

0.95. Such filtering resulted in a dataset of 468 apo-holo pairs with cryptic sites (190 unique apo 

structures), and 839 apo-holo pairs with binding pockets (191 unique apo structures). 

We had to manually inspect both datasets of binding sites because of the high false-positive rate 

of pocket detection algorithms (the state-of-the-art algorithms are only ~70% sensitive (7, 8) when 

applied to the unbound conformation of a protein), which resulted in the final datasets of 89 

cryptic sites and 92 binding pocket apo-holo pairs. 10 randomly chosen cryptic apo-holo pairs 

were put aside for testing purposes. Also for testing purposes, we additionally selected 4 proteins 

with known cryptic sites from the literature (exportin-1, TEM1 β-lactamse, IL-2, and Bcl-X) 

(Tables S1 and S5).   

In summary, the sequence similarity between a pair of two apo structures never exceeds 40%, 

except for 7 proteins that contain 2 different cryptic sites each, and a protein that contained 3 

different cryptic sites. Moreover, out of 79 proteins in total, we obtained 59 groups of proteins with 

putative unique folds based on protein structure alignment (TM-align and TM-score thresholds of 

more than 0.7) (9). Similarly, we retrieved a non-redundant dataset of 92 protein structures with 

binding pockets; none of the protein sequences is more than 40% identical to any other 

sequence, and protein structure alignment suggests 69 putative folds.  

Pre-processing PDB files. Many PDB files contain more than 1 macromolecule (ie, a biologically 

relevant assembly of multiple macromolecules or an assembly of macromolecules interacting 

through crystallographic contacts), non-specific solvent molecules, regions of missing density, 

and modified protein sequences (eg, truncated loops or termini). To more accurately assess 

structural properties (for example, an estimate of surface area would be inaccurate for the 

residues next to an interacting molecule or a region with a missing density), we deleted from the 

PDB file all macromolecules except the macromolecule (ie, chain) of interest. Furthermore, we 

filled the gaps in the crystal structures by aligning a PDB structure to the corresponding SEQRES 
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sequence, and then used the loop-modeling routine in Modeller (10) to build a loop conformation 

while keeping the rest of the protein structure rigid. We built 20 models per chain, and kept the 

one with the lowest DOPE score (11) for further analyses. 

Molecular dynamics simulations. Standard molecular dynamics simulations are 

computationally expensive, which makes them impractical for studying the dynamics of the large 

number of proteins in our dataset. In contrast, AllosMod simulates dynamics more efficiently, by 

relying on a simplified energy landscape whose minimum is defined by the input native structure 

(6). We initialized 50 simulations from the randomized apo crystal structure coordinates, each 6 

ns long. The 50 simulations include 10 repeats at 5 different temperatures (300 K, 350 K, 400 K, 

450 K, and 500 K), with 3 ps time steps – resulting in a total of 100,000 snapshot conformations. 

All conformations were assessed using our statistical potential SOAP (12), and only those with 

SOAP scores lower than 160% of the score of the native protein structure were retained for 

further analysis.  

Feature design. In total, we curated a set of 58 residue-based features that can be grouped into 

3 categories: (i) features that describe protein sequence conservation, protein shape, and 

energetics, (ii) features that describe sequence conservation, shape, and energetics of 

neighborhood residues, and (iii) features derived from molecular dynamics simulations describing 

flexibility and dynamics of residues (Table S2). Protein shape calculations include protrusion, 

compactness, convexity, rigidity, hydrophobicity (using Wimley-White solvent model), and charge 

density, as described previously (13). Residue surface area is defined as a sum of surface areas 

of individual atoms, which was determined by the CHASA algorithm (default probe radius) (14) 

and Modeller (probe radius of 1.4 Å and 3.0 Å). We define residue packing of a given residue as 

the number of atoms of other residues within 4 Å from any atom in the residue, divided by the 

number of atoms in the residue. The number of neighbors is defined as the number of different 

residues within the same distance. Distance to the surface is defined as the smallest distance 

between any atom of a given residue and the closest atom with surface area > 2 Å2. Pocket score 

is derived from pocket prediction by Fpocket as explained above (Data set generation section). 

Number of atoms and residues in the neighborhood, number (weighted or not) of side-chain 

rotatable bonds in the neighborhood, and local structural entropy were calculated as described 

previously (15-17). 

Sequence conservation of a given sequence position is defined as the Shannon’s entropy of 

reweighted amino-acid frequency counts in a multiple sequence alignment (18). Multiple 

sequence alignments were obtained by aligning an individual apo sequence against the entire 

Uniprot (19, 20) database using the blastp algorithm. Clusters of homologous sequences above 

the 80% sequence identity threshold (used to reweight the amino-acid frequency counts) were 

calculated using the usearch algorithm (21).  
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The fragment docking feature was calculated as follows. We started by docking 16 small-

molecule probes (22-24), using PatchDock (25), resulting in a number of different poses for each 

ligand. Next, we scored each ligand pose using the RankScore statistical potential (26), and 

filtered out poses with RankScore larger than 0. Finally, a fragment docking score was assigned 

to each residue in a protein, corresponding to the number of contacts between the residue and 

ligands in any calculated pose (a residue and a ligand are in contact when the minimum distance 

between any residue-ligand atom pair is less than 3.5 Å).  

Features derived from molecular dynamics simulations include the mean and standard deviation 

of the following residue features: pairwise distance similarity metric (Qi), surface exposed area 

(with probe radius of 1.4 Å and 3.0 Å), protrusion, convexity, and pocket score. Additionally, we 

also calculated the percentage of snapshots with a given residue pocket score higher than 0.4, as 

well as the mean and standard deviation of the residue pocket scores above the 95th percentile.  

Machine learning. To predict whether a given residue belongs to a cryptic site, we utilized Scikit-

Learn and PyBrain implementations (27, 28) of several different supervised machine-learning 

algorithms. We varied many parameters associated with a given algorithm (eg, different kernel 

functions, a range of different values for penalty parameters, different penalty functions, etc.). 

Furthermore, we mapped the accuracy as a function of scaling the dataset or changing class 

weights to take into account the unbalanced dataset (only ~5% of residues in our dataset are in 

cryptic sites). The residue classification accuracy of each combination of scaling, algorithm, and 

the corresponding set of parameters was evaluated using the confusion matrix and leave-one-out 

cross-validation (Fig. S4A), with n - 1 proteins used for training and 1 for validation, repeated 

over all cases in the training set. The SVM algorithm with quadratic kernel function, scaling, and 

penalty parameter C, kernel coefficient gamma, and independent term in kernel function coef0 of 

0.158, 0.333, 2.154, respectively, was found to perform most accurately. Furthermore, using a 

greedy-forward approach, evaluating area under the ROC curve and leave-one-out cross-

validation (Fig. S4B), we selected a subset of 3 features (the average pocket score in MD 

simulations, sequence conservation, and fragment docking). The web server for predicting cryptic 

binding sites is available at http://salilab.org/cryptosite. On average, it takes less than 2 days on 

our web server to predict cryptic sites in a protein of ~300 residues (most of this time is spent on 

molecular dynamics simulations by AllosMod). 

Estimating the size of the druggable proteome. To estimate the size of the druggable 

proteome, we first retrieved a subset of 11,201 human protein structures from the PDB longer 

than 50 residues and with X-ray resolution better than 3.5 Å. For each one of these structures, we 

predicted cryptic sites by using our algorithm without residue-based features that require time-

consuming AllosMod simulations (Table S2). A cryptic site is predicted when at least 5 adjacent 

residues have the cryptic site score larger than 0.056; two residues are adjacent when any of 
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their atoms are within 3.5 Å of each other. A binding pocket is predicted equivalently, but using 

the Fpocket-based pocket score with a threshold of 0.5. The two thresholds were chosen to 

approximately match the sensitivity and specificity of cryptic site and binding pocket prediction 

(true positive rates of 0.51 and 0.57, and false positive rates of 0.22 and 0.21 for cryptic sites and 

binding pockets, respectively (7)). To estimate the number of druggable disease-associated 

proteins, we first retrieved a dataset of disease-associated genes from OMIM morbidmap (3,329 

genes) (29). Druggable disease-associated proteins are defined as proteins of known structure 

that are encoded by these genes and have at least one predicted cryptic site or binding pocket; 

for proteins with more than one determined structure, we only include into our analysis the 

structure with the highest number of predicted cryptic sites or pockets. 

Protein expression and purification. The short form of the catalytic domain (residues 1-298) of 

wild-type human PTP1B was cloned into pET24b. BL21 E. coli cells were transformed with this 

construct. 5 mL overnight cultures of the transformed cells were diluted into 1 L of M9 minimal 

medium with 1 g/L 15NH4Cl and 35 µg/mL kanamycin, and grown at 37ºC until absorbance at 600 

nm reached 0.95 (about 7 hours). PTP1B expression was induced by adding isopropyl-β-D-

thiogalactoside (IPTG) to a concentration of 0.5 mM and incubating for 16 hours at 18ºC. Cell 

pellets were harvested by centrifugation and stored at -80ºC. 

For purification, cell pellets were resuspended in lysis buffer (100 mM MES pH 6.5, 1 mM EDTA, 

1 mM DTT) (30) and lysed by homogenization with an Emulsiflex C3 machine. After centrifugation 

of the lysate, the supernatant was filtered and loaded onto a Sepharase (SP) cation exchange 

column equilibrated in lysis buffer. The column was run over a gradient from 0-1 M NaCl; PTP1B 

eluted around 200 mM NaCl. Those fractions were pooled, concentrated by centrifugation, and 

loaded onto a Superdex 200 (S200) size-exclusion column equilibrated in 100 mM MES pH 6.5, 1 

mM EDTA, 1 mM DTT, 200 mM NaCl. PTP1B-containing fractions were pooled, filtered, and 

dialysed at 4ºC for 1-2 hours into NMR buffer (20 mM Bis-Tris propane, 25 mM NaCl, 3mM DTT, 

0.2 mM EDTA, pH 6.5) (31). The protein sample was then concentrated via centrifugation to 230 

µM. 

Covalent labeling of PTP1B with ABDF. The protein sample was diluted to 25 µM in NMR 

buffer without DTT. We then added 500 µM ABDF for 1 hour at room temperature. Next, the 

unreacted ABDF was removed and the protein was exchanged back into NMR buffer with DTT 

using a PD10 desalting column. Finally, the protein was concentrated via centrifugation to 110 

µM. 

TROSY NMR data acquisition. We prepared NMR samples with 7% D2O and 200 and 110 µM 

of the apo and ABDF-labeled protein species, respectively.  1H, 15N TROSY HSQC spectra were 

collected with a Bruker 800 MHz magnet at 293 K for >5 hours and >7 hours, respectively.  
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Although many resonances were too broadened to confidently match with published assignments 

(32) because we used undeuterated protein in contrast to previous work (31-33), we were able to 

confidently monitor the resonances of several residues between the two spectra (Fig. 3B and 

S10). 
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SI Figure and Table Legends 

 

 

Figure S1: (a) Histogram of all-atom binding site RMSDs between apo and holo conformations. 

(b) Structural similarity (all-atom binding site RMSD) between cryptic site structures bound to at 

least 5 different ligands. Boxes, whiskers, and red lines denote 10th and 90th percentile, 5th and 

95th percentile, and the median of the distribution. The similarities between unbound and bound 

conformations from our dataset are denoted by star symbols. The degree of structural similarity 

between bound cryptic sites (c) or binding pockets (d) is independent of the 2D structural 

similarity between the bound ligands. Linear path fingerprints (FP2) and Open Babel package 

were used to calculate the Tanimoto distances. The red line denotes linear fit, with a slope 

parameter that is not significantly different (R-value < 0.01) from the horizontal regression. 
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Figure S2: Comparison of cryptic sites, binding pockets, and random concave surface patches. 

(a-c) In each panel, the distribution of the feature values of binding site residues are shown as 

violin plots for cryptic sites (green), binchding pockets (blue), and random concave surface 

patches (grey). The edges between distributions denote P-values based on Kolmogorov-Smirnov 

two-sample statistics; numbers/letters in red are statistically significant (P < 0.05). (d) For a few 

selected residue-based features, the distributions of their values for the cryptic sites and the rest 

of residues in our dataset are compared. The bars denote statistical significance (P-value) from 

the two-sample Kologorov-Smirnov non-equality test (Table S2 for the P-values of other 

features). 
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Figure S3: Comparison of small molecule-based features between ligands in cryptic sites (green 

half-violin plots), and ligands in pockets (blue-half violin plots). (a) The distributions of ligand 

similarities to biological compounds collected from the KEGG database of biological processes. 

(b) Distributions of several ligand descriptors, as determined by Open Babel. (c) 2-dimensional 

clustering of ligand and binding site features as well as binding sites identifies 4 clusters. Two of 

the clusters are significantly enriched with cryptic sites. One cluster includes convex sites with 

evolutionarily conserved residues and small hydrophilic ligands (cluster 4), and another one 

includes less convex and less conserved sites that bind larger hydrophobic ligands (cluster 3). 

The third cluster contains an equal number of cryptic sites and binding pockets that are 
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Cluster 4: 32 of 46 cryptic sites (P=0.001)

Cluster 3: 19 of 26 cryptic sites (P=0.003)

Cluster 2: 14 of 30 cryptic sites (P=0.500)Cluster 1: 23 of 80 cryptic sites (P=0.003)

(c)
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evolutionarily conserved and bind large hydrophilic ligands (cluster 2). The final cluster contains 

mostly binding pockets that are concave and evolutionarily conserved, and bind small and 

hydrophobic ligands (cluster 1).  
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Figure S4: (a) Search for the most accurate machine-learning algorithm, data pre-processing 

method, and the corresponding set of parameters. The most accurate predictive model and its 

parameter values were selected by maximizing the sensitivity (true-positive rate) and the 

specificity (true-negative rate) of cryptic site residue classification, using leave-one-out cross 

validation on the training set of proteins with 84 cryptic binding sites. The arrow points to the most 

accurate algorithm. (b) Feature selection using greedy-forward approach. See SI Table 3 for a 

description of feature labels. (c) To avoid the data overfitting during the feature selection protocol, 

we tested the statistical significance of the predictive model improvement by comparing the 

impact of each additional feature to that of a random value. Adding the best 3 features (red bars) 

always outperformed the models with the added random value feature (blue and black error 

bars), showing that the improvement based on adding the second and third features is statistically 
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significant (P-value < 0.001). The model with the 4 best-performing features was statistically no 

different from the predictive model with the 3 best-performing features and the random value 

feature (P-value > 0.05), leading to the final selection of only 3 features. The predictive models 

with the random value feature were evaluated using leave-one-out cross-validation, with the AUC 

values determined for both the data points left in (blue error bars) and those left out (black error 

bars); the difference in accuracy between the left-in and left-out samples suggests that our 

training strategy limits overfitting. The error bars denote standard deviations of the AUC values, 

based on 1,000 replicates. The small differences between the AUC values of models with the 

best set of features (red bars) in this plot and those in (b) are due to the numeric variability in the 

cryptic site prediction (Fig. S5A). (d) To quantify the difference in accuracy between two models, 

we tested a null hypothesis that the difference between the AUC values from the two models is 0, 

when measured on exactly the same predictions. In 1000 bootstrapped samples, the AUC value 

from the model with 1 feature never exceeded that from the model with 3 features, rejecting the 

null hypothesis.   
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Figure S5: (a) Independent predictions based on different molecular dynamics trajectories are 

highly similar (left). Cryptic site residues and all other residues are shown in green and grey, 

respectively. The differences in the predicted score are the largest for residues that reside on α-
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helices or β-sheets and are adjacent to flexible parts of a protein, but are too small in scale to 

affect the cryptic site predictions (the average residue score difference of the most variable decile 

is less than 0.04), as estimated from 5 runs on PTP1B (PDB ID: 2F6V:A) (right). (b) Predictions 

for a subunit on its own or in the context of a biological assembly are also highly similar, except 

for the subunit-subunit interface residues. The two types of a run were on average significantly 

correlated for the known cryptic sites (the mean cross-correlation coefficient of 0.60; green data 

points), but not for the interface residues, as expected (the mean cross-correlation coefficient of 

0.41; red data points). In principle, prediction of cryptic sites based on an entire biological unit 

should be more accurate than that based on an isolated subunit. However, in practice, the actual 

accuracy may be smaller because of the increased inaccuracy of energy functions and less 

thorough sampling of larger systems compared to those for smaller systems (34). (c) Excluding 

protein-protein interface residues from the prediction of cryptic sites rarely improves the 

performance of CryptoSite.  
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Figure S6: Comparative models based on templates with sequence identity larger than 50% 

result in cryptic site predictions similar to those based on original high-resolution X-ray structures 

(Table S4). We obtained multiple templates with varying sequence identities to the original 

protein sequence for a subset of proteins with cryptic sites in our dataset, using pblast (2). For 

each template, a comparative model was built using the default automodel class in Modeller (10), 

followed by prediction of cryptic site locations using CryptoSite. Trend line (dashed line) and error 

bars denote mean cross-correlation coefficients and their standard deviations, respectively. The 

outlying comparative model for elongation factor Tu (PDB ID: 1EXM) is due to a template (PDB 
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ID: 1MJ1) with a significantly different conformation of the C-terminal domain (backbone RMSD of 

4.6 Å).  
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Figure S7: Examples of accurate predictions, shown in surface and ribbon representation of apo 

conformations. Ligands (yellow sticks) are superposed from the alignments with the holo 

conformations. (a) 94% of cryptic site residues are predicted accurately in the β-lactoglobulin 

(PDB ID: 1BSQ). To demonstrate the ability of our method to correctly identify the cryptic binding 

site residues, a few residues on β-strands are shown as sticks. These residues are predicted as a 

cryptic site with high scores and correctly point towards the binding site, whereas the neighboring 

residues on the β-strands that point in the other direction have low scores (the same pattern is 

observed in other proteins where a cryptic binding site includes β-strands). (b) Binding to the 

cryptic site of glutamate receptor 2 requires domain opening (indicated by a black double-headed 

arrow). The ribbon representation shows both the apo (PDB ID: 1MY1) and holo conformations 

(in grey; PDB ID: 1FTL). (c) Binding into the cryptic site of MAP p38 kinase requires α-helix 

translocation (Fig. 1). (d) Cryptic site residues that are not solvent accessible in the apo 

conformation of TEM-1 β-lactamase are correctly predicted (red patches on β-strands). (e) 

Cryptic site in Bcl-XL is located at the protein-protein interface. The predictive model predicts 

another cryptic site at the interface of the Bcl-XL core and its terminal α-helix (denoted by green 

arrow). Proteins are shown in scale. 
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Figure S8: (a) Evaluation of the CryptoSite and FTFlex (webserver version) (35). Areas under the 

ROC curve (AUCs) demonstrate higher accuracy of CryptoSite, especially when a cryptic site is 

buried (β-lactoglobulin and TEM-1 β-lactamase) or when it resides in a large protein (exportin 1). 

While more than half of residues in the cryptic site for peptide mimetic inhibitor P5B (36) were 

predicted correctly (52%), a poor CryptoSite prediction of the cryptic sites in coagulation factor VII 

and exoenzyme C3 are due to a high false positive rate (46% and 41%). All proteins from the test 

set and 20 randomly chosen proteins from the training set were included in this analysis. (b) 

CrpyoSite tends to perform better than FTFlex, especially when a cryptic site is difficult to predict 

(ie, when the average accuracy of both algorithms is low). (c) Sample cryptic site predictions at 

druggable protein-protein interaction interfaces.  
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Figure S9: Four inaccurately predicted cryptic sites (marked by red ovals). (a) The cryptic site in 

Ca-dependent ATPase requires large conformational changes (denoted by black arrows and the 

holo conformation represented by grey trace), not sampled by our molecular dynamics 

simulations (PDB ID: 1SU4). (b) Cryptic site scores for the binding site residues in kynurenine 

aminotransferase II are higher then in the rest of the protein, but below our threshold (PDB ID: 

2QLR:C), mainly because the binding site resides at an interface between two chains, only one of 
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which was used for the prediction (the second chain is shown in grey ribbon representation). (c) 

Similarly as in B, the cryptic binding site residues in tyrosin phosphatase 1B were predicted with 

scores higher than those for most of the protein, but are below our threshold for most of the 

binding site residues (PDB ID: 2F6V). The predictive model identifies two additional cryptic sites, 

one that is a site in proximity of Cys 121 and one that is unannotated site at the N-terminus. (d) 

The panel shows the structure of HCV RNA polymerase (PDB ID: 2BRK), with the incorrectly 

predicted cryptic site indicated. The red patch to the right of the cryptic binding site is a known 

cryptic site, and was predicted correctly.  
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Figure S10: (a) Residues coupled with the active site of PTP1B are shown as green sticks (6). 

(b) Mass spectra of non-modified (top) and ABDF-modified PTP1B (bottom). The difference in 

mass (196) corresponds to the mass of the ABDF modification (197). (c) Many residues in PTP1B 

surrounding the predicted cryptic site (green surface) and the ABDF labeling site, Cys 121 (yellow 

surface), are unassigned due to broadened resonances (red spheres) (32). (d) Overlay of 1H, 15N 

TROSY HSQC spectra of PTP1B with (black) and without (red) labeling by ABDF. PTP1B 
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residues with no significant (e) or significant (f) chemical shift perturbations upon ABDF binding.  

Resonances are colored using the same color scheme as in d. 
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Table S1: Training set. The table lists the apo and holo PDB identifiers, ligands that bind the 

cryptic sites, protein lengths, the number of residues in cryptic sites, the false positive rates 

(FPR), true positive rates (TPR), as well as the Matthews correlation coefficient (MCC) and the 

area under the ROC curve (AUC) from the leave-one-out cross-validation for 3 different 

CryptoSite score thresholds (0.05, 0.1, and 0.15). 

Apo Holo Ligand
Protein 

size Site sizeFPR(0.05) TPR(0.05) AUC(0.05) MCC(0.05) FPR(0.1) TPR(0.1) AUC(0.1) MCC(0.1) FPR(0.15) TPR(0.15) AUC(0.15) MCC(0.15)
3CHEA 2IUZB D1H 433 15 0.34 1.00 0.98 0.25 0.15 1.00 0.98 0.41 0.06 0.87 0.98 0.51
2AKAA 1YV3A BIT 776 19 0.28 1.00 0.97 0.24 0.11 1.00 0.97 0.41 0.04 0.68 0.97 0.43
2GFCA 2JDSA L20 350 26 0.27 1.00 0.97 0.41 0.11 0.96 0.97 0.59 0.06 0.85 0.97 0.62
1ALBA 1LICA HDS 131 20 0.43 1.00 0.95 0.41 0.24 0.95 0.95 0.53 0.16 0.90 0.95 0.59
1NEPA 2HKAC C3S 130 24 0.22 1.00 0.95 0.63 0.09 0.83 0.95 0.68 0.04 0.54 0.95 0.58
3MN9A 3EKSA CY9 374 20 0.22 0.95 0.94 0.37 0.04 0.80 0.94 0.62 0.01 0.50 0.94 0.58
1ALVA 1NX3A ISA 173 11 0.39 1.00 0.94 0.30 0.22 1.00 0.94 0.43 0.09 0.82 0.94 0.51
2YQCA 2YQSA UD1 486 31 0.25 1.00 0.94 0.40 0.07 0.71 0.94 0.51 0.03 0.29 0.94 0.31
2QFOB 2WI7A 2KL 207 20 0.38 0.95 0.94 0.34 0.12 0.95 0.94 0.61 0.07 0.80 0.94 0.62
1RTCA 1BR6A PT1 268 15 0.41 1.00 0.93 0.27 0.19 0.93 0.93 0.41 0.08 0.60 0.93 0.38
1RDWX 1J6ZA RHO 375 10 0.18 0.80 0.93 0.25 0.06 0.70 0.93 0.39 0.01 0.50 0.93 0.49
1TQOA 1TR5A THP 138 16 0.27 0.94 0.92 0.45 0.05 0.63 0.92 0.58 0.00 0.25 0.92 0.48
3PUWE 1FQCA GLO 378 11 0.39 0.91 0.92 0.18 0.19 0.82 0.92 0.26 0.10 0.82 0.92 0.36
3L7UC 2HVDC ADP 172 16 0.26 0.88 0.91 0.39 0.12 0.81 0.91 0.52 0.07 0.50 0.91 0.40
1R1WA 3F82A 353 312 26 0.37 0.96 0.91 0.33 0.13 0.77 0.91 0.46 0.06 0.58 0.91 0.46
1G4EB 1G67B POP/TZP 227 27 0.29 0.93 0.91 0.43 0.08 0.59 0.91 0.48 0.04 0.44 0.91 0.46
3F74C 3BQMC BQM 181 20 0.26 0.90 0.89 0.43 0.07 0.60 0.89 0.49 0.02 0.40 0.89 0.50
1MY1C 1FTLA DNQ 263 13 0.32 1.00 0.89 0.31 0.12 0.62 0.89 0.30 0.04 0.15 0.89 0.12
2WGQB 1D6YB HY1 727 11 0.30 0.91 0.88 0.16 0.13 0.64 0.88 0.18 0.05 0.27 0.88 0.13
1DUBD 1EY3F DAK 261 25 0.21 0.76 0.86 0.37 0.07 0.68 0.86 0.54 0.05 0.44 0.86 0.42
1PZTA 1PZYD UDP 286 16 0.33 0.88 0.86 0.26 0.13 0.69 0.86 0.35 0.08 0.38 0.86 0.23
1XMGB 1XVCA 5BR 527 11 0.33 1.00 0.84 0.20 0.18 0.73 0.84 0.20 0.09 0.00 0.84 -0.04
1IMFA 1IMBB LIP 277 18 0.28 0.78 0.84 0.27 0.11 0.44 0.84 0.24 0.07 0.39 0.84 0.27
2AX9A 2PIQA RB1 256 9 0.49 0.89 0.83 0.15 0.24 0.78 0.83 0.22 0.17 0.78 0.83 0.28
1EXMA 1HA3B MAU 405 30 0.27 0.80 0.83 0.30 0.10 0.43 0.83 0.26 0.05 0.23 0.83 0.20
3KQAB 3LTHA UD1 419 25 0.27 0.80 0.83 0.28 0.08 0.56 0.83 0.36 0.02 0.44 0.83 0.46
2BF3A 3DHHE BML 92 9 0.35 0.89 0.82 0.33 0.11 0.44 0.82 0.29 0.02 0.33 0.82 0.41
1CLLA 1CTRA TFP 148 15 0.25 0.73 0.82 0.32 0.08 0.60 0.82 0.46 0.07 0.40 0.82 0.33
3H5RA 3H9JD APC 353 10 0.22 0.60 0.82 0.15 0.08 0.10 0.82 0.01 0.03 0.10 0.82 0.06
1NI6D 3HOKB Q80 224 21 0.50 0.86 0.82 0.21 0.28 0.76 0.82 0.30 0.17 0.71 0.82 0.39
1QLWB 2WKWB W22 328 18 0.32 0.83 0.82 0.25 0.13 0.50 0.82 0.23 0.06 0.06 0.82 -0.01
1HAGE 1GHYH 121 295 21 0.34 0.90 0.82 0.30 0.05 0.33 0.82 0.27 0.03 0.19 0.82 0.22
1OK8A 1OKEB BOG 394 17 0.31 0.88 0.81 0.24 0.16 0.53 0.81 0.20 0.07 0.29 0.81 0.17
3DXNA 3HZTA J60 287 16 0.31 0.81 0.81 0.24 0.17 0.69 0.81 0.30 0.07 0.50 0.81 0.33
1K5HC 2EGHB FOM 398 16 0.44 0.88 0.80 0.17 0.18 0.50 0.80 0.16 0.07 0.25 0.80 0.13
1HKAA 3IP0A HHS 158 17 0.45 0.71 0.80 0.16 0.23 0.71 0.80 0.32 0.08 0.65 0.80 0.51
2BU8A 2BU2A TF1 394 15 0.48 0.93 0.79 0.17 0.22 0.73 0.79 0.23 0.14 0.40 0.79 0.14
2OHGA 2OHVA NHL 264 20 0.33 0.75 0.79 0.23 0.12 0.50 0.79 0.28 0.05 0.35 0.79 0.30
2BLSB 3GQZA GF7 358 10 0.36 0.70 0.79 0.11 0.15 0.60 0.79 0.20 0.06 0.40 0.79 0.21
1RHBA 2W5KB NDP 124 12 0.13 0.67 0.79 0.41 0.08 0.33 0.79 0.24 0.04 0.08 0.79 0.05
1ADEA 1CIBA IMP 431 24 0.36 0.71 0.77 0.17 0.13 0.25 0.77 0.08 0.04 0.13 0.77 0.10
1KS9A 2OFPA PAF 291 10 0.41 1.00 0.77 0.22 0.19 0.30 0.77 0.05 0.10 0.30 0.77 0.12
1H09A 2IXUA MU2 338 10 0.23 0.50 0.77 0.10 0.09 0.10 0.77 0.01 0.03 0.10 0.77 0.06
3BL9B 3BL7A DD1 301 15 0.34 0.80 0.76 0.21 0.15 0.27 0.76 0.07 0.07 0.27 0.76 0.15
1BP5A 1RYOA OXL 337 12 0.30 0.67 0.76 0.15 0.11 0.33 0.76 0.13 0.05 0.33 0.76 0.23
2Q8FA 2Q8HA TF4 407 11 0.42 0.91 0.76 0.16 0.20 0.36 0.76 0.07 0.11 0.27 0.76 0.08
2IYTA 2IYQA ADP/SKM 184 30 0.34 0.70 0.75 0.27 0.19 0.47 0.75 0.24 0.10 0.37 0.75 0.27
1EX6A 1GKYA 5GP 186 17 0.36 0.71 0.75 0.21 0.17 0.53 0.75 0.26 0.07 0.35 0.75 0.27
1RRGA 1S9DA AFB 181 10 0.53 0.90 0.75 0.17 0.27 0.70 0.75 0.21 0.13 0.20 0.75 0.04
1ECJD 1ECCB PCP 504 22 0.20 0.64 0.74 0.21 0.06 0.36 0.74 0.25 0.01 0.23 0.74 0.30
2CM2A 2H4KA 509 304 17 0.24 0.53 0.73 0.15 0.08 0.18 0.73 0.07 0.01 0.12 0.73 0.19
1NUWA 1EYJB AMP 337 17 0.28 0.65 0.73 0.18 0.17 0.24 0.73 0.04 0.09 0.06 0.73 -0.02
3CJ0A 2BRLA/3FQKB POO/79Z 576 39 0.28 0.62 0.73 0.18 0.08 0.21 0.73 0.11 0.03 0.08 0.73 0.07
1UK2A 2GZ7A D3F 306 17 0.48 0.82 0.70 0.16 0.17 0.47 0.70 0.18 0.06 0.18 0.70 0.10
2WGBA 2V57A PRL 190 13 0.55 0.92 0.70 0.19 0.33 0.62 0.70 0.15 0.18 0.23 0.70 0.03
1HOOB 1CIBA HDA 431 14 0.32 0.64 0.69 0.12 0.11 0.36 0.69 0.13 0.03 0.00 0.69 -0.03
1FA9A 1L5SB URC 846 10 0.23 0.60 0.69 0.10 0.07 0.20 0.69 0.06 0.04 0.10 0.69 0.03
1W50A 3IXJC 586 411 35 0.35 0.60 0.69 0.15 0.16 0.34 0.69 0.14 0.08 0.17 0.69 0.09
3B7DE 2AL4F CX6 261 9 0.38 0.67 0.68 0.11 0.17 0.22 0.68 0.02 0.06 0.00 0.68 -0.05
1PKLB 3HQPP ATP/FDP/OXL 499 48 0.25 0.38 0.68 0.08 0.09 0.23 0.68 0.13 0.05 0.13 0.68 0.10
1K3FB 1U1DF 181 253 16 0.47 0.69 0.68 0.10 0.13 0.31 0.68 0.13 0.04 0.13 0.68 0.10
1FVRA 2OO8X RAJ 327 23 0.43 0.65 0.68 0.11 0.19 0.35 0.68 0.10 0.06 0.17 0.68 0.11
3HQDA 1Q0BB NAT 369 16 0.35 0.56 0.67 0.09 0.16 0.31 0.67 0.08 0.10 0.13 0.67 0.02
2ZB1A 2NPQA BOG 360 23 0.44 0.78 0.67 0.17 0.23 0.30 0.67 0.04 0.14 0.17 0.67 0.03
3PEOG 2BYSJ LOB 228 15 0.39 0.80 0.67 0.21 0.27 0.27 0.67 0.00 0.16 0.13 0.67 -0.02
2BRKA 2GIRB NN3 536 13 0.35 0.38 0.65 0.01 0.15 0.15 0.65 0.00 0.07 0.00 0.65 -0.04
2H4EB 3CFNB 2AN 127 10 0.44 0.60 0.64 0.09 0.25 0.60 0.64 0.21 0.16 0.20 0.64 0.03
2CGAB 1AFQC 0FG 245 13 0.33 0.46 0.64 0.06 0.14 0.31 0.64 0.10 0.07 0.08 0.64 0.01
1XCGB 1OW3B GDP 178 22 0.37 0.59 0.64 0.15 0.22 0.09 0.64 -0.10 0.14 0.05 0.64 -0.09
1FXXA 3HL8A BBP 482 12 0.42 0.58 0.64 0.05 0.17 0.25 0.64 0.04 0.09 0.00 0.64 -0.05
4AKEB 1ANKB ANP 214 30 0.48 0.60 0.63 0.08 0.27 0.40 0.63 0.10 0.15 0.27 0.63 0.11
3NNUA 3HL7A I46 354 16 0.47 0.75 0.62 0.12 0.25 0.31 0.62 0.03 0.16 0.13 0.62 -0.02
1A8IA 2IEGB FRY 842 11 0.25 0.45 0.60 0.05 0.06 0.18 0.60 0.06 0.01 0.09 0.60 0.07
1SWXA 2EUMA LAT 209 22 0.48 0.64 0.58 0.10 0.28 0.36 0.58 0.05 0.13 0.14 0.58 0.01
2QLRC 3DC1A AKG 425 6 0.34 0.17 0.56 -0.04 0.16 0.17 0.56 0.00 0.07 0.17 0.56 0.04
2F6VA 1T49A 892 298 14 0.24 0.43 0.56 0.09 0.05 0.07 0.56 0.02 0.01 0.00 0.56 -0.02
1G24D 1GZFC NIR 211 17 0.41 0.35 0.53 -0.03 0.12 0.24 0.53 0.10 0.02 0.12 0.53 0.16
1SU4A 3FGOB ACP 994 17 0.29 0.06 0.49 -0.07 0.16 0.06 0.49 -0.04 0.09 0.00 0.49 -0.04
2AIRH 1ZA1D CTP 153 20 0.47 0.35 0.47 -0.08 0.38 0.15 0.47 -0.16 0.30 0.10 0.47 -0.15

Average: 335.13 17.7 0.34 0.75 0.77 0.21 0.15 0.49 0.77 0.22 0.07 0.30 0.77 0.20
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Table S2: List of residue-based features. The last column lists P-values from Kolmogorov-

Smirnov two-sample test or χ2 test (for amino acid type and secondary structure element), used 

to compare the distributions of feature values based on cryptic site residues and the rest of a 

protein. *** denotes features used to estimate the size of the druggable proteome.  

  

Number Feature Description -log10(P-value)
1 CNC_mean the average pocket score in the MD snaphots 138.628175
2 CNS the percentage of sMD snapshots with pocket score > 0.4 134.401307
3 CNC_std standard deviation of the pocket scores in the DM snapshots 120.958142
4 CN5_std standard deviation of the top 5% pocket scores in the DM snapshots 94.412299
5 CN5_mean the average of the top 5% pocket scores in the MD snaphots 91.872607
6 SQC*** sequence conservation 67.529399
7 SQCn*** sequence conservation of neighbors 55.087905
8 PRT_mean the average protrusion in the MD snaphots 53.482597
9 PRT*** protrusion 51.04202

10 PatchMap (PTM) fragment docking 49.510374
11 CVX_mean the average convexity in the MD snaphots 49.174305
12 SAS30_mean the average surface accessiblity area in the MD snaphots (sphere radius - 3 Å) 47.572171
13 SAS30_std standard deviation of the sruface accessilbity areas in the DM snapshots (sphere radius - 3 Å) 39.999809
14 CVXn*** convexity of neighbors 36.427921
15 SAS14_mean the average surface accessiblity area in the MD snaphots (sphere radius - 1.4 Å) 35.392587
16 CNCn*** pocket score of neighbors 33.397185
17 PRTn*** protrusion of neighbors 31.561099
18 CNC*** pocket score 28.865335
19 SASn*** surface accessibility area of neighbors 26.864333
20 CVX_std standard convexity of the protrusion in the DM snapshots 25.542429
21 CVX*** convexity 25.151335
22 SAS14_std standard deviation of the sruface accessilbity areas in the DM snapshots (sphere radius - 1.4 Å) 25.112301
23 SAS*** surface accessibility area 17.392102
24 QI_std standard deviation of the Qi in the DM snapshots 12.709686
25 RESN5 number of neighbor residues within 5 Å 11.652929
26 En*** percentage of strand residues in neighborhood 11.114616
27 HYDn*** hydrophobicity of neighbors 10.171353
28 HYD*** hydrophobicity 9.935696
29 Hn*** percentage of alpha-helix residues in neighborhood 9.931429
30 CHRn*** charge density of neighbors 9.160735
31 QI_mean the average Qi in the MD snaphots 7.743785
32 CHR*** charge density 6.78546
33 LSE1 local structural entropy (sliding window over 5 residues) 4.879514
34 ATM5 number of atoms in neighbor residues within 5 Å 4.391877
35 Gn*** percentage of 3-10 helix residues in neighborhood 3.873649
36 Un*** percentage of disordered residues in neighborhood 3.051307
37 WT_ROT5 weighted number of side chain rotatable bonds in neighbor residues within 5 Å 2.887659
38 TDSN5 changes in side-chain conformational entropy in neighbor residues within 5 Å 2.771082
39 Sn*** percentage of bend residues in neighborhood 2.720204
40 PCKn*** packing of neighbors 2.582132
41 LSE2 local structural entropy (no sliding window) 2.568867
42 ATM4 number of atoms in neighbor residues within 4 Å 2.2857
43 NBG*** number of neighbor residues 2.172065
44 ROT5 total number of side chain rotatable bonds in neighbor residues within 5 Å 2.161973
45 BFC*** B-factor 2.133939
46 RESN4 number of neighbor residues within 4 Å 1.983735
47 SSE*** secondary structure element 1.737934
48 BFCn*** B-factor of neighbors 1.550362
49 Res*** amino acid 1.408591
50 PRT_std standard deviation of the protrusion in the DM snapshots at 0.935858
51 WT_ROT4 weighted number of side chain rotatable bonds in neighbor residues within 4 Å 0.851296
52 Tn*** percentage of turn residues in neighborhood 0.618936
53 D2S*** distance to the surface 0.50163
54 PCK*** packing 0.443524
55 ROT4 total number of side chain rotatable bonds in neighbor residues within 4 Å 0.341533
56 TDSN4 changes in side-chain conformational entropy in neighbor residues within 4 Å 0.091504
57 Bn*** percentage of beta-bridges residues in neighborhood 0.028279
58 In*** percentage of pi-helix residues in neighborhood 0
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Table S3: Comparison of cryptic sites, binding pockets, and random protein surface patches. The 

distributions of residue-based feature values were compared using Kolmogorov-Smirnov test (P-

values reported), except for amino-acid type and secondary structure element counts, which were 

compared using the χ2 test.  

  

Cryptic  sites Binding pockets Random surface patches Cryptic-Pocket Cryptic-Random patch Pocket-Random patch
Feature Mean value or Count Mean value or Count Mean value or Count P-value P-value P-value
SAS 2.886807822 2.731434862 5.22383845 0.187219991 1.42E-14 8.42E-19
PRT 170.0875544 182.8012748 121.3798615 0.007803677 1.31E-18 7.43E-26
CVX 2.394675569 1.902770509 7.120342898 0.820430696 2.53E-13 2.22E-17
CNC 0.071621963 0.420939626 0.004202988 1.67E-31 7.13E-25 1.10E-52
HYD 0.094858564 -0.001179616 0.267756205 0.008363064 0.000532374 3.22E-10
CHR 0.001105976 -0.004050565 -0.000750921 0.000304239 0.122304442 0.03658217
SQC -0.42691919 -0.312434552 -0.062681622 0.111788161 2.19E-09 9.25E-05
PCK 4.177631399 4.246615688 3.992333988 0.063721088 0.004308327 1.87E-06
BFC -0.032600774 -0.2210273 0.771607347 0.019658 0.060555402 2.44E-06
NBG 8.339503755 8.539359978 7.206137332 0.16872252 4.92E-07 3.28E-11
Residue
LEU 128 139 110 0.835147141 0.271267171 0.165711239
GLY 121 132 109 0.812985378 0.480232422 0.308705803
VAL 100 111 75 0.739032583 0.067240382 0.02429225
ARG 94 47 70 1.84E-05 0.070481153 0.01666201
ILE 87 76 72 0.254184804 0.270741145 0.948245883
ALA 84 93 126 0.784861953 0.002766313 0.007087505
TYR 82 96 36 0.510847957 2.69E-05 8.44E-07
PHE 79 122 49 0.006905002 0.009679412 1.18E-07
ASP 75 61 82 0.148274468 0.592555688 0.038632091
GLU 73 58 90 0.121195589 0.181928016 0.002920559
SER 71 99 101 0.072561836 0.019930182 0.622033281
THR 70 82 77 0.551024726 0.582856767 0.964431832
LYS 65 48 89 0.070077904 0.051296781 0.000119178
MET 48 50 41 0.957579583 0.538391291 0.565000461
PRO 47 57 68 0.524704412 0.052279499 0.214124532
ASN 40 48 61 0.605314722 0.039313494 0.139626071
TRP 35 37 22 0.921612329 0.113822188 0.105092996
HIS 34 44 36 0.419836077 0.88179575 0.592848967
GLN 32 34 45 0.933271418 0.156768786 0.161684188
CYS 20 23 17 0.888678343 0.755752726 0.538989285
Secondary structure
B 15 25 13 0.203306732 0.862956435 0.105287567
E 332 306 157 0.064145816 8.35E-18 7.37E-12
G 73 73 78 0.818560927 0.706917362 0.4864712
H 373 421 439 0.260888628 0.00472031 0.089119651
S 146 152 179 0.97314657 0.050900685 0.037981829
T 133 155 183 0.394166233 0.002782715 0.033510041
U 313 325 327 0.886877711 0.49626038 0.380454587
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Table S4: The table lists template structures used to assess the performance of CryptoSite on 

comparative models.  

  

Query 30-40 50-60 70-80 90-100
1ALBA 1GGLA 4A60A 3RSWA 3RZYA
2BLSB 3WS2A 2QZ6A 1FR1A 4OKPA
1BSQA 4R0BA 1EXSA 3KZAA 1YUPA
2QFOB 2O1WA 3K60B 2YEGA
1CLLA 4DS7A 1GGZA 3CLNA
1DUBD 3T8AA 3MOYA 2HW5F
1EXMA 1F60A 1MJ1A
1JWPA 1PIOA 1G6AA 2G2WA 4GKUA
1K3FB 3EMVA 4YJKD 4OF4A
1K5HC 2JCYA 1R0KA 3IIEA 1ONNA
1HOOB 1J4BA 3UE9A 1ADEA

Sequence Identity
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Table S5: Test set. The table lists the apo and holo PDB identifiers, ligands that bind the cryptic 

sites, protein lengths, the number of residues in cryptic sites, the false positive rates (FPR), true 

positive rates (TPR), as well as the Matthews correlation coefficient (MCC) and the area under 

the ROC curve (AUC) from the leave-one-out cross-validation for 3 different CryptoSite score 

thresholds (0.05, 0.1, and 0.15). 

 

 

Apo Holo Ligand
Protein 

size
Site 
size FPR(0.05) TPR(0.05) AUC(0.05) MCC(0.05) FPR(0.1) TPR(0.1) AUC(0.1) MCC(0.1) FPR(0.15) TPR(0.15) AUC(0.15) MCC(0.15)

1E2XA 1H9GA MYR 243 28 0.32 0.96 0.96 0.42 0.08 0.89 0.96 0.68 0.03 0.61 0.96 0.63
1MY0B 1N0TD AT1 263 18 0.31 1.00 0.94 0.36 0.10 0.78 0.94 0.49 0.02 0.22 0.94 0.28
1ZAHB 2OT1D N3P 363 9 0.32 1.00 0.86 0.22 0.12 0.56 0.86 0.20 0.03 0.11 0.86 0.08
4HB2C 4HATC LMB 1023 22 0.19 0.68 0.85 0.18 0.04 0.32 0.85 0.19 0.01 0.09 0.85 0.12
1BSQA 1GX8A RTL 162 16 0.44 0.88 0.83 0.26 0.21 0.75 0.83 0.37 0.12 0.63 0.83 0.41
2GPOA 1S9QB CHD 230 28 0.46 1.00 0.83 0.36 0.26 0.89 0.83 0.44 0.14 0.32 0.83 0.16
3FDLA 2YXJA N3C 158 24 0.43 0.83 0.82 0.29 0.22 0.63 0.82 0.33 0.10 0.50 0.82 0.40
1B6BA 1KUVA CA5 174 32 0.39 0.91 0.82 0.40 0.23 0.72 0.82 0.40 0.11 0.47 0.82 0.36
1KZ7D 1GRNA AF3 188 13 0.54 0.92 0.75 0.20 0.29 0.69 0.75 0.22 0.13 0.31 0.75 0.13
1JWPA 1PZOA CBT 263 22 0.33 0.68 0.72 0.20 0.10 0.27 0.72 0.15 0.02 0.00 0.72 -0.04
3GXDB 2WCGA MT5 497 18 0.40 0.67 0.71 0.10 0.12 0.39 0.71 0.15 0.02 0.28 0.71 0.27
1BNCB 2V5AA LZL 449 18 0.17 0.61 0.69 0.22 0.03 0.17 0.69 0.14 0.01 0.00 0.69 -0.02
1Z92A 1PY2A FRH 133 15 0.55 0.73 0.65 0.12 0.18 0.40 0.65 0.17 0.10 0.20 0.65 0.10
1JBUH 1WUNH P5B 254 23 0.46 0.61 0.62 0.09 0.13 0.22 0.62 0.07 0.04 0.17 0.62 0.16

Average: 314.29 20.43 0.38 0.82 0.79 0.24 0.15 0.55 0.79 0.29 0.06 0.28 0.79 0.22


