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ABSTRACT

To gain insight into crystalline protein dynamics, we performed molecular-dynamics (MD) simulations of a periodic 2� 2� 2 supercell of
staphylococcal nuclease. We used the resulting MD trajectories to simulate X-ray diffraction and to study collective motions. The agreement
of simulated X-ray diffraction with the data is comparable to previous MD simulation studies. We studied collective motions by analyzing
statistically the covariance of alpha-carbon position displacements. The covariance decreases exponentially with the distance between atoms,
which is consistent with a liquidlike motions (LLM) model, in which the protein behaves like a soft material. To gain finer insight into the
collective motions, we examined the covariance behavior within a protein molecule (intraprotein) and between different protein molecules
(interprotein). The interprotein atom pairs, which dominate the overall statistics, exhibit LLM behavior; however, the intraprotein pairs
exhibit behavior that is consistent with a superposition of LLM and rigid-body motions (RBM). Our results indicate that LLM behavior of
global dynamics is present in MD simulations of a protein crystal. They also show that RBM behavior is detectable in the simulations but
that it is subsumed by the LLM behavior. Finally, the results provide clues about how correlated motions of atom pairs both within and
across proteins might manifest in diffraction data. Overall, our findings increase our understanding of the connection between molecular
motions and diffraction data and therefore advance efforts to extract information about functionally important motions from crystallography
experiments.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5132692

NOMENCLATURE

LLM liquid-like motions
MD molecular dynamics

pdTp thymidine-30-50-bisphosphate
RBM rigid-body motions

INTRODUCTION

Macromolecular crystals consist of many copies of a large mole-
cule (or molecules) packed into a lattice of repeating units. Crystals are

often illustrated using identical repeating units; however, in real crys-
tals, each copy of a molecule can adopt a somewhat different structure
as long as the overall order is maintained. Although structural varia-
tions occur in small-molecule crystals,1 the problem of conformational
heterogeneity is especially important for macromolecular crystals,
which have many more degrees of freedom and a high solvent con-
tent.2,3 Understanding the structural variations in crystals can poten-
tially be used for increasing the accuracy of crystal structure models4

and for developing crystallography as a tool for characterizing confor-
mational heterogeneity and dynamics in structural biology.5
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In X-ray crystallography (and similarly for neutron and electron
crystallography), the details of the molecules’ conformations and their
packing in the crystal lattice leave signatures in the diffraction pattern.
Most of our current understanding of conformational variation in
crystals comes from the analysis of Bragg reflections, which are the
sharp peaks in the diffraction pattern. The Bragg peaks are tradition-
ally modeled using an average picture of the repeating unit, or unit
cell, which contains the mean electron density over all unit cells illumi-
nated by the beam. The most common model multiplies each atomic
form factor by an atomic displacement parameter (also known as a
Debye-Waller factor, B-factor, or thermal factor) corresponding to a
3D Gaussian distribution of each atom’s displacements.

Modern Bragg analysis methods are producing richer descrip-
tions of conformational variations. For example, anisotropic displace-
ments of groups of atoms can be modeled with a small number of
parameters using the Translation Libration Screw (TLS) model,6

which can be used as a supplement or substitute to refining individual
atomic displacement parameters.7 More elaborate models of confor-
mational heterogeneity can also be employed,8 including incorporating
local alternative conformations in multiconformer models9,10 or gen-
erating multiple models using hybrid molecular dynamics ensemble
refinement that collectively satisfy the data.10 These models can imply
distinct collective motions that would leave signatures in the spatial
correlations of electron density variations. Therefore, even if more
elaborate models of motion improve agreement with the Bragg data,
they would need to be validated to determine whether they describe
what is actually happening in the crystal.11 Indeed, distinct TLS refine-
ments with different implied collective motions can yield equivalent
agreement with the Bragg data.12

The degeneracy of models with respect to the mean electron den-
sity fortunately does not extend to spatial correlations in electron den-
sity variations. Models with different correlations lead to distinct
patterns of diffuse scattering that appear as intensity beneath and
between the Bragg peaks in diffraction images. Recent years have seen
a renaissance in methods for processing and modeling diffuse scatter-
ing.2,3,13 However, studies of diffuse scattering have differed in their
conclusions, both about the degree to which the signal can be
explained by various models of correlated motion and about the
importance of different types of motion in determining the conforma-
tional variations in protein crystals.2,14–17 Some studies find evidence
for liquidlike motions (LLM), which model the crystal contents as a
soft material with correlated displacements on a characteristic length
scale.18 Others find evidence for rigid-body motions (RBM),15 which
could, in principle, be modeled by descriptions such as TLS models.12

Ensemble models, in which a limited set of representative structures
are selected from a full conformational distribution,19 also have been
studied and found to be lacking.14,15 A potential problem with ensem-
ble models is that they exhibit exaggerated correlations due to the
absence of finer-scale structure variations.20 More sophisticated mod-
els might be able to better capture the correlated motions within the
crystal.21 Considering the true crystalline context by including neigh-
boring unit cells in the calculations can increase agreement of simple
models like LLM.14

Whereas each of the above-mentioned models of diffuse scatter-
ing explicitly represents only a subset of the possible structural varia-
tions, molecular-dynamics (MD) simulations of crystalline proteins
provide an all-atom picture of a wide variety of available motions.22–25

Early MD simulations of diffuse scattering were hindered by the short
duration (<1ns), which resulted in limited sampling of the conforma-
tional ensemble and calculations that were not reproducible across dif-
ferent runs.26 Agreement between experimental and predicted diffuse
scattering of crystalline staphylococcal nuclease increased as the simu-
lation duration increased to 10ns27 and then even more as it was
increased to 1 ls.25 A recent simulation of staphylococcal nuclease
extended the simulation volume from a single periodic unit cell to a 2
� 2 � 2 supercell, leading to a further increase in agreement with the
experimental data.28 This result parallels the emerging theme from the
LLM work,14 which highlighted the importance of considering more
than just a single unit cell to generate strong agreement with experi-
mental data.29 MD provides a full description of all atoms in the sys-
tem but has a high computational cost relative to the simpler models,
such as LLM and RBM. Because simpler models can potentially be
incorporated into joint X-ray Bragg and diffuse scattering model
refinement, it is interesting to investigate the degree to which the
motions described by simpler models, such as the LLM and RBM
models, appear in the increasingly accurate MD simulations that are
now achievable. It is worth noting that while the LLM and RBMmod-
els include parameters explicitly fit to match diffuse scattering pat-
terns, MD models utilize no such fit, making this comparison
particularly interesting.

Here, we assess the degree to which LLM and RBM behaviors
are present in MD simulations of crystalline staphylococcal nuclease.
We performed new MD simulations of crystalline staphylococcal
nuclease and confirmed that their agreement with diffuse scattering
data is similar to previous studies. We then computed covariance
matrices of Ca atom displacements from the resulting MD trajecto-
ries and analyzed the dependence of the covariance on the average
separation between atoms, which are covarying. The covariance
behavior is well fit by an exponential decrease with distance, support-
ing a LLM model. However, when the analysis is restricted to atom
pairs that lie within the same protein, the behavior is consistent with
a combination of LLM and RBM. Comparison of results obtained
using AMBER vs CHARMM force fields reveals some differences in
the simulations and covariance behavior. Our results indicate that
LLM behavior of global dynamics is present in MD simulations of a
protein crystal. They also show that RBM behavior is detectable in
the simulations but that it is subsumed by the LLM behavior when
adding atom pairs that cross protein boundaries. Finally, they provide
clues about how correlated motions of atom pairs both within and
across proteins might manifest in the diffuse scattering data. Overall,
our findings increase our understanding of the connection between
molecular motions and diffuse scattering data and therefore advance
efforts to extract information about functionally important motions
from crystallography experiments.

RESULTS
Molecular dynamics simulations

In this study, we sought to investigate the connection between
MD simulations and other, less detailed models of crystalline dynam-
ics, like the LLM model. For the MD simulations, we used a model of
crystalline staphylococcal nuclease, consisting of a periodic box con-
sisting of 2 � 2 � 2 unit cells (Fig. 1; Methods). Solution state simula-
tions commonly are performed using a NPT ensemble; however, as we
wished to compare our simulations to diffraction data, we used a NVT
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ensemble, maintaining the consistency of the system with the experi-
mentally determined Bragg lattice during the course of the simulation.
To determine the sensitivity of the results to the force field, we used
both AMBER 14SB and CHARMM 27 force fields in GROMACS.

Consistent with previous studies,25,28 which used similar methods
to the present study, after initial solvation and minimization, during
the first equilibration step, the pressure of the systems was large and
negative: �14396 39 bar for the AMBER simulation, and �1795
6 252 bar for the CHARMM simulation (as reported by “gmx ener-
gy).” To bring the system to atmospheric pressure, additional water
molecules were added iteratively, with intervening rounds of NVT
equilibration, until the mean system pressure was in the range of
�100 to 100 bar (Methods). The number of water molecules added
was similar for both systems (17 557 waters for AMBER and 17 138
waters for CHARMM).

After the iterative solvation steps, unrestrained MD simulations
were carried out for 600ns. The potential energy drifted during the
first �100ns the simulation, after restraints were released, and
remained relatively stable thereafter. To ensure that the drift did not
influence the results of our analysis of the trajectory, the initial 200 ns
section was ignored, and only the last 400 ns section was analyzed. At
the 200ns time point, the root mean squared deviation (RMSD) of the
Ca atom coordinates between the crystal structure and the MD model
after translational superposition was 2.7 Å for the AMBER simulation
and 2.6 Å for the CHARMM simulation. (We note that RMSDs from
solution state simulations are usually computed after performing both

translational and rotational alignment of individual proteins, whereas
these RMSDs were computed after performing translational alignment
of the entire supercell). The RMSD slowly increased through the
600 ns time point, at which it was 3.1 Å for the AMBER simulation
and 2.9 Å for the CHARMM simulation (supplementary Fig. S1). The
B-factors predicted by the atomic fluctuations (not shown) were con-
sistent with previous studies of the same system,28 and with the experi-
mentally determined B factors.

Simulated diffuse intensity

To determine the agreement of the simulations with diffuse scat-
tering data, we computed diffuse intensities from MD trajectories and
computed the Pearson correlation coefficient between the simulated
and experimental intensities (Methods). Simulated diffuse diffraction
images computed from the MD simulations and experimental data are
compared in Fig. 2. The Pearson correlation between the simulated
and experimental total 3D diffuse intensities was 0.9 or higher for all
simulations, similar to that found in a previous study utilizing the
same approach.28 The correlation of the anisotropic component of the
intensity, computed by subtracting an interpolated radial average,28

was 0.58 (AMBER) and 0.63 (CHARMM) for the anisotropic inten-
sity, which is lower than the value of 0.68 previously reported in Ref.
28. We reanalyzed the data in Ref. 28 and obtained the same correla-
tion of 0.68, confirming that the difference is attributed to the simula-
tions rather than the analysis workflow.

To gain finer-grained insight into the agreement between the sim-
ulated and experimental diffuse intensities, we analyzed the trajectory
in 100ns sections (supplementary Fig. S2). The correlation computed
using each section is between 0.53 and 0.58 which is lower than the
0.58 and 0.63 values obtained using the diffuse intensity accumulated
for 400ns. The cumulative agreement is also sensitive to whether the
diffuse intensity is accumulated coherently or incoherently across the
individual 100ns sections (see Methods for definition of coherent vs
incoherent accumulation): when accumulated coherently, the correla-
tion is 0.54 (AMBER) 0.58 (CHARMM) which is lower than the values
0.58 (AMBER) and 0.63 (CHARMM) when accumulated incoherently.

FIG. 1. Illustration of the model used for molecular dynamics simulations. There
are 32 copies of the protein rendered using ribbons in a periodic box of 2 � 2 � 2
unit cells. The yellow arrow indicates an atom pair that lies entirely within the blue
protein, pointing from residue 61 to residue 131 (corresponding to the “within” or
“intraprotein” analysis). The cyan arrow indicates an atom pair that spans across
proteins, pointing from residue 131 in the magenta to residue 128 in the green pro-
tein (corresponding to the “across” or “interprotein” analysis). Water molecules are
rendered in light, transparent blue, giving the appearance of connected droplets.
The image was created using UCSF “Chimera.”30

FIG. 2. Simulated diffraction images derived from MD simulations and 3D experi-
mental diffuse data. 2 � 2 � 2 sampling. The images are truncated at 1.8 Å. To
make the anisotropic features more visible, the 3D diffuse intensities have had the
minimum intensity value subtracted in constant resolution shells prior to generating
these images. Left: image derived from AMBER force-field simulation. Center:
image derived from experimental data. Right: image derived from CHARMM force-
field simulation. The diffuse intensity for MD simulations was accumulated incoher-
ently across 100 ns sections of the trajectory in the time range 200–600 ns after
relaxing restraints. Both the AMBER and CHARMM MD simulations show similar
diffuse features to those in the experimentally derived images, for example, the
strong intensity in the ring and cloudy features at higher resolution. The images
were displayed using the heat map mode of ADXV.31
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Liquidlike motion behavior of all Ca atom pairs

To assess whether the MD simulations produced behavior that is
consistent with the LLMmodel, we computed atom displacement covari-
ance matrices (Methods). The covariance matrices are needed because
the key assumption of the LLM model is that the covariance matrix ele-
ments connecting any two atoms i and j in the crystal are simply propor-
tional to e�rij=c, where rij is the distance between the atoms, and c is the
characteristic length scale of the correlations.18 To make the calculations
and analysis manageable computationally and to obtain a coarse-grained
picture of the covariance, we restricted the analysis to Ca atoms.

The full covariance matrix of Ca displacements for our system is
a 14 304� 14 304 square matrix with each row or column correspond-
ing to one of three cartesian coordinates of each of 149 Ca atoms in
each of 32 proteins in the model. To perform our analyses, we replaced
the 3� 3 submatrix for each atom pair with its trace, leaving a
4768� 4768 square symmetric matrix. In this form, the diagonal ele-
ments correspond to the mean squared deviation (MSD) for each
atom, and the off-diagonal elements correspond to the trace of the
covariance of the displacements of each atom pair. The full covariance
matrix contains regions of both positive and negative covariance, with
the strongest positive values being in blocks about the diagonal (sup-
plementary Fig. S3), corresponding to atom pairs that fall within a pro-
tein (as connected by the yellow line in Fig. 1).

To determine the dependence of the matrix elements coupling
atoms i and j on the distance between the atoms rij, we computed the
distance between each of the atom pairs and divided the distance range
into 50 even bins. We then calculated the mean and standard error of
the covariance within each of the bins (Fig. 3; Methods). For each sim-
ulation, at the lowest distance there is a single bin with high covariance
compared to the other bins: in the AMBER case, a point at 1.67 Å with
covariance 15.5 Å2 6 1.84 Å2 is not shown as it is out of range in y; in
the CHARMM case, a point at 1.47 Å with covariance 21.8 Å2 6 3.06
Å2 is not shown as it is out of range in y. Beyond 5 Å (Fig. 3), the
covariance is much lower (20-fold lower than in the nearest bin below)
and shows a more gradual decrease with distance, falling from a value
of 0.30 Å2 at 5 Å, crossing below zero beyond about 40 Å to a mini-
mum value of either �0.02 (AMBER) or �0.03 (CHARMM) Å2

beyond about 50 Å, and rising to a value closer to zero beyond about
80 Å (AMBER) or 60 Å (CHARMM).

To assess whether these plots display exponential decay behavior,
the values of the covariance CðrÞ were fit to the function CðrÞ
¼ ae�r=c þ b, where r is the distance between atoms, in the range r
between 5 Å and 55.5 Å. (We found that the exponential fit was poor
without adding the constant b, and so we added it.) For the AMBER
simulation, the fit yielded a¼ 0.796 0.01 Å2, c ¼ 11.06 0.1 Å, and b
¼ �0.0226 0.001 Å2. For the CHARMM simulation, the fit yielded
a¼ 0.946 0.02 Å2, c ¼ 11.16 0.2 Å, and b ¼ �0.0296 0.001 Å2.
The constant offset at long distances is consistent with an earlier sim-
ulation,27 which postulated that it might be an artifact of translational
alignment of the MD trajectory snapshots—a necessary step before
computing the covariance matrix (Methods). Figure 3 shows that the
fit overlaps the computed covariances in the region below 60 Å, and
therefore displays exponential decay behavior, which is consistent
with the assumption of the LLM.

Combination of liquidlike and rigid-body motion
behaviors within proteins

As noted in Liquidlike motion behavior, the strongest positive
values of the covariance matrix were in blocks along the diagonal (sup-
plementary Fig. S3). These blocks correspond to Ca atom pairs that lie
within the same protein (yellow line in Fig. 1), which we refer to as
intraprotein or “within-protein” atom pairs. The rest of the covariance
matrix corresponds to atom pairs that cross protein boundaries, which
we refer to as interprotein or “across-protein” atom pairs (cyan line in
Fig. 1). (The subsets of intraprotein and interprotein Ca atom pairs
are complementary with respect to the set of all Ca atom pairs.) We
wondered whether the LLM behavior observed for all Ca atom pairs
also would apply individually to these subsets. We therefore computed
the covariance vs distance for each. We also wished to focus our atten-
tion on the more stable region of the protein and therefore eliminated
residues at the extreme N- and C-terminal Ca atoms from our calcula-
tions (Methods).

The shape of the curve for interprotein atom pairs (Fig. 4) is simi-
lar to that for all Ca atom pairs (Fig. 3). In the case of the AMBER simu-
lation, a point at 3.3 Å with covariance �1.77 Å2 6 1.23 Å2 is not
shown as it is out of range in y. For AMBER, the best-fit exponential
decay has a¼ 0.426 0.02 Å2, c ¼ 14.36 0.4 Å, and b¼ 0.0256 0.001Å2;
for CHARMM the best-fit has a¼ 0.556 0.02 Å2, c ¼ 13.46 0.3 Å,

FIG. 3. Dependence of covariance on distance for all Ca atom pairs. Mean values of covariance 6 standard errors are shown using vertically oriented error bars. Exponential
fits to the values in the 5–55.5 Å range are shown using dashed lines. The upper y-range is truncated at 1 Å2, showing the full range of the exponential fit but excluding one
high covariance value at very short distance from each panel. Left: AMBER force field. The exponential fit has a decay length of 11.0 Å. Right: CHARMM force field. The expo-
nential fit has a decay length of 11.1 Å.
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and b¼ 0.0326 0.001 Å2. The values at a short distance are smaller
in the interprotein analysis than in the analysis of all atom pairs. In
the case of the AMBER simulation, the exponential fit deviates from
the covariance values in the region below 10 Å (Fig. 4). The values of
a are smaller than those for all atom pairs, supporting the observa-
tion that the values at a short distance are smaller. The values of c
are larger than those for all atom pairs, indicating that correlations
extend to a longer length scale. The values of b are similar to the val-
ues for all atom pairs.

In contrast to the interprotein atom pairs, the shape of the curve
for atom pairs within proteins (Fig. 5) is very different (note that the
x-axis only extends to �42.5 Å, while retaining the number of bins at
50). In the AMBER case, a MD point at 2.90 Å with covariance 1.64
Å2 6 0.38 Å2 is not shown as it is out of range in y. In the case of the
CHARMM simulation, a MD point at 3.2 Å with covariance 2.85 Å2

6 0.23 Å2 is not shown as it is out of range in y. The values still
decrease with increasing distance, but the curvature is lower near 5 Å.
Moreover, the behavior is almost linear above 20 Å, crossing zero at
about 38 Å, and decreasing to about�0.1 Å2 at the longest distance.

In seeking an explanation for the linear behavior, we reasoned
that rigid-body rotations of individual proteins should give rise to a
decreasing covariance with distance. For example, during a rotation
through the center of mass, nearby atoms on the surface would tend to
move together, giving rise to a positive covariance, and atoms at
remote locations on the surface would tend to move in opposite direc-
tions, giving rise to a negative covariance. We postulated that this
might lead to a decreasing covariance with distance that is positive at
short distances and becomes negative at long distances. Adding a
rigid-body translation after the rotation would lead to a uniform posi-
tive covariance within the protein, shifting the curve up and the zero
crossing to longer distances.

To test this idea, we generated an ensemble of snapshots display-
ing varying degrees of RBM. For each snapshot, three Euler angles and
a translational shift were drawn from a normal distribution, and rigid
coordinate transformations were applied to a single staphylococcal
nuclease protein from the MD model. The widths of the distributions
were chosen to be on a par with the magnitude of motion observed in
our MD simulations. The covariance matrix was computed from the

FIG. 4. Dependence of covariance on distance for just interprotein Ca atom pairs. Mean values of covariance 6 standard errors are shown using vertically oriented error bars.
Exponential fits to the values in the 5–55.5 Å range are shown using dashed lines. The upper y-range is truncated at 0.6 Å2. Left: AMBER force field. The shortest distance
point is not shown as it is out of range. The exponential fit has a decay length of 14.36 0.4 Å. Right: CHARMM force field. The exponential fit has a decay length of
13.46 0.3 Å. The exponential fits are fairly good, but not as good as in Fig. 3.

FIG. 5. Dependence of covariance on distance for only intraprotein Ca atom pairs. Mean values of covariance 6 standard errors from the MD simulations are shown using
vertically oriented error bars. Values computed from RBM models are shown using dashed lines (standard errors are O(10�5) Å2 and are therefore not shown). The upper y-
range is truncated at 0.6 Å2, showing the full range of the exponential fit but excluding one high covariance value at the shortest distance from the MD values in each panel.
Left: AMBER force field. The RBM model has a width (SD) 0.95� for the angular distribution and 0.24 Å for the translational distribution. Right: CHARMM force field. The RBM
model has a width (SD) 1.05� for the angular distribution and 0.27 Å for the translational distribution. The MD simulations are well modeled using rigid-body translations and
rotations for distances greater than 20 Å.
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snapshots, and the distance dependence was analyzed in the same
manner as for the MD trajectories.

We adjusted the standard deviation (SD) of the angular and
translational distributions to optimize the visual agreement with the
MD simulation in the long-distance part of the curve. In the case of
the AMBER simulation, the final SD used for the angular distribution
was 0.95�, and the SD of the translational distribution was 0.24 Å.
For the CHARMM simulation, the SD of the angular distribution was
1.05�, and the SD of the translational distribution was 0.27 Å. The
model tracks MD simulation results in the region above about 20 Å
(Fig. 4), indicating that the MD covariance in this long-distance region
is consistent with RBM.

To explain the behavior in the region below 20 Å, we subtracted
the RBM plots from the corresponding MD simulation plots in Fig. 5,
yielding the residual shown in Fig. 6. In the AMBER case, a point at
2.9 Å with covariance 1.31 Å2 is not shown as it is out of range in y. In
the CHARMM case, a MD point at 3.2 Å with covariance 2.45 Å2 is
not shown as it is out of range in y. As the residual plots resemble an
exponential decay, we again fit them to the function CðrÞ ¼ ae�r=cþ b
in the region r> 5 Å. For the AMBER simulation, the fit yielded
a¼ 0.376 0.02 Å2, c ¼ 5.76 0.2 Å, b¼ 0 Å2 to within error; for
CHARMM, the fit yielded a¼ 0.466 0.03 Å2, c ¼ 5.76 0.3 Å, and b
¼ �0.0026 0.001 Å2. The fit confirms that the residual is consistent
with an exponential decay, but with a much shorter length scale than
for the interprotein atom pairs.

Additional insight into the LLM behavior comes from comparing
the values of c and a obtained from the MD analysis with the values
obtained by fitting a LLM model to coarsely sampled (one point per
Miller index) experimental diffuse scattering data (Methods). The
refined LLM model had a Pearson correlation coefficient with the
anisotropic data of 0.73, with c¼ 6.5 Å and r¼ 0.41 Å (the agreement
with the total diffuse data, as opposed to the anisotropic data, is poor,
as the LLM model does not include solvents). A comparison of simu-
lated diffraction images from the model and data is shown in supple-
mentary Fig. S4. The value of c is closer to the value for the
intraprotein analysis (5.5 Å) than for the interprotein (11.5 Å) or
all-atom (12 Å) analysis. The value of r corresponds to a MSD of
3 � (0.41 Å)2 ¼ 0.50 Å2, which is comparable to the values of a
obtained in the intraprotein analysis (0.42 Å2 for AMBER and 0.48 Å2

for CHARMM) and to the values for the interprotein analysis (0.55 Å2

for AMBER and 0.66 Å2 for CHARMM). This comparison indicates
that the coarsely sampled diffuse scattering data exhibit both a length
scale of correlations and amplitude of motion that are most consistent
with the intraprotein atom pairs in the MD simulation (see Discussion).

DISCUSSION

Our crystalline MD simulations of staphylococcal nuclease reveal
a consistency with the LLM model: the distance dependence of the
covariance of Ca displacements follows an exponential decay. This
finding indicates that LLM behavior is present in a more realistic,
highly detailed, all-atom description of the dynamics. It also provides a
rationale for why the LLM model, which uses only a few parameters,
can provide a reasonable explanation of diffuse scattering data, which
depends on the atomic details of the structure variations.

The atomic details contained in the MD also allow us to examine
the covariance behavior within a protein molecule (intraprotein) and
between different protein molecules (interprotein). Consistent with
the overall LLM model, the distance dependence of the covariance
between interprotein atom pairs appears exponential, albeit with devi-
ations below 10 Å [Fig. 4]. The best-fit values of c are 14.3 Å for the
AMBER simulation and 13.4 Å for the CHARMM simulation, which
are somewhat longer than the value of 11 Å for all protein pairs. If the
subset of interprotein atom pairs dominates the statistics of all atom
pairs, then it should be most important in determining the LLM
behavior that was observed for all atom pairs. Indeed, beyond a dis-
tance of 12 Å, the number of interprotein atom pairs sharply climbs
above the number of intraprotein atom pairs (supplementary Fig. S5),
supporting this notion. This finding is consistent with earlier work of
Peck et al.14 showing that including interactions across molecular
boundaries improves agreement with the anisotropic diffuse scattering
signal.

In contrast to the interprotein atom pairs, the covariance behav-
ior for just the intraprotein atom pairs deviates from a LLM model.
For these atom pairs, the behavior is described by a mixture of RBM
and other contributions. The long-range behavior (above 20 Å) is
almost exclusively explained by RBM, the midrange behavior (5-20 Å)
is dominated by RBM, and in the short-range region (below 5 Å),
the RBM model accounts for only a minority of the covariance. The

FIG. 6. Residual covariance computed from the MD simulations, after subtracting the covariance values of the RBM model (see Fig. 5). Mean values of covariance 6standard
errors from the MD simulations are shown using vertically oriented error bars. Exponential fits to the values in the range above 5 Å are shown using dashed lines. The upper
y-range is truncated at 0.5 Å2, showing the full range of the exponential fit but excluding one high covariance value at the shortest distance from each panel. Left: AMBER force
field. Right: CHARMM force field. Both residuals are well fit by an exponential with the same decay length of 5.7 Å.
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observation of RBM here is reminiscent of ssNMR studies of ubiquitin
crystals32,33 in which MD simulations were used to explain the crystal
dynamics; in that study, 3–5� rocking motions were observed via rota-
tional alignment of proteins from the MD trajectory. We note, how-
ever, that 3–5� is much larger than the 1� SD that explains the
covariance behavior in Fig. 5. In addition, the present results are con-
sistent with our previous analysis of rigid-body rotations based on
rotational alignment of proteins from the MD trajectory;28 that analy-
sis found 1–2� SDs of Euler angles and indicated that rigid-body rota-
tions account for a minority of the atom displacements in
staphylococcal nuclease crystalline MD simulations.

After subtracting the RBM contribution from the intraprotein
covariance plot, the residual is well fit by an exponential decay, except
below 5 Å. The decay length of the fit is 5.7 Å, which is substantially
shorter than the length found for all atom pairs (11 Å) or just the inter-
protein atom pairs (13.4 Å and 14.3 Å). As the decay length differs, it
is possible that the interprotein and intraprotein LLM behaviors have
different origins in the MD simulations. As the intraprotein LLM
behavior only is apparent after the RBM contribution has been sub-
tracted, it is unlikely to involve a substantial RBM component; how-
ever, it is possible that the interprotein LLM behavior includes a
component that is due to the coupling of RBM across protein bound-
aries.34 In addition, our findings do not rule out the possibility that the
LLM behavior includes coupled rigid motions of units smaller than
the protein (e.g., secondary structural elements).

The value c ¼ 6.5 Å obtained for the LLM fit to staphylococcal
nuclease diffuse scattering data is substantially smaller than the 18 Å
value obtained by Peck et al.14 for LLM models of diffuse scattering
from CypA and WrpA. Peck et al.14 also noted that their values of c
were larger than previously published values, and that the difference in
length scales for LLM models might be attributed to their finer sam-
pling of the data. Our results lend support to this explanation for
the discrepancy. In the case of intraprotein atom pairs, we found c
¼ 5.7 Å, which is comparable to the value c ¼ 6.5 Å from the LLM fit.
In the case of interprotein atom pairs, we found c ¼ 14.3 Å (AMBER)
or c ¼ 13.4 Å (CHARMM), which is more comparable to the value c
¼ 18 Å from the Peck et al.14 study. The similarity of these length
scales between the fitting and the MD suggests that both types of
motions might be present in the protein crystal. Moreover, the com-
parison of the length scales between MD analysis and LLM models
suggests that the fine-grained sampling might yield data that empha-
size interprotein motions, and that the coarse-grained sampling might
yield data that emphasize intraprotein motions in the fitting. This pos-
sibility motivates future work to identify regions of reciprocal space
where the intraprotein signal is enhanced, helping us to realize the
vision of connecting diffuse scattering to functionally important
motions.

In contrast to the finding by Peck et al.14 that a LLM yielded bet-
ter agreement with the data than a RBM model of CypA, de-Klijn
et al.15 Recently concluded that RBM is the predominant source of dif-
fuse scattering in CypA. Because the connection between the covari-
ance matrix and diffuse scattering is not trivial, it does not logically
follow from the results of our covariance analysis that the contribution
of RBM to the staphylococcal nuclease diffuse signal is weak. To gain
some insight into the importance of RBM in explaining the data,
therefore, we fit a simple rigid-body translation model with a single
displacement parameter r to the same data we used to fit the LLM

model, enforcing the Laue symmetry (see, e.g., the first term of Eq.
(10) in Ref. 16). The refined model had r ¼ 0.40 Å, yielding a Pearson
correlation coefficient with the anisotropic data of 0.56. The value of r
is almost the same as that for the LLM model, for which r ¼ 0.41 Å.
The correlation, however, is substantially lower than the value of 0.73
for the LLM model. We therefore conclude that the LLM model more
accurately describes the coarsely sampled diffuse scattering data from
staphylococcal nuclease. Future work is required to determine why dif-
ferent studies have arrived at different conclusions about the source of
diffuse scattering, e.g., the degree to which different data processing
and modeling methods are responsible as opposed to differences in
what is going on in the crystal different systems.

Ideas from thermal diffuse scattering theory35 do support the
possibility that sampling of diffuse data might preferentially select for
different types of motion. As noted by Peck et al.,14 when motions are
coupled across unit cell boundaries (as both the present study and
their study suggest might be happening in real crystals), the diffuse
intensity becomes tied to the Bragg peaks. This effect is closely related
to thermal diffuse scattering theory in which the intensity has local
maxima at Bragg peak positions and decreases with distance from the
peak in a way that is determined by the spectrum of crystal vibra-
tions.35 Motions coupled on long length scales generate intense fea-
tures that decay sharply moving away from the peaks, and motions
coupled on a shorter length scale contribute less intense features that
are spread out over a larger region of reciprocal space, extending far-
ther from the peaks. Because the coarse sampling in our study rejects
intensity values within 1=4 of a Miller index of each Bragg peak, it is
dominated by the intensity far from the peaks, enriching the signal
due to shorter length-scale correlated motions. In contrast, the finer
sampling used by Peck et al.14 includes the data corresponding to long
length-scale correlated motions, which, despite the localization to
fewer grid points near the Bragg peaks, might dominate the fitting due
to the higher intensity. In the case of the fine-grained sampling, it is
possible that motions on both length scales might be resolved if a LLM
with both a short-range and long-range exponential were used.36

Although the AMBER and CHARMM simulations yielded similar
exponential behavior for the covariance of all Ca atom pairs, a number
of differences between the force fields were revealed in our study. (1)
The MD simulation pressure after initial solvation was less negative
in the case of AMBER (�1439 6 39bar) than CHARMM (�1795
6 252bar). (2) In both Figs. 3 and 4, the covariance in the case of
AMBER stays below zero except at the longest distances, and in the case
of CHARMM gradually rises to zero after a minimum at around 55 Å.
(3) The short-range behavior differs for the AMBER vs CHARMM sim-
ulations. For the CHARMM simulations (Fig. 4), the exponential behav-
ior continues to short distances. In contrast, for the AMBER
simulations, the covariance in the 3.31 Å bin is negative: �1.77 6 1.23
Å2. (4) The diffuse intensities predicted from the CHARMM simulation
had a somewhat higher correlation with the data than those from the
AMBER simulation (supplementary Fig. S2). At this time, the origin of
the differences is not clear; however, these differences indicate ways in
which crystalline MD simulations, including comparisons to diffuse
scattering data, have the potential to distinguish between force fields,
and therefore might be used to increase force field accuracy.

There are some caveats to consider in interpreting our results.
For all but the interprotein atom pairs, the covariance increases
sharply below 5 Å, deviating from the values predicted by both the
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LLM and RBMmodels. Such deviation is not surprising, as short-range
interactions are more sensitive to the details of the chemical environ-
ment, and include interactions between sequential Ca atoms across the
rigid peptide bond. The MD simulations were conducted while con-
straining the distance between all bonded atoms using the linear con-
straints solver (LINCS) method in GROMACS, which further rigidifies
the structure, also tending to increase the covariance. Another caveat is
that the exponential fit includes a small negative offset—the correlation
function does not decay to zero as the distance increases. (The longest
distance corresponds to half the system size, or one lattice vector, along
each side of the simulation box.) The offset is nearly zero for the intra-
molecular case, but is more substantial for the intermolecular and the
full supercell analysis, where it is needed to accurately fit the covariance
behavior. The offset might be an artifact of the translational alignment
of trajectory snapshots,27 or it might be due to low-frequency crystal
vibrations17 or some other real effect. Note, however, that a constant
offset corresponds to a constant long-range covariance, which focuses
the diffuse intensity directly beneath the Bragg peaks. In this way, the
long-range component of the diffuse intensity might become indistin-
guishable from the Bragg intensity and not appear in the measured dif-
fuse intensity. A third caveat is that our analysis was performed using
only Ca atom pairs, and therefore does not take into account the influ-
ence of non-Ca backbone or side chain motions on the covariance
behavior. In particular, it is possible that the signature of RBM might
not be as clear for side chain atoms as for Ca atoms, if the backbone is
more rigid than the side chains. In future work, it will be especially
important to analyze simulations in which the bond constraints are
relaxed and to overcome the computational difficulties of adding all
heavy atoms, including side chain atoms, to the covariance analysis.

Meinhold and Smith37 performed an analysis of correlated dis-
placements between atom pairs in MD simulations of crystalline
staphylococcal nuclease. Instead of analyzing the covariance matrix,
however, they analyzed the dependence of elements of the correlation
matrix on the distance between atom pairs. The correlation matrix is
computed by renormalizing the covariance matrix, dividing each ele-
ment by the geometric mean of the values on the diagonal (variances)
in the corresponding row and column for each element. Meinhold and
Smith found that the correlations of all atom pairs decreased exponen-
tially with a decay length of 11 Å, and that interprotein atom pairs also
decreased exponentially, with a longer decay length (11–18 Å, depend-
ing on the simulation). In this respect, the results of our analyses are
similar. However, in contrast to the near linear behavior we found for
the covariance of intraprotein atom pairs, they found that the intra-
protein correlations showed an exponential decay behavior. Our anal-
ysis therefore appears to be inconsistent with theirs with respect to the
intraprotein atom pairs. We note that there are several differences
between our analyses: on the one hand, Meinhold and Smith37 ana-
lyzed the “correlation” matrix of Ca and other atoms, used a single
periodic unit cell, a NPT ensemble, and 10ns duration simulations; on
the other hand, we analyzed the “covariance” matrix of only Ca atoms,
used a 2 � 2 � 2 periodic supercell, a NVT ensemble, and 600ns
duration simulations. The difference in the set of atoms used for the
analysis seems especially important in light of the expected increased
rigidity of Ca atoms compared to all atoms, as discussed in the previ-
ous paragraph.

The agreement between the MD simulation and the experimental
data differs slightly depending on the details of how the statistics from

each 100ns chunk are accumulated. A strict application of Guinier’s
equation calls for the statistics to be accumulated coherently, by sum-
ming the complex structure factors across each chunk before comput-
ing the total diffuse intensity. Here, we also experimented with
accumulating the statistics incoherently, by instead averaging the dif-
fuse intensities computed from each 100ns chunk. Compared to
coherent accumulation, incoherent accumulation led to a 0.04–0.05
increase in the Pearson correlation with the experimental data.
Although the small size of the difference makes its significance ques-
tionable, it is nevertheless worth exploring further, as it suggests that
the illuminated volume might more accurately be described as a set of
independent domains than as a single crystal. Such a description is
consistent with the mosaic block picture, which has been long used to
explain crystal imperfections in macromolecular crystallography.38 It
is also consistent with the relatively high concentration of defects that
are seen in macromolecular crystals using atomic force microscopy.39

As mentioned above, the correlation of the anisotropic intensity
calculated from the LLM model with the data is 0.73, which is higher
than the maximum value of 0.63 for the MD simulation. The higher
correlation of the LLM suggests that it provides a globally more accu-
rate description of the anisotropic intensity. In addition, whereas the
LLM is derived from the crystal structure, the MD model drifts away
from the crystal structure during the course of the simulation (supple-
mentary Fig. S1). Although the MD model is lacking in this respect, it
still has advantages over the LLM model. For one, the MD simulation
is still the only model that is capable of reproducing the total inten-
sity—isotropic and anisotropic—and is therefore the most accurate
overall. Moreover, the MD model is, in some sense, a “model-free”
model, in that there are no free parameters to fit—the model simply
depends on the choice of force-field, and the assumption that the sys-
tem behaves classically. Indeed, the LLM model accuracy is substan-
tially increased due to the ability to refine the free parameters against
the experimental data. However accurate the LLM model may be, it
produces a very limited description of the dynamics that does not con-
tain any mechanistic information, whereas the MD model can provide
us with dynamic structural information that yields functional and bio-
logical insight (modulo any inaccuracies inherent to the force field, or
due to inadequate sampling and/or simulation length).

Taken together, our results show that MD simulations of a crys-
talline protein exhibit LLM behavior. The interprotein atom pairs
exhibit LLM behavior and within the protein the motions exhibit both
LLM and RBM behaviors. Due to the large number of interprotein vs
intraprotein atom pairs, the overall behavior appears LLM-like. These
findings provide support and context for previous results, which
showed that LLM models of protein diffuse scattering improve after
the inclusion of interactions across protein boundaries. They also pro-
vide clues about why LLM model fits using coarsely sampled diffuse
data might yield smaller correlation length scales than using finely
sampled data. Finally, our results suggest that the modeling of finely
sampled diffuse scattering data might be improved by consideration of
both small-scale and large-scale collective motions.

METHODS
Molecular-dynamics simulations

The all atom structure for staphylococcal nuclease was pulled
from the Protein Data Bank (wwPDB: 4WOR40 with unit cell
a¼ b¼ 48.5 Å, c¼ 63.43 Å, a ¼ b ¼ c ¼ 90 degrees, and space group
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P41). This structure is missing the first five residues at the N-terminus
and the last eight residues at the C-terminus. In Ref. 28, the missing
N- and C-terminal atoms were reintroduced and modeled based on
extension of secondary structure—the same starting structure is used
in this work.

Once fully modeled, the asymmetric unit was propagated to a
unit cell and then to a 2 � 2 � 2 supercell using the “UnitCell” and
“PropPDB” methods from AmberTools18.41 The coordinates of the
bound ligand, thymidine-30-50-bisphosphate (pdTp), were extracted
from the PDB file, saved as a mol2 file (using UCSF Chimera30) and
parameterized using the SwissParam Server (swissparam.ch42). Two
different systems were created: one in which the protein residues were
parameterized with the AMBER 14SB force field43 and another in
which they were parameterized with the CHARMM 27 force field;44

both were parameterized using GROMACS45 “pdb2gmx” (residue
names were set manually and hydrogens present in the initial PDB file
were ignored with flag-“ignh,” which automatically assigns proton-
ation states for residues at pH 7). These fully parameterized systems
were then solvated with TIP3P waters46 using GROMACS “gmx sol-
vate.” The full systems were neutralized with chloride ions (“gmx gen-
ion”). Once solvated, these systems were minimized using the steepest
descent algorithm.

Simulations were performed using a constant particle number,
volume, and temperature (NVT) ensemble, at a temperature of 298K.
After an initial round of NVT equilibration to check the pressure of
the system, the number of water molecules was adjusted to achieve
near-atmospheric pressure. This was achieved by iterative rounds of
solvation and NVT equilibration. For the CHARMM force field simu-
lation, 100 ps equilibration durations were used, as in previous studies
of the same system.25,28 For the AMBER force field simulation, 5 ns
equilibration durations were used. After the last round of equilibration,
17 557 waters were added in the AMBER simulation, and 17 138
waters were added in the CHARMM simulation.

The crystallographic protein heavy atoms (i.e., nonterminal
heavy atoms) were restrained to the minimized crystal structure dur-
ing all rounds of equilibration and the initial 100 ns restrained produc-
tion simulation (restraint force constant k¼ 1000 kJ mol�1nm�2).
Restraints were then released and production simulation was carried
out for 600ns. All rounds of equilibration and production were carried
out using the leap-frog algorithm (“integrator ¼ md”); neighbor
searching was carried out using the Verlet cutoff-scheme47 with an
update frequency of 10 frames (“niter¼ 10”), and a cutoff distance for
the short range neighbor list of 1.5 nm (“rlist”¼ 1.5); all bonds were
constrained with the LINCS algorithm (“constraints¼ all-bonds; con-
straint-algorithm¼LINCS).”48

Covariance matrix of atom displacements

After releasing restraints, the simulations require on the order of
100ns for the RMSD of the protein Ca coordinates to plateau. To
ensure that the system was fully equilibrated after the release of
restraints, analysis began at 200ns in to unrestrained production. Ca
trajectory subsets were extracted from the full unrestrained production
trajectories from 200–600 ns in both simulations. To do this, the first
frame (200ns into unrestrained production) was extracted, and the Ca
coordinates were isolated using “gmx editconf” (with flag-pbc to
ensure molecules stay whole). Then, a 400ns Ca trajectory was created
using “gmx trjconv,” and subsequently translationally fit to the starting

structure using the Ca starting frame as reference (“gmx trjconv …
-s c_alpha_supercell_pbc.gro … -fit translation).” The Ca trajec-
tory covariance information was calculated using “gmx covar” (once
again, using the Ca structure from the first frame as reference).

With 32 proteins, each containing 149 Ca atoms, and a 3� 3
covariance submatrix for each pair of Ca atoms, the full covariance
matrix computed by gmx covar is a 14 304� 14 304 block matrix. The
diagonal elements of this matrix correspond to the mean squared devi-
ation (MSD) for each atom, in each direction; these diagonal elements
were ignored in subsequent analysis. After computing the trace of each
atoms-pair’s 3� 3 submatrix, the covariance matrix is 4768� 4768
(supplementary Fig. S3). These pairwise Ca covariances were sorted
by their distances apart, using a matrix of pairwise Ca distances (sup-
plementary Fig. S3) computed using MDTraj49 and the average coor-
dinates reported by gmx covar for each Ca trajectory subset.
Covariance matrix data were processed, analyzed, and plotted using
python’s “numpy, scipy, and matplotlib.” The covariance as a function
of distance data was fit to an exponential decay model using “gnuplot,”
and errors in the parameters reported in the Results section are the
asymptotic standard errors reported by gnuplot.

Rigid-body motions model

To investigate the source of the nonexponential decrease in
covariance as a function of distance for residue pairs within proteins,
we created a Python script to simulate RBM (“RigidBodyMotions.py”
in the supplementary material and at https://github.com/mewall/
lunus/blob/master/scripts/RigidBodyMotions.py). The script creates
hypothetical trajectories consisting of a rigid protein randomly rotated
and translated by amounts on a par with the magnitude of motion
observed in our MD simulations. We compared the covariance behav-
ior computed from these “trajectories” with that observed in the crys-
talline MD simulations. This allowed us to determine the degree to
which a rigid-body rotation and translation model can explain the
MD covariance behavior.

The Python script generates covariance data as follows:

(1) The structure of a single protein is pulled from the crystalline
MD starting structure, and centered on the origin “(using
mdtraj.Trajectory().center_coordinates());” terminal atoms
missing from the PDB structure are disregarded, as they cannot
reasonably be considered rigid.

(2) Rotations are generated by sampling three Euler angles, each
from a normal distribution with mean zero and a specified stan-
dard deviation; similarly, translations are generated by sampling
a three-dimensional vector from a normal distribution with
mean at the origin and a specified standard deviation, the same
for all directions.

(3) A new “frame” is created by first rotationally moving and then
translationally moving the starting structure; for rotational
moves, a rotation matrix is generated from the Euler angles,
and the matrix vector product of the rotation matrix and the
coordinates of each atom is performed (with “numpy.dot());”
for translations, the random three-dimensional translation vec-
tor is added to each atom’s coordinates.

(4) A “trajectory” is built up frame by frame, and the covariance is
calculated as a function of the distance between atoms, as
described above for simulation trajectories.
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In this study, we used 5000 frames for our analysis. The covari-
ance data produced were compared with the covariance data from
equivalent atoms in the simulation (nonterminal Ca atom pairs within
proteins). Reasonable parameters for the Euler angle and translational
distributions were arrived at by manual adjustment of the standard
deviations, seeking the best visual overlap between the model and the
data.

Diffuse scattering

Diffuse scattering data for staphylococcal nuclease were
obtained from past experiments40 and were processed as described in
Ref. 28. In addition to studying the LLM behavior of the atom dis-
placement covariance matrix, the MD trajectories themselves can be
processed directly to predict the diffuse scattering. The diffuse scatter-
ing is the variance of the structure factor of independent repeating
units in the crystal, according to Guinier’s equation,50 and previous
studies have predicted the diffuse scattering from protein crystal
MD trajectories by computing the structure factor, frame-by-
frame.25,27,28,37,51 This is done as in Ref. 28 using the script
“get_diffuse_from_md.py,” which takes in a trajectory and outputs
.mtz (byte stream) and .dat (ascii) reflection data; then, reflected data
are processed with the “Lunus” diffuse scattering data processing
software suite (https://github.com/mewall/lunus). The same script
and processing software were used in this work.

Diffuse scattering simulations were calculated from the last
400 ns of the trajectories. As in Ref. 28, the intensities were computed
on a 3D grid sampling reciprocal space twice as finely as the Bragg lat-
tice. The trajectory was produced in 100ns chunks, and the diffuse
scattering was calculated from these 100ns chunks independently, and
then accumulated either (a) “coherently,” by accumulating the com-
plex structure factors (“flag-merge ¼ True”) or (b) incoherently, by
averaging the intensities themselves from each 100ns chunk using
Lunus methods “sumlt” and “mulsclt.” The model diffuse scattering
was converted to a lattice file using “hkl2lat,” with the experimental
lattice file as a template, then symmetrized, and culled by resolution
range using “symlt” and “culllt,” and the anisotropic component of the
diffuse scattering was computed using “anisolt.” Pearson correlations
between the models and the data were computed using “corrlt.”

Simulated diffraction images in Fig. 2 and supplementary Fig. S4
were computed from models or data in a similar way to that in Ref.
28. To simulate diffraction using a 3D grid model or data, the mini-
mum value was computed within shells and was subtracted from each
3D grid point, using interpolation (“subminlt”). The diffraction pat-
tern corresponding to a specified crystal orientation was simulated
from the 3D grid using the “simulate_diffraction_image.py” Python
script distributed with Lunus.

For the refinement of the LLM, we processed the data using a
recent version of Lunus (https://github.com/mewall/lunus). As in the
original staphylococcal nuclease study,40 the data were coarsely sam-
pled using one point per Miller index. The data were processed to a
resolution limit of 1.6 Å. Intensity values within 1=4 of a Miller index of
each Bragg peak were excluded from the processing. The 3D data were
symmetrized using the P4 Laue symmetry, and the isotropic compo-
nent was removed as described in Ref. 28. The structure factors from
the 4WOR crystal structure were used to refine a LLM model, using
the refine_llm.py script distributed with Lunus (“python refine_llm.py
symop¼-3 model¼llm bfacs¼zero).”

SUPPLEMENTARY MATERIAL

See the supplementary material for five supplementary figures
and a Python script: RMSD of the supercell C-alpha coordinates
between the crystal structure and the MD model (FIG. S1); agreement
between 3D diffuse scattering data and simulations computed using
sections of the MD trajectory (FIG. S2); visualization of values from
the Ca atom displacement covariance matrix and the Ca atom dis-
tance matrix (FIG. S3); simulated diffraction images from the LLM
model and 3D experimental diffuse data (FIG. S4); number of Ca
atom pairs as a function of distance in the full supercell (FIG. S5); and
RigidBodyMotions.py, a Python script used to compute the covariance
matrix of Ca displacements in a model of rigid-body rotations and
translations and to compute the mean covariance in bins of atom pair
distance. The script is also available at https://github.com/mewall/
lunus/blob/master/scripts/RigidBodyMotions.py.
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Figure S1. RMSD of the supercell C-alpha coordinates between the crystal structure and the MD 

model. Values were sampled every 200 ps. AMBER simulation values are shown as purple ‘+’ 

symbols and CHARMM values using green ‘’ symbols. 
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Figure S2. Agreement between 3D diffuse scattering data and simulations computed using sections 

of the MD trajectory. Values of the Pearson correlation coefficient are computed as a figure of 

merit. AMBER values are in red, CHARMM in blue. Left. Agreement computed using individual 

100 ns sections after the 200 ns time point (200-300, 300-400, 400-500, and 500-600 ns). Values 

do not systematically increase or decrease with the simulation time. Center. Simulations computed 

using trajectories accumulated coherently after the 200 ns time point (see Methods for definition 

of coherent accumulation): (200-300, 200-400, 200-500, and 200-600 ns). The AMBER values 

decrease and the CHARMM values increase with increasing time. Right. Simulations computed 

using trajectories accumulated incoherently across 100 ns sections after the 200 ns time point (see 

Methods for definition of incoherent accumulation). Both the AMBER and CHARMM values 

increase with increasing time. Incoherent accumulation results in the highest correlation with the 

diffuse scattering data, and the CHARMM correlation is higher than the AMBER correlation in 

all cases. 
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Figure S3. Visualization of values from the Cα atom displacement covariance matrix (upper right 

triangle) and the Cα atom distance matrix (lower left triangle). Rows and columns correspond to 

Cα atoms (the image shows only a sampling of the values from the full matrix and merely 

illustrates the overall structure of the data, as the resolution is insufficient to show values for all 

atom pairs). Tics indicate breaks between each of eight unit cells. The finer squares within each 

unit cell correspond to four copies of the proteins, each of which has 149 Cα atoms. The covariance 

values in the upper right triangle range from -0.2 Å2 (dark red) to 0 (white) to + 0.2 Å2 (dark blue), 

with values above or below in absolute value visualized as the same dark blue/red color. The 

distance values in the lower left triangle range from 0 (dark blue) to 92 Å (white). The blocks along 

the diagonal correspond to intra-protein atom pairs; for these blocks, the covariance tends to be 

positive (blue) and the distances are short (also blue). All other blocks correspond to inter-protein 

atom pairs; for these blocks, there are more negative covariance values than for the intra-protein 

blocks.   
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Figure S4. Simulated diffraction images from LLM model (left) and 3D experimental diffuse data 

(right). Both the data and model were generated using coarse sampling of one measurement per 

Miller index. Outside of the region at low resolution near the origin (which, despite the small 

contribution of this region in determining the quantitative agreement, can dominate the visual 

comparison due to its central position), similar features are identifiable between the two images. 

The images were displayed using the heat map mode of ADXV.31  
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Figure S5. Number of Cα atom pairs as a function of distance in the full supercell. Intra-protein 

(within) atom pairs are shown in blue; inter-protein (across) atom pairs are shown in orange. The 

number of pairs across proteins outnumber the residue pairs within proteins for all distances greater 

than 12 Å (inset). 
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# RigidBodyMotions.py script 

# Used for covariance analysis in DW Wych, JS Fraser, DL Mobley, ME Wall. Liquid-like and  

#     rigid-body motions in molecular-dynamics simulations of a crystalline protein.  

#     LA-UR-19-30460 

# Author: David Wych, UC Irvine and Los Alamos National Laboratory 

# Date: August 2019 

 

import mdtraj as md 

import numpy as np 

from scipy.stats import sem 

 

class Model(): 

    """Rigid Body Motions model for protein c-alpha 

    residue pair covariance as a function of distance""" 

    def rotation(self): 

        def eulerAnglesToRotationMatrix(eulers): 

            """ function for converting vector of 3 euler angles 

            to a rotation matrix""" 

            R_x = np.array([[1,0,0], 

                            [0,np.cos(eulers[0]),-np.sin(eulers[0])], 

                            [0,np.sin(eulers[0]),np.cos(eulers[0])] 

                            ]) 

            R_y = np.array([[np.cos(eulers[1]),0,np.sin(eulers[1])], 

                            [0,1,0], 

                            [-np.sin(eulers[1]),0,np.cos(eulers[1])] 

                            ]) 

            R_z = np.array([[np.cos(eulers[2]),-np.sin(eulers[2]),0], 

                            [np.sin(eulers[2]),np.cos(eulers[2]),0], 

                            [0,0,1] 

                            ]) 

            R = np.dot(R_z, np.dot( R_y, R_x )) 

            return R 

 

        # For every frame but the first... 

        for t in range(len(self.traj)-1): 

            # Generate a new vector of three euler angles and convert 

            # it to a matrix 

            _eulers = np.deg2rad(np.random.normal(0.0, self.rot_std, 3)) 

            R_mat = eulerAnglesToRotationMatrix(_eulers) 

            # Apply that matrix to the coordiantes of every atom in each frame 

            for n in range(self.traj.shape[1]): 

                self.traj[t+1][n] = np.dot(R_mat, self.traj[t+1][n]) 

 

    def translation(self): 

        # For every frame but the first... 

        for t in range(len(self.traj)-1): 
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            # Generate a random 3-d translation vector 

            _trans = np.random.normal(0, self.trans_std, 3) 

            # Add that translation to each atom in the  

            self.traj[t+1] = np.add(self.traj[t+1], _trans) 

 

    def calc_covarmat(self): 

        X = self.traj[:,:,0]; Y = self.traj[:,:,1]; Z = self.traj[:,:,2] 

        uX = np.mean(X, axis=0); uY = np.mean(Y, axis=0); uZ = np.mean(Z, axis=0) 

        covXX = np.mean(np.array([np.outer(np.subtract(vec, uX), np.subtract(vec, uX)) for  vec in 

X]), axis=0) 

        covYY = np.mean(np.array([np.outer(np.subtract(vec, uY), np.subtract(vec, uY)) for  vec in 

Y]), axis=0) 

        covZZ = np.mean(np.array([np.outer(np.subtract(vec, uZ), np.subtract(vec, uZ)) for  vec in 

Z]), axis=0) 

        covar = np.add(covXX, np.add(covYY, covZZ)) 

        self.covarmat = covar 

 

    def calc_distances(self): 

        N = self.prot.xyz.shape[1] 

        xmat = np.tile(self.prot.xyz[0][:,0], N).reshape((N,N)) 

        ymat = np.tile(self.prot.xyz[0][:,1], N).reshape((N,N)) 

        zmat = np.tile(self.prot.xyz[0][:,2], N).reshape((N,N)) 

 

        xdiff = xmat.T - xmat 

        ydiff = ymat.T - ymat 

        zdiff = zmat.T - zmat 

 

        total_diff = np.sqrt(np.power(xdiff, 2) + np.power(ydiff, 2) + np.power(zdiff, 2)) 

 

        self.distmat = 10.0*total_diff 

 

    def collect_bins(self, n_bins=35): 

        udi = np.triu_indices(self.covarmat.shape[0], 1) 

        covar_scatter = self.covarmat[udi].flatten() 

        dist_scatter = self.distmat[udi].flatten() 

        # Sort the distance and covariance arrays 

        dist_idx = np.argsort(dist_scatter) 

        dist_sorted = dist_scatter[dist_idx] 

        covar_sorted = covar_scatter[dist_idx] 

        # Create array of bins width "bin_width" 

        # with range "range - bin_width" 

        #dist_bins = np.linspace(0, np.max(dist_scatter), num=n_bins) 

        dist_bins = self.dist 

        # Create array of bins for covariance with 

        # the same number of bins as "dist_bins" 

        covar_mean_bins = [] 
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        covar_sem_bins = [] 

        for i in range(len(dist_bins)-1): 

            _dist_last = dist_bins[i] 

            _dist = dist_bins[i+1] 

            _dist_idx_1 = np.where(dist_sorted >= _dist_last) 

            _dist_idx_2 = np.where(dist_sorted <= _dist) 

            _dist_idx = np.intersect1d(_dist_idx_1, _dist_idx_2) 

            _dist_subarray = dist_sorted[_dist_idx] 

            _covar_subarray = covar_sorted[_dist_idx] 

            covar_mean_bins.append(np.mean(_covar_subarray)) 

            covar_sem_bins.append(sem(_covar_subarray)) 

 

        covar_mean_bins = np.array(covar_mean_bins) 

        covar_sem_bins = np.array(covar_sem_bins) 

 

        return dist_bins[1:], covar_mean_bins, covar_sem_bins 

 

    def __init__(self, dist=None,  MODEL=None, N_FRAMES=None, ROT_STD=None, 

TRANS_STD=None): 

        if type(dist) != np.ndarray: 

            self.dist = np.array([3.30216069+(0.8112175*(i-1)) for i in range(50)]) 

        else: 

            self.dist = dist 

            self.dist = np.append([self.dist[0]-(self.dist[1] - self.dist[0])], list(self.dist)) 

        if MODEL == None: 

            self.model = "rot+trans" 

        else: 

            self.model = MODEL 

        if N_FRAMES == None: 

            self.n_frames = 100 

        else: 

            self.n_frames = N_FRAMES 

        if ROT_STD == None: 

            self.rot_std = 1.25 

        else: 

            self.rot_std = ROT_STD 

        if TRANS_STD == None: 

            self.trans_std = 0.025 

        else: 

            self.trans_std = TRANS_STD 

 

 

        sys = md.load("4wor_complete.pdb") 

        top = sys.topology 

        self.prot = sys.atom_slice(top.select("name 'CA' and (resid 6 to 141)")) 

        self.prot.center_coordinates() 
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        self.coords = self.prot.xyz 

        self.traj = np.array(list(self.coords)*self.n_frames) 

 

    def run(self): 

        if self.model == "rot": 

            self.rotation() 

            self.calc_covarmat() 

            self.calc_distances() 

            dist_bins_model, covar_means_model, covar_sems_model = self.collect_bins() 

            return dist_bins_model, covar_means_model, covar_sems_model 

        if self.model == "trans": 

            self.translation() 

            self.calc_covarmat() 

            self.calc_distances() 

            dist_bins_model, covar_means_model, covar_sems_model = self.collect_bins() 

            return dist_bins_model, covar_means_model, covar_sems_model 

        if self.model == "rot+trans": 

            self.rotation() 

            self.translation() 

            self.calc_covarmat() 

            self.calc_distances() 

            dist_bins_model, covar_means_model, covar_sems_model = self.collect_bins() 

            return dist_bins_model, covar_means_model, covar_sems_model 

 
 

 


	s1a
	s2
	s3
	f1
	f2
	f3
	f4
	f5
	s4
	f6
	s5
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51

