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INTRODUCTION: Determining the structures of
protein complexes is crucial for understanding
cellular functions. Here, we describe an inte-
grative structure determination approach that
relies on in vivo quantitative measurements of
genetic interactions. Genetic interactions report
on how the effect of one mutation is altered by
the presence of a second mutation and have
proven effective for identifying groups of genes
or residues that function in the same pathway.
The point mutant epistatic miniarray profile
(pE-MAP) platform allows for rapid measure-
ment of genetic interactions between sets of
point mutations and deletion libraries. A pE-
MAP is made up of phenotypic profiles, each
of which contains all genetic interactions be-
tween a single point mutant and the entire
deletion library.

RATIONALE: We observe a statistical associa-
tion between the distance spanned by two
mutated residues in a protein complex and
the similarity of their phenotypic profiles

(phenotypic similarity) in a pE-MAP. This
observation is in agreement with the expecta-
tion that mutations within the same func-
tional region (e.g., active, allosteric, and binding
sites) are likely to share more similar phenotypes
than those that are distant in space. Here, we
explore how to use these associations for de-
termining in vivo structures of protein com-
plexes using integrative modeling.

RESULTS: We generated a large pE-MAP by
crossing 350 mutations in yeast histones H3
and H4 against 1370 gene deletions (or hypo-
morphic alleles of essential genes). The phe-
notypic similarities were then used to generate
spatial restraints for integrative modeling of
the H3-H4 complex structure. The resulting
ensemble of H3-H4 configurations is accurate
and precise, as evidenced by its close similarity
to the crystal structure. This finding indicates
the utility of the pE-MAP data for integrative
structure determination. Furthermore, we show
that the pE-MAP provides a wealth of biological

In vivo structure determination using genetic interactions. pE-MAPs are generated by measuring the
growth of yeast colonies (left) and visualized as a heatmap (background). We present an application of
pE-MAPs to determine protein complex structures, using integrative modeling, and apply it to histones H3
and H4 (right) and other complexes. H3 (purple) and H4 (teal) are highlighted in the context of the
nucleosome [gray, modified Protein Data Bank (PDB) 1ID3].
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insight into the function of the nucleosome and
can connect individual histone residues and
regions to associated complexes and processes.
For example, we observe very high phenotypic
similarities between modifiable histone resi-
dues and their cognate enzymes, such as H3K4
and COMPASS, or H3K36 and members of
the Set2 pathway. Furthermore, the pE-MAP
reveals several residues involved in DNA repair
and others that function in cryptic transcription.

‘We demonstrate that the approach is trans-
ferable to other complexes and other types
of phenotypic profiles by determining the
structures of two complexes of known struc-
ture: (i) subunits Rpbl and Rpb2 of yeast RNA
polymerase II, using a pE-MAP of 53 point
mutants crossed against 1200 deletions and
hypomorphic alleles; and (ii) subunits RpoB
and RpoC of bacterial RNA polymerase, using
a chemical genetics map of 44 point mutants
subjected to 83 environmental stresses. The
accuracy and precision of the models are compa-
rable to those based on chemical cross-linking,
which is commonly used to determine protein
complex structures. Moreover, the accuracy
and precision improve when using pE-MAP
and cross-linking data together, indicating
complementarity between these methods and
demonstrating a premise of integrative struc-
ture determination.

CONCLUSION: We show that the architectures
of protein complexes can be determined using
quantitative genetic interaction maps. Because
PE-MAPs contain purely phenotypic measure-
ments, collected in living cells, they generate
spatial restraints that are orthogonal to other
commonly used data for integrative modeling.
The pE-MAP data may also enable the charact-
erization of complexes that are difficult to
isolate and purify, or those that are only tran-
siently stable. Recent advances in CRISPR-
Cas9 genome editing provide a means for
extending our platform to human cells, al-
lowing for identification and characterization
of functionally relevant structural changes
that take place in disease alleles. Expanding
this analysis to look at structural changes in
host-pathogen complexes and how they affect
infection will also be feasible by introducing
specific mutations into the pathogenic genome
and studying the phenotypic consequences
using genetic interaction profiling of relevant
host genes.
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Determining structures of protein complexes is crucial for understanding cellular functions. Here, we
describe an integrative structure determination approach that relies on in vivo measurements of genetic
interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or
exposed to environmental perturbations, followed by converting similarities between two profiles into an
upper bound on the distance between the mutated residues. We determine the structure of the yeast
histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the
method to subunits Rpbl-Rpb2 of yeast RNA polymerase Il and subunits RpoB-RpoC of bacterial RNA
polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from
both genetic interactions and cross-links further improves model accuracy and precision. The approach
provides an efficient means to augment integrative structure determination with in vivo observations.

mechanistic understanding of cellular

functions requires structural charac-

terization of the corresponding macro-

molecular assemblies (I). Traditional

structural biology methods—such as
x-ray crystallography, nuclear magnetic res-
onance (NMR) spectroscopy, and electron
microscopy (EM)—rely on purified samples and
are generally not applicable to heterogeneous
samples, such as those of large, membrane-
bound, or transient assemblies (2). Moreover,
these methods do not determine the structures
in their native environments, therefore in-
creasing the risk of producing structures in
nonfunctional states or missing relevant func-
tional states.

Integrative structure determination has
emerged as a powerful approach for determin-
ing the structures of biological assemblies (3).
The motivation is that any system can be des-
cribed most accurately, precisely, completely,
and efficiently by using all available informa-
tion about it, including varied experimental
data (e.g., chemical cross-links, protein inter-
action data, small-angle x-ray scattering pro-
files) and prior models (e.g., atomic structures
of the subunits). Integrative methods can often
tackle protein assemblies that are difficult to
characterize using traditional structural biology
methods alone (7, 4-10). Spatial data generated
by in vivo methods are especially useful for
integrative structure determination (11). There-
fore, high-throughput in vivo methods are
needed to supplement low-throughput in vivo
methods, such as single-molecule Forster res-
onance energy transfer spectroscopy (12).
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Here, we describe how integrative structure
modeling can benefit from spatial restraints
derived from in vivo quantitative measure-
ments of genetic interactions. A genetic inter-
action between two mutations occurs when
the effect of one mutation is altered by the
presence of the second mutation (Fig. 1A) (13).
Positive genetic interactions (epistasis or sup-
pression) arise when the double mutant is
healthier than expected, whereas negative in-
teractions (synthetic sickness) arise in rela-
tionships where the double mutant is sicker
than expected. Single genetic interactions can
often be difficult to interpret in isolation. A
phenotypic profile, defined as a set of genetic
interactions between a given mutation (e.g.,
a point mutation) and a library of secondary
mutations (e.g., gene deletions), can be more
informative (Fig. 1B) (I4). A point mutant
epistatic miniarray profile (pE-MAP) is com-
posed of such phenotypic profiles for all
mutations in the analysis (Fig. 1C) (15). We
have previously found a statistical association
between the distance between two mutated
residues in the wild-type (WT) structure and
the similarity between their phenotypic pro-
files (i.e., phenotypic similarity) (75, 16) (Fig.
1D). This observation is in agreement with the
expectation that mutations within the same
functional region (e.g., active, allosteric, and
binding sites) are likely to share more similar
phenotypes than those that are distant in space
(17-19). Here, we explore how to use these as-
sociations for determining in vivo structures
of macromolecular assemblies using integra-
tive modeling (Fig. 1E). To enable this analysis,
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we generated a large pE-MAP, by designing a
comprehensive set of 350 mutations in histo-
nes H3 and H4 and crossing these against 1370
gene deletions (or hypomorphic alleles for es-
sential genes). We describe this pE-MAP and
illustrate integrative structure determination
by its application to three complexes of known
structure: (i) the yeast histones H3 and H4; (ii)
subunits Rpbl and Rpb2 of yeast RNA poly-
merase II (RNAPII), using a pE-MAP dataset
of 53 point mutants crossed against a library
of 1200 deletions and hypomorphic alleles
(15); and (iii) subunits RpoB and RpoC of bac-
terial RNA polymerase (RNAP), using a chem-
ical genetics miniarray profile (CG-MAP), where
44 point mutants were subjected to 83 different
environmental stresses (e.g., treatments with
chemicals and temperature shocks) (20).

A comprehensive pE-MAP of histones H3 and H4

Histones are central to chromatin structure
and dynamics because they make up the core
of the nucleosome, the fundamental repeating
unit of chromatin. The state of the nucleosome
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Fig. 1. Building spatial restraints from pairwise genetic perturbations.
(A) Genetic interactions arise when the combined fitness defect of a double
mutant deviates from the expected multiplicative growth defect of the two
single mutants. (B) The generation of a pE-MAP relies on a collection of point
mutations, which is constructed by systematic mutagenesis of genes that
encode the subunits of a macromolecular assembly (mutations labeled

1 to 4). The point-mutant strains are then crossed against a library of gene
deletions, followed by fitness measurement and subsequent calculation of

is controlled by histone posttranslational
modifications (PTMs) (21)—including acet-
ylation, methylation, phosphorylation, and
ubiquitination—that help maintain and regu-
late chromatin structure and transcription. Our
library of point mutations in the core histones
H3 and H4 was designed to comprise a com-
prehensive alanine scan, as well as context-
specific mutations of modifiable residues (e.g.,
lysine and arginine), such as charge removal
or reversal and substitutions mimicking PTMs
(22, 23). Partial deletions of the N-terminal
tails of H3 and H4 were also included, because
these regions play important and sometimes
redundant roles in chromatin biology (24, 25).
In budding yeast, histones H3 and H4 are ex-
pressed from two loci each, HHTI/HHT2 and
HHFI/HHF?2, respectively. To ensure preserva-
tion of the native expression levels, we engi-
neered each strain to include identical point
mutations in both relevant loci with separate
selection markers (HYGR and URA3) (Fig. 2A).
In total, we designed 479 histone mutants, of
which 350 were amenable to pE-MAP analysis
(Fig. 2, B to D, and table S1); the remaining 129
mutants either were lethal or exhibited very
poor growth, rendering them inaccessible to
genetic analysis (fig. S1). The histone mutants
were crossed against a library of 1370 gene de-
letions and hypomorphic alleles (table S1) using
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our triple-mutant selection strategy (26, 27)
involving three different selectable markers
(HYGR and URAS3 to select for both copies of
the histone alleles and KAN® for the knock-
out library strains) (Fig. 2A and Methods)
(26). Genetic interactions were quantified using
the S-score (28), which measures the devia-
tion of the double mutant fitness from the
expected combined effect of the individual
mutations (Methods). The pE-MAP screen
was carried out in three biological replicates
(Methods), which exhibit a high reproducibil-
ity (Fig. 2E), and the final S-scores (as depicted
in Fig. 1C) are the averages of these replicates.

It has been shown that a pE-MAP can be
used to predict protein-protein interactions
(PPIs) by comparing the genetic interaction
patterns between pairs of deletion mutants
across all the point mutants (15, 29). On a global
level, this is only possible if the point mutant
set affects a broad group of processes and ex-
hibits genetic interactions with the many dif-
ferent deletion mutants that encode the PPI
proteins. Because the histone mutant collec-
tion perturbs only two proteins (H3 and H4),
we set out to investigate whether the resulting
phenotypic profiles are sufficient to predict
PPIs among the 1370 deletion mutants. Using
a receiver operating characteristic (ROC) curve,
we find that the histone pE-MAP predicts PPIs
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genetic interaction scores to obtain the phenotypic profiles. (C) An
example subset of a pE-MAP of point mutants crossed against a library of
gene deletions. (D) Each pairwise combination of phenotypic profiles is
transformed into a single MIC value that reflects the similarity between

the two profiles. The MIC values are translated into spatial restrains

for integrative modeling. (E) The MIC values and other input information
are used for integrative structure modeling. An ensemble of structures that
satisfy the input information is obtained.

similarly to previous E-MAPs that affect more
genes (15, 29) (Fig. 2F and Methods). This find-
ing indicates that the combined set of histone
point mutants affects a broad set of cellular
processes, reflecting the multifunctional nature
of histones H3 and H4 and their central role
in controlling the global genetic environment
of cells.

To gain insight into the regulatory hierarchy
that drives the widespread functional effects
of histone perturbations, we set out to examine
the relationship between genetic interactions
and gene expression changes. To this end, we
determined the genome-wide gene expression
levels for 29 representative histone mutants
using RNA sequencing (RNA-seq) and found
no correlation between the expression change
of a gene resulting from a given histone muta-
tion and the corresponding S-score (Fig. 2G
and table S2). This indicates that observed
genetic interactions between histone muta-
tions and deletion mutants are due to complex
regulatory patterns, rather than the histone
mutation directly modulating the expression
of the interacting gene.

The pE-MAP was clustered hierarchically
along both dimensions (Fig. 3A and data S1)
and effectively recapitulates known protein
complex and pathway memberships. For exam-
ple, the pE-MAP identified COMPASS (30, 31),
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Fig. 2. Genetic interrogation of histones H3 and H4 at a residue-level resolu-
tion. (A) Each histone mutant strain was modified at both native loci (HHTI and
HHT2 for H3 or HHFI and HHF2 for H4, red stars) and crossed against a library of
1370 different deletion mutants (or hypomorphic alleles for essential genes). Chr,
chromosome. (B) Schematic of the histone point mutants analyzed in this study
(table S1). Secondary structure elements are indicated as ribbons above the amino
acid sequence. The mutations are color coded according to the mutation introduced
(C). Mutations resulting in inviable strains or strains too sick for genetic analysis
are shown in fig. S1. (C) Table of histone mutant categories and their hypothesized
effects [color coding as in (B)]. (D) Overview of viable H3 and H4 tail deletion
mutants amenable to pE-MAP analysis. The amino acid sequences of the WT alleles
are shown on top (residues 1 to 39 of histone H3 and 1 to 27 of histone H4). Gray
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False positive rate (1-specificity)

S-score

bars represent the deleted residues in H3 and H4. (E) Reproducibility of histone
pE-MAP S-scores between biological replicates. Plotted are all S-score pairs among
the biological replicas, which include triplicate measurements for 346 histone alleles
and duplicates of four alleles (H4E73Q, HAHI8A, H4121A, and H4K44Q). (F) ROC
curves showing the power to predict physical interactions between pairs of proteins
from this pE-MAP (blue) as well as a previously published pE-MAP [green, (15)]
and E-MAP [black, (29)] data. (G) Relationship between gene expression (log,

fold change over WT) and S-scores of 29 H3 and H4 alleles (table S2). Data from all
1256 deletion library mutants that were measured in both RNA-seq expression
and pE-MAP analysis are plotted. Single-letter abbreviations for the amino acid residues
are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, lle; K, Lys;
L, Leu; M, Met; N, Asn; P, Pro; Q, GIn; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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Fig. 3. The genetic interaction landscape of histones H3 and H4.

(A) Hierarchically clustered pE-MAP of 350 histone H3 and H4 alleles
screened against a library of 1370 deletion mutants or hypomorphic alleles.
The pE-MAP consists of more than 479,000 genetic interactions. Positive
(suppressive or epistatic) and negative (synthetic sick) genetic interactions
are colored in yellow or blue, respectively. Examples of histone alleles with
similar genetic interaction profiles are highlighted on the right side in the
context of the nucleosome structure. The nucleosome structure is modified

Swrl-C (32), and the Set2-Eaf3 pathway (33-35),
as well as clusters of genes linked to telomere
maintenance and Golgi-ER traffic (Fig. 3B and
data S1). Furthermore, mutations of histone
residues in close proximity to each other (e.g.,
mutants of the H3 or H4 N-terminal tails)
tend to show similar phenotypic profiles (Fig.
3 and fig. S2A). Overall, we find that histone
tail deletion mutants give rise to stronger
phenotypic profiles than the point mutants
(fig. S2B), reflecting the multiple residue per-
turbations and the importance of functional
histone tails for cell homeostasis.

Phenotypic profile similarities are correlated
with structural proximity

Similarities between pairs of phenotypic pro-
files in the histone H3-H4 pE-MAP were quan-
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tified by the maximal information coefficient
(MIC) (36, 37) (Fig. 1D, fig. S3, and Methods).
The MIC values between pairs of phenotypic
profiles do not linearly correlate with the dis-
tances between the mutated residues in the
WT structure (Pearson correlation coefficient
of -0.07, Ca-Ca distances) but are informative
about an upper distance bound between the
residues (Fig. 4A and fig. S3C). The upper
distance bound was obtained by binning the
MIC values into 20 intervals and selecting
the maximum distance spanned by any pair
of residues in each bin, followed by fitting a
logarithmic decay function to these maximum
distances (Fig. 4A, fig. S3C, and Methods).
The data show that a pair of proximal point
mutations are more likely to have a high MIC
value than a pair of distal point mutations. How-
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from PDB 1ID3 (data S2), with H3 in purple, H4 in green, and mutated or
deleted residues highlighted in red. N-terminal tail residues of H3 and H4 not
included in PDB 1ID3 are visualized as strings on the periphery. (B) Examples of
genetic interaction profiles of gene clusters belonging to known protein
complexes or biological pathways are highlighted and their genetic interaction
profiles enlarged from (A). DDR, DNA damage or repair; UPP, ubiquitin
proteasome pathway; SAGA, Spt-Ada-Gen5 acetyltransferase; SWI/SNF,
SWitch/sucrose non-fermentable.

ever, not all proximal mutations have a high MIC
value: Most pairs of phenotypic profiles, even
those for residues that are less than 16 A apart,
are highly dissimilar (94% of all pairs exhibit a
MIC value <0.3). These observations justify
converting the pE-MAP data into a Bayesian
data likelihood that provides an upper bound
on the distance spanned by the mutated resi-
dues (Fig. 4B and Methods). This Bayesian term
objectively interprets the noise in the experi-
mental data and allows us to quantify the
uncertainty of the resulting structural models.
The complete scoring function for evaluat-
ing any structural model also includes simple
terms accounting for excluded volume and se-
quence connectivity, in addition to the Bayesian
terms for all pairs of profiles in the pE-MAP
with a MIC value above 0.3 (Fig. 5).
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Fig. 4. Generation of the scoring function.

(A) Relationship between pairwise distances and MIC
values. The solid gray line represents the logarithmic
decay fit to the upper distance bounds (Methods, Eq.1).
The background color gradient reflects how the data
likelihood depends on MIC value and distance. (B) -Log
of the data likelihood as a function of distance for
different MIC values (Methods).

Spatial restraints derived from pE-MAP data can
be used for integrative structure determination
An ensemble of the H3-H4 dimer configura-
tions that satisfy the input information (i.e.,
the model) was found by exhaustive Monte
Carlo sampling guided by the scoring function,
starting with random initial configurations
of the rigid comparative models of the H3
and H4 subunits (Fig. 5 and Methods). The
resulting ensemble is accurate and precise,
as demonstrated by the similarity between
the x-ray structure [Protein Data Bank (PDB)
1ID3, (38)] and model contact maps (Fig. 6, A
and B). Specifically, the mean accuracy is 3.8 A
(Fig. 6C); the accuracy is defined as the aver-
age Co root-mean-square deviation (RMSD)
between the x-ray structure and each of the
structures in the ensemble. The precision is
1.0 A (Fig. 6C), which is defined as the average
RMSD between all solutions in the ensemble.
As a control, we also computed a model from
randomly shuffled MIC values. The resulting
model (Fig. 6D) is incorrect (mean accuracy of
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Fig. 5. Description of the integrative modeling workflow. The four stages include (i) gathering all available
experimental data and prior information, (ii) translating all information into a representation of the assembly
components and a scoring function for ranking alternative assembly structures, (iii) sampling structural models, and
(iv) validating the model. In this example, the representation of the components of a complex is based on
comparative models of its components. The scoring function consists of spatial restraints that are obtained from
pE-MAP and/or cross-linking experiments (evolutionary coupling analysis is not indicated in this scheme) as well as
excluded volume and sequence connectivity restraints. The sampling explores the configurations of rigid
components, searching for those assembly structures that satisfy the spatial restraints as well as possible. The
goal is to obtain an ensemble of structures that satisfy the input data within the uncertainty of the data used to
compute them. The sampling precision is estimated and models are clustered and evaluated by the degree to which
they satisfy the input information used to construct them as well as omitted information. The protocol can iterate
through the four stages until the models are judged to be satisfactory, most often based on their precision and the

degree to which they satisfy the data.

15.8 A and incorrect contact map; Fig. 6, C and
D) and imprecise (7.6 A; Fig. 6C). As another
control, we computed a model by a state-of-
the-art protein-protein docking method (39),
resulting in a model with an inferior accuracy
of 6.9 A (fig. S4). Finally, we also mapped the
accuracy and precision of the model as a func-
tion of the fraction of the pE-MAP data used
(Methods). As expected, the more pE-MAP data
that are used, the more accurate and precise
is the model (Fig. 6C).

To compute the structure of a protein com-
plex for which the structures of the compo-
nents are known, we estimate that 35 to 40
mutations per component are necessary to
generate a complex model with precision suf-
ficient to map the positions and relative orien-
tations of the components (fig. S5 and Methods).
What is a useful model precision depends on
the questions asked (40). Fortunately, many
questions can often be answered by models as
precise as those obtained based on pE-MAP
data (RMSD range of 1 to 15 A). Some exam-
ples include describing the architecture and
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evolution of protein assemblies (8, 41), design-
ing interface mutations (42), characterizing
structural heterogeneity of protein complexes
(42, 43), and mapping binding-induced struc-
tural changes (44). Importantly, the estimate
of 35 to 40 mutations is an upper bound, and,
in many cases, the number might be reduced
by specifically exploiting point mutations that
target surface residues and/or residues known
to be functionally important and by choosing
substitutions likely to give rise to functional
perturbations. The outcome of these calculations
indicates the utility of the pE-MAP data for in-
tegrative structure determination.

The pE-MAP connects individual histone
residues and regions to other associated
complexes and processes

To examine whether the pE-MAP can iden-
tify interactions with complexes that are not
stably associated with histones, we investigated
the relationships between modifiable histone
residues and their cognate enzymes (modifier
pairs). Interestingly, we observed a dramatic
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Fig. 6. Integrative structure determination of histones H3 and H4. (A) The
native structure of the histone H3-H4 dimer (PDB 1ID3, left) and its contact map
(right). In contact maps, the intensity of gray is proportional to the relative
frequency of residue-residue contacts in the models (cutoff distance of 12 A). For
x-ray structures, the contact frequency is either O (white) or 1 (black). The
circles correspond to the pairs of restrained residues, with the intensity of red
proportional to the MIC value (MIC > 0.3), showing that the pairs of residues with
high MIC values are distributed throughout the proteins. (B) The localization
probability density of the ensemble of structures is shown with a representative
(centroid) structure from the computed ensemble embedded within it (left)

increase in S-scores within specific modifier
pairs, as compared with the overall genetic
interaction distribution (Fig. 7A and table S4).
The positive S-scores reflect that a modifier
and its target residue often are epistatic or
suppressive because they function in the same
pathway. To test if this pattern extends to
phenotypic profile similarities, we integrated
the histone pE-MAP into a merged map of
previously collected genetic interaction data
for gene deletions and hypomorphic alleles
(45). We computed Pearson correlation coef-
ficients for each histone mutant phenotypic
profile across the merged map, generating
a correlation map of 350 histone mutants
against 4414 whole-gene perturbations (data
S3 and Methods). In agreement with the
individual S-scores, the specific modifier pairs
exhibit significantly higher phenotypic profile
correlations than the overall map (Fig. 7A and
table S4). These findings show that the pE-
MAP can be used to pair specific residues to
their respective modifiers, even though these
are not stably associated with the histones.
For example, when components of COMPASS,

which methylates histone H3K4 (30, 31, 46),
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H3 residue

are deleted (swdIA, swd3A, sdcIA, bre2A), we
observe strong positive S-scores with both
H3K4 mutants [K4R (Lys*—Arg) and K4Q
(Lys*—Gln)] as well as high correlations of
the phenotypic profiles between the H3K4
mutants and COMPASS deletions (Fig. 7B
and data S1 and S2).

To explore these relationships in a struc-
tural context, we developed a Cytoscape (47)
app named stE-MAP (structure E-MAP) that
interactively maps the genetic interactions of
PE-MAP gene clusters onto the point-mutated
protein structure. stE-MAP connects Cytoscape
to ChimeraX (48) and displays connections
between a predefined set of genes and all
mutated residues for which the underlying
interactions pass user-defined criteria (fig. S6A).
‘We mapped the genetic connections between
COMPASS and all histone residues with which
it exhibits >0.2 median correlation (Methods).
Only five residues pass this threshold, and the
strongest connection is displayed by H3K4.
The other four residues (H3K1 to H3K3 and
H3K5) are proximal and are thus likely to
interfere with the interaction between COMPASS
and H3K4 (Fig. 7C). This finding is particularly
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Integrative structure, shuffled pE-MAP data

H4 residue

H3 residue

and the corresponding contact map (right). The localization probability density
map represents the probability of any volume element being occupied by a given
protein. (C) Distributions of accuracy (left) of structures in the ensembles
and model precisions (right) based on the full pE-MAP dataset, resampled
datasets that consider fractions of the data, and using shuffled MIC values.

On the left, the white dots represent median accuracies, and on the right,

the error bars represent the standard deviations of model precision over

three independent realizations (shown as dots). (D) Localization probability
density and centroid structure (left) and contact map (right) computed with
shuffled MIC values (Methods).

notable because these residues reside in the
most distal region of the unstructured H3
N-terminal tail. Given that we do not have
COMPASS point mutations in our dataset, we
did not attempt to model this interaction. How-
ever, analysis of the MIC values associated with
the H3 and H4 tails, and their relationship
with the core domains, indicates that distance
restraints for the histone tails could be derived
from the pE-MAP data. Specifically, the MIC
value distributions for the tail-core and tail-tail
pairs of mutations are similar to that of the
core-core mutations (fig. S5C). This similarity
indicates that we can derive distance restraints
for the histone tails, thus, in principle, sup-
porting the feasibility of integrative structure
modeling of disordered regions. In such model-
ing, to avoid overinterpretation of the data and
to account for a possibility that the pE-MAP
data of the histone tails reflect interactions
with neighboring nucleosomes, we would have
to include multiple nucleosome copies in the
model and allow for assignment ambiguity,
just as we do for distances inferred from chem-
ical cross-links and protein proximity inferred
from affinity copurification (49).
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Fig. 7. Connecting individual histone residues and regions to other
associated complexes. (A) Comparison of S-scores and Pearson correlation
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Only residues with a single known modifier and modifiers with a single known
target residue were included (table S4). p values were calculated using two-sided
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of 1.5 x IQR (interquartile range), and outliers are not plotted. (B) Average
distributions of S-scores (left) and phenotypic profile correlations (right) of H3K4
mutants (mean of H3K4Q and H3K4R). Members of the COMPASS complex
that exhibit a mean S-score >2.5 or a mean genetic interaction profile correlation
>0.2 with H3K4 mutants are highlighted. The COMPASS complex is responsible
for H3K4 methylation. (C) Mapping of genetic interaction profile correlations

to COMPASS complex members on the structure of the nucleosome (modified PDB
1ID3, data S2). N-terminal tail residues of H3 and H4 not included in 1ID3 are
visualized as strings on the periphery. Only residues that exhibit a median genetic
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profile correlation >0.2 with the COMPASS subunits are highlighted (Methods).
H3 is depicted in purple, H4 in light green, and H2A/H2B and DNA in gray.
The red color gradient reflects the strength of the correlation between each
residue and the COMPASS members, calculated as the median correlation between
the residue’s tested mutations and the COMPASS members. (D) Distributions
of genetic interaction profile correlations of H3K56Q (acetylation mimic) and
H3K56R (deacetylation mimic). Correlations of key H3K56ac-level regulators,
Rtt109 (acetylating) and Hst3 (deacetylating), are highlighted. The cartoon
outlines the H3K56 acetylation pathway and its role in H3 ubiquitylation. Rtt109
acetylates H3K56 through an Asfl-dependent mechanism, which promotes
ubiquitylation of H3 by Rtt101-Mmsl and Mms22. These five gene deletions

are all found among the top 10 most similar to the deacetylation mimic H3K56R,
whereas deletion of the H3K56 deacetylase Hst3 instead gives rise to a

profile similar to the acetylation mimic H3K56Q (table inset). CC, Pearson
correlation coefficient.

We observe similar trends for other histone
modifiers. For example, members of the Set2
pathway (Set2, Eaf3, Rcol, Ctkl) (33-35) rank
highly in the distributions of S-scores or cor-
relations for mutations of their target residue,
H3K36 (fig. S6, B and C). Interestingly, we
also found instances where different mutations
of a single residue identify connections to dif-
ferent modifiers. For example, the phenotypic
profile of the deacetylation mimic H3K56R is
similar to that of deletion of R77109, which
encodes the H3K56 acetylase (Pearson corre-
lation coefficient of 0.4) (29), whereas the
acetylation mimic H3K56Q instead correlates
with the profile generated from the deletion
of the corresponding deacetylase, HST3 (Pearson
correlation coefficient of 0.35) (50) (Fig. 7D).
H3K56R further correlates with asfIA, rttI0IA,
mmsIA, and mms22A, whose corresponding
proteins play key roles in the H3K56 acetyla-
tion pathway and downstream H3 ubiquity-
lation (51, 52) (Fig. 7D). Accordingly, the stE-MAP
app identified strong links between Hst3-Hst4
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and H3K56Q, as well as Rtt109-Asfl and H3K56R
(fig. S6D). Although we find that it is often
informative to group different mutations of the
same residue together, these examples high-
light the potential of these maps for deeper
mechanistic insights where required.

Expanding on these findings, we built a
gene set enrichment map connecting the
modifiable histone residues to nuclear pro-
cesses (fig. S7A, table S5, and Methods). We
observe both known and previously unknown
connections. For example, “DNA recombina-
tion and repair” is connected to four residues,
and two of these, H3K56 and H3K79, have
been shown to play key roles in yeast’s DNA
repair (563-57). Interestingly, we find that muta-
tions of the other two residues (H3R63K and
H4R36K) result in increased spontaneous muta-
tion frequencies at the URA3 locus, indicating
that these residues also function in DNA repair
(fig. S7, B and C; table S6; and Methods).

The gene set enrichment analysis also
identified 13 residues connected to cryptic

11 December 2020

transcription (fig. S7A). The pE-MAP includes
24 different mutations of these residues, and
we tested their involvement in cryptic tran-
scription by quantifying the abundance of
transcripts at the 5’ and 3' end of the STE11
gene, using quantitative polymerase chain re-
action (qPCR) (fig. S7D and Methods). In total,
16 mutations, distributed among 10 residues,
increase 3’ transcript abundance by >50% com-
pared with WT (table S7), and nine mutants
among five residues increase 3’ transcription
more than twofold, without major changes in
5' transcription (fig. S7E). As expected, H3K36A,
H3K36R, H3K36Q, and set2A increase 3’ trans-
cript abundance strongly, as do mutations of
H4K44, which is a residue known to affect
cryptic transcription (58). Interestingly, H3K122A
increases 3-transcript abundance >15-fold and,
using ATAC-seq, we find that the mutation
gives rise to nucleosome-free regions in STE11
and other genes known to produce cryptic
transcripts (fig. S7, F to H). H3K122A exhibits
positive genetic interactions with deletion of the
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histone chaperone SPT2 (S-score = 2.4) and the
nucleosome remodeling factor CHDI (S-score =
4.9), which are both involved in cryptic trans-
cription (59, 60). Accordingly, we find that dele-
tion of either SPT2 or CHDI suppresses the
cryptic transcription phenotype observed in
H3K122A to WT levels, even though spt2A or
chdIA alone has no effect (fig. S7, I to K).

The integrative structure determination
approach is transferable to other complexes

To test whether genetic interaction mapping
can be used to determine the structure of
other complexes, we examined a pE-MAP of
RNAPII in budding yeast (15). This pE-MAP
consists of 53 point mutants crossed against
a library of 1200 gene deletions and hypomor-
phic alleles. Interestingly, the association be-
tween MIC values and the upper distance
bound is also apparent in this dataset (fig. S8,
A and B), even though the protein sizes and
mutational coverage of the polymerase system
(up to ~1700 residues and 1 to 2%, respec-
tively) are vastly different from those of the
histones (<140 residues and 85 to 90%). These
observations suggest that our parameteriza-
tion of the pE-MAP spatial restraint based on
the histone data may be generally applicable.
To evaluate this expectation directly, we next
modeled subunits Rpbl and Rpb2 of RNAPII
using the Bayesian likelihood parametrization
based on the histone pE-MAP. To illustrate
the modeling of higher-order complexes, we
divided Rpbl into two domains, thereby re-
presenting the system with three rigid bodies
(Methods and table S8). We obtained a model
with a mean accuracy of 16.8 A and precision
of 9.8 A (Fig. 8, A to D, and table S8). This
positive result illustrates the generality of the
PE-MAP-based spatial restraints.

To further assess the utility of pE-MAP data
for structure determination, we compared the
RNAPII model obtained using the pE-MAP to
a model using 22 previously published chem-
ical cross-links (6I). Cross-linking is widely
used for integrative structure determination
of macromolecular assemblies (2, 8). Inter-
estingly, a model of yeast RNAPII based on
the pE-MAP data is as accurate as that based
on the cross-links (16.8 and 16.7 A, respec-
tively; Fig. 8D). Moreover, the accuracy and
precision of the model improves if both data-
sets are used simultaneously (10.2 and 3.7 A,
respectively; Fig. 8D), indicating complemen-
tarity between the two types of data and de-
monstrating a premise of integrative structure
determination (Fig. 5). Although a cross-link
between two residues may provide more direct
structural information than the corresponding
PE-MAP pair, the number of possible cross-
links is limited by the number of proximal
reactive residue pairs, whereas the number of
PE-MAP pairs grows quadratically with every
additional point mutation introduced. There-
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fore, the larger number of less precise pE-MAP
restraints can lead to a more accurate model than
a smaller number of more precise cross-links.

The integrative structure determination
approach is transferable to other types of
phenotypic profiles

To examine the applicability of our approach
to other types of phenotypic profiles, we turned
to a CG-MAP of 44 bacterial RNAP point muta-
tions exposed to 83 different environmental
stresses (e.g., chemical perturbations, temper-
ature stress, and pH change) (20). We observe
an association between MIC values and the
upper distance bound, similar to that of the
PE-MAP datasets (fig. S8 and Methods). We
modeled the structure of subunits RpoB and
RpoC of the bacterial RNAP with a mean ac-
curacy of 15.0 A and precision of 6.6 A (Fig. 8,
E to H, and table S9). This result suggests that
maps with relatively small numbers of orthogo-
nal phenotypes per point mutation can be used
to accurately predict the architecture of macro-
molecular assemblies. Considering that construct-
ing large gene deletion libraries and crossing
them against point mutations can be laborious,
environmental phenotypic profiles may be a more
efficient alternative for generating spatial re-
straints for integrative structure determination
than genetic interaction phenotypic profiles.

Spatial restraints derived from pE-MAP
data are comparable to other commonly
used data types

Coevolution information can also be used to
predict the structure of protein assemblies
(18, 62, 63). However, the success of such
modeling is heavily dependent on the number
of sequences in the input sequence alignments
and the ability to discriminate interacting from
noninteracting homologs in genomes with mul-
tiple paralogs (64). Using the RaptorX protein
complex contact prediction server (65, 66),
we predicted the interfacial contacts between
RpoB and RpoC of the bacterial RNAP; the
numbers of homologous sequences were in-
sufficient for the yeast histones and RNAPII
(Methods). Importantly, RaptorX is based on a
combination of coevolution analysis and a
deep-learning algorithm that reduces the re-
quirement for sequence homologs and improves
accuracy (67). Other commonly used coevolu-
tion methods (18, 62) did not identify any
interfacial contacts. Similar to the pE-MAP
and CG-MAP datasets, we observe a negative
statistical association between the residue pair
coupling strengths and the upper distance
bounds (fig. S9). To mimic the pE-MAP restraint,
we converted the top coupling strengths into
upper distance bound restraints (Methods). The
model ensemble computed from coevolution-
derived restraints includes two different sets
of configurations (mean accuracy of 22.6 A;
model precision of 9.0 A; Fig. 8H). Only a frac-
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tion of the bacterial RNAP structures com-
puted using coevolution-derived restraints are
as accurate as those computed using the CG-
MAP restraints. The model precision and accu-
racy of the model improve slightly if both types
of restraints are combined (mean accuracy of
14.5 A; model precision of 6.5 A; Fig. 8H).

Discussion

We show that the architectures of macro-
molecular assemblies can be determined using
quantitative genetic interaction data collected
in vivo. The accuracy and precision of such
models are comparable to those of models
based on chemical cross-linking or coevolu-
tion analysis. A key premise of integrative
modeling is that using several different types
of data improves the accuracy and precision of
the model. Because the pE-MAPs and CG-MAPs
contain purely phenotypic measurements,
collected in living cells, these datasets gener-
ate spatial restraints that are orthogonal to
other commonly used data for integrative
modeling. Because these data reflect in vivo
structures, and are thus unlikely to share
artifacts of biophysical methods, they could
be of particularly high value in the integrative
modeling process. The genetic interaction
data may also allow for the characterization of
complexes that are difficult to isolate and
purify or those that are only transiently stable.
Importantly, the equipment required for
generating these data is basic, and, in partic-
ular, the CG-MAPs can be generated efficiently.
Recent developments in CRISPR-Cas9 based
approaches have paved the way for multiplexed
precision genome editing in yeast (68), allow-
ing for rapid generation of CG-MAPs. Together,
these methods make feasible the proteome-
wide modeling of protein complex structures,
guided by global protein-protein interaction
maps (69). In addition to proteins, the approach
is also applicable to assemblies containing
nucleic acids, thus further expanding the scope
of integrative structural biology. pE-MAPs and
CG-MAPs are complementary to other high-
throughput functional assays. For example, two
recent studies have shown that deep muta-
tional scans can be used for determining the
fold of a small protein domain (70, 71). If these
methods prove useful for multidomain proteins
or disordered regions (72), then the measured
phenotype changes could be used to derive
additional restraints for the integrative struc-
ture determination.

The relationship between phenotypic pE-MAP
measurements and structure can be uncertain.
The reasons for this include mutations in distant
positions that are part of an allosteric network
and could give rise to similar profiles, mutations
that are functionally irrelevant, and mutations
that perturb gene expression, mRNA stabil-
ity, or translation. Additionally, the approach
relies on the introduction of point mutations
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Fig. 8. Integrative structure A
determination of yeast RNAPII
and bacterial RNAP. (A) The
native structure of Rpbl-Rpb2
(PDB 2E2H) showing its three
rigid-body components. Rpbl was
split into two domains, as shown.
(B) The localization probability
density of the ensemble of the
three rigid-body structures is
shown with a representative (cen-
troid) structure from the com- B
puted ensemble embedded within
it. (C) Contact maps computed
for the x-ray structure (top)

and model using the pE-MAP
dataset (bottom). The circles
correspond to the pairs of
restrained residues, with the
intensity of red proportional to the
MIC value (MIC > 0.3). (D) Dis-
tributions of accuracy (top) for all
structures in the ensemble and
model precisions (bottom) for the
computed ensembles based on E
pE-MAP and cross-link data. The
white dots represent median
accuracies. Error bars represent
the standard deviations of model
precisions over three independent
realizations (shown as dots);
#xxp < 107, (E) Structure of
subunits RpoB and RpoC from
bacterial RNAP (PDB 4YG2).

(F) The localization probability
density of the ensemble of the
RpoB-RpoC structures with a rep-
resentative (centroid) structure
from the computed ensemble
embedded within it. (G) Contact
maps computed for the x-ray
structure (top) and model using
the CG-MAP dataset (bottom).
The shaded yellow band repre-
sents a region missing in the x-ray
structure. (H) Distributions of
accuracy (top) for all structures in
the ensemble and model preci-
sions (bottom) for the ensembles
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into the proteins of interest, which may result
in structural changes. However, proteins often
adapt to mutations by small local changes in
their structure, maintaining their overall fold
and function (73). Mutations that cause major
misfolding of essential proteins and/or assem-
blies are uncommon in pE-MAPs because the
resulting fitness defects typically prevent suc-
cessful screening. The method could be im-
proved by specifically designing point mutants
that do not alter the structure and/or lead to
aggregation, by selecting commonly allowed
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mutations as determined by divergent protein
sequence alignments (74).

The aim of integrative structure determi-
nation is to model the structures of macro-
molecular assemblies. This often requires the
structures of the individual components [from
x-ray crystallography, NMR, cryo-EM, com-
parative modeling, or, increasingly, ab initio
structure prediction (65, 67, 75, 76)]. The qua-
lity of the structures of the individual compo-
nents and input data are crucial for integrative

(or indeed any other) structural approaches,
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and one cannot achieve a precise structure
from low-quality starting structures or data.
Even so, there are numerous examples of
utility of structural models at lower resolution
(3). For example, these models can be used to
explain the architectural principles of large
assemblies (8, 41, 77, 78), describe the struc-
tural dynamics of protein complexes (42, 43),
or rationalize the impact of many mutations
(41). A lower-resolution structure is also often
a useful starting point for higher-resolution
structure characterization.
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CRISPR-Cas9 genome editing (79) has pro-
ven highly effective for high-throughput ge-
netic interaction mapping in mammalian cells
(80, 81). To date, these efforts have relied on
whole-gene perturbations, but methods for
systematic generation of point mutants using
CRISPR-Cas9 have recently been developed
(82, 83), paving the way for mammalian pE-MAP
screening. This advance provides a means for
integrative structure determination of assem-
blies in human cells and also allows for id-
entification and characterization of functionally
relevant structural changes that take place in
disease alleles. Expanding this analysis to host-
pathogen complexes (84-86) will be feasible by
introducing specific mutations into the patho-
genic genome and studying the phenotypic
consequences using genetic interaction profil-
ing of relevant host genes (87). Furthermore,
several efforts are under way to generate multi-
scale models of entire cells (88-92). In such in-
stances, high-throughput genetic interaction
mapping could provide global insights into
cellular organization and dynamics of differ-
ent components while also informing on the
structures of individual assemblies.

Methods
Histone mutant strain construction

The histone H3 and H4 mutant strain library
was constructed essentially as described (22, 23).
Briefly, the mutants (tail deletions, complete
alanine-scan, and context specific point muta-
tions) were generated in the YMS196 back-
ground (MATa his3A leu2A ura3A canl::
STE2pr-spHIS5 lypl::STE3pr-LEU2) (table
S1). First, the base strains were created by
replacing the HHT2-HHF2 locus with a URA3-
containing cassette carrying a mutated HHT2-
HHF2 locus with their endogenous promoters.
We randomly picked a few base strains, and
the mutated HHT2-HHF2 loci were PCR am-
plified and validated by sequencing. Then, the
HHTI-HHF]I locus was replaced with a HYG®-
containing cassette carrying a mutated version
of the HHTI-HHF1 locus, resulting in pE-MAP-
amenable strains (Mato his3A leu2A ura3A
hhtI-hhf1::HYGR hht2-hhf2::URA3 canl::STE2pr-
SpHIS5 lypl::STE3pr-LEU2).

Histone mutant library validation

Libraries were validated in three steps: (i) Each
mutant was constructed, transformed into bac-
teria, and sequenced; 100% sequence identity
was required to pass quality control. (ii) After
the correct integration of histone mutants in
the HHT2-HHF2 locus, 5 to 10 yeast base strains
from each 96-well plate were randomly selected,
and corresponding histone fragments were
amplified and sequenced to ensure the iden-
tity of each mutant in the well and no cross-
contamination during plasmid preparation and
yeast transformation; 100% of these were cor-
rect. (iii) After obtaining the yeast library with
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the second (HYGR) cassette integrated, 5 to
10 yeast strains from each 96-well plate were
also randomly selected. Both copies of histone
mutants in each strain were amplified and se-
quenced to confirm the identity of mutations.
All of them were correct.

PE-MAP analysis

Each of the histone H3 and H4 mutant strains
was crossed with 1370 MATa KAN® marked
deletion (nonessential genes) or DAmP (de-
creased abundance by mRNA perturbation;
essential genes) strains by pinning on solid
media as described (I5). Sporulation was in-
duced, and MATa haploid spores were selected
by replica plating onto media containing cana-
vanine (selecting canlA haploids) and S-AEC
(selecting lypIA haploids) and lacking histidine
(selecting MATa spores). Triple-mutant haploids
were isolated on media containing hygromycin
(selecting hhtl-hhfl mutant cassette) and G418
(selecting KAN® marked deletion or DAmP),
and lacking uracil (selecting hht2-hhf2 mutant
cassette). Finally, triple-mutant colony sizes were
extracted using imaging software. The screen
was carried out in three biological replicates
with three technical replicates in each. Four
mutants (H4E73Q, H4H18A, H4121A, and
H4K44Q) failed screening in one biological
replicate, and the results for these are based
on the two successful replicates. Detailed E-MAP
experimental procedures are described in
(26, 29, 93). Genetic interactions were quanti-
fied using S-scores (28), which are closely
related to ¢ values. The S-score quantifies the
deviation of the double (or triple) mutants
from the expected combined fitness effects of
the individual mutants and incorporates the
reproducibility between technical replicates.
The published S-scores represent the average
S-scores across biological replicates.

Design of the pE-MAP spatial restraints

The distance restraint based on pE-MAP data
was designed using the 308 single-point mu-
tants from the histone pE-MAP and the structure
from the PDB 1ID3, as follows: (i) postprocessing
of the genetic interaction phenotypic profiles,
(ii) devising a phenotypic similarity metric be-
tween the phenotypic profiles, and (iii) design-
ing spatial restraints for integrative structure
modeling using the phenotypic similarity values
and the known nucleosome x-ray structure. Next,
we describe each of these three steps in turn.
(i) Postprocessing of the genetic interaction
phenotypic profiles: All missing values in the
PE-MAP were imputed as the mean of the
S-scores between the corresponding deletion
mutant and all histone point mutants. To in-
crease the signal-to-noise ratio of the pE-MAP,
gene deletion mutants that mostly exhibited
weak genetic interactions with the histone
mutants were filtered out. To this end, the
gene deletion profiles were ranked in descend-
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ing order based on the counts of their S-scores
that fell in either the top 2.5% of positive
S-scores or the bottom 5% of negative S-scores,
from the complete point mutant pE-MAP (cut-
offs calculated after imputation). The more
stringent cutoff for positive S-scores was
chosen to reflect the smaller dynamic range
for positive genetic interactions compared to
negative genetic interactions. Gene deletions
with the same count were then ranked in
descending order by the mean of the absolute
values of their highest and lowest score (fig.
S3A). The top fraction of the deletions, deter-
mined in step (iii) below, were retained for
computing the histone point mutant pheno-
typic profile similarities (below, fig. S3).

(ii) Devising a phenotypic similarity metric
between the phenotypic profiles: We computed
the similarity between all pairs of histone
phenotypic profiles using the maximal infor-
mation coefficient (MIC; fig. S3B), with the
MIC parameters alpha and c set to 0.6 and
15, respectively, as suggested (36, 37). Many
positions in the histones were mutated to sev-
eral different residue types, giving rise to sev-
eral phenotypic profiles for each of these
positions. As a result, more than one MIC value
would often be computed for a single residue
pair. In such cases, only the highest MIC value
was retained.

(iii) Designing spatial restraints for integra-
tive structure modeling: Using the histone
x-ray structure [PDB 1ID3; (38)], we measured
the Co-Co distance between all pairs of resi-
dues for which we computed a MIC pheno-
typic similarity score. The percentage of the
top scoring phenotypic profiles [ranked by
the genetic interaction scores; step (i)] re-
tained for further analysis was determined as
follows. We compared the statistical associ-
ation of the distances between two mutated
residues with their phenotypic similarity by
selecting the top 10, 25, 50, and 100% of the
ranked deletions (fig. S3C). Although MIC
values between phenotypic profiles do not
linearly correlate with the distances spanned
by the mutated residues in the WT structure
(Pearson correlation coefficient of —0.07 when
using the top 25% or top 50% of deletions), the
MIC values provide an upper distance bound
between the residues. The upper distance bound
was obtained by binning the MIC values into
20 intervals and selecting the maximum dis-
tance spanned by any pair of residues in each
bin, followed by fitting a logarithmic decay
function (dy) to the upper distance bounds:

dy(MIC)
log(MIC) —
_ {Og(c)” if MIC <06 ()
6.84 if MIC > 0.6

where k& and n are —0.0147 and —0.41, respec-
tively (fig. S3C). We find that selecting the top
25 or 50% of the deletions had a comparable
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association between the upper distance bounds
and the computed MIC values. The association
was determined by computing the R and p
values of the Pearson correlation coefficient
and association significance, respectively, for
the log-transformed MIC values. In this work,
we retained the top 25% of the ranked pheno-
typic profiles for computing the phenotypic
profile similarities.

To effectively handle the uncertain relation-
ship between the data and model, we use
Bayesian inference for scoring alternative
models by formulating spatial restraints as
Bayesian data likelihoods (94). Formally, the
posterior probability of model M given data
D and prior information I is p(M|D,I)o<
p(DIM,I) - p(M|I). The model, M, consists
of a structure X and unknown parameters Y,
such as noise in the data. The prior p(M|I) is
the probability density of model M given I.
The prior can in general reflect information
such as statistical potentials or a molecular
mechanics force field; here, we only used
excluded volume and sequence connectivity.
The likelihood function p(D|M, I) is the prob-
ability density of observing data D given
Mand I. The pE-MAP data was used to com-
pute phenotypic similarities (i.e., MIC values)
that inform distances between mutated re-
sidues pairs 7, j. The likelihood of the entire
PE-MAP dataset is the product over the in-
dividual observations between residue pairs
t.j:p(D|M,I) = Hz’jN[d”' Ji5(X), 0:5], where
Jij(X) is a forward model that predicts the data
point d;; in D that would have been observed
for structure X in an experiment without noise;
Nld;;| f;j(X), 044] is a noise model that quan-
tifies the deviation between the predicted and
observed data points.

We defined the forward model by inverting
the relation between the upper distance bound
and observed MIC values [dy(MIC), Eqg. 1]:

fi3(X) = MIC(d;,)
_{exp(k-dij+n) if dij < do )
— 106 if dij > do

where dy = dy (0.6). Our choice of a noise
model is a lognormal distribution with a flat
plateau for MIC values below the upper bound
on the experimentally observed MIC values
(MIC®):

P(MIC{Y [MIC;, X, 0;5)
if MICJY*=MIC;;

Tt

1 1 Icnhs
— e exp|— - log? ) |if MIC < MIC;;
M fonc?, MIC‘?'?SeXD[ 27, ® (MICU R §
o ®)

Here, o;; are the noise parameters that can
optionally be determined as part of the model,
and N and M are normalization factors neces-
sary to make the likelihood continuous. Log-
normal noise models have previously been
used to describe errors of inherently positive
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quantities (95). For computational efficiency,
we used a single ¢ value for all residue pairs.
An uninformative Jeffrey’s prior is applied to
o to represent a lack of information on the
bounds and distribution of this parameter (96).

Finally, a Bayesian term in the scoring
function is defined as the negative logarithm
of the posterior probability density: S(M) =
—logp(M|D, I). In the Bayesian view, the out-
put model is in fact best equated to the poste-
rior model density that specifies a distribution
of alternative single models M with varying
probability density, not a single model, although
single representative or average models can
always be proposed based on the posterior
model density.

Calculation of similarity metrics for yeast
RNAPII and bacterial RNAP datasets

Steps (i) and (ii) from “Design of the pE-MAP
spatial restraints” were repeated for the yeast
RNAPII and bacterial RNAP datasets to gene-
rate the similarity metrics (MIC values) for these
two systems, with the following modifications:

For yeast RNAPII, before imputing missing
values in the pE-MAP, any deletion mutants
that exhibit missing values with more than
15% of the point mutants were filtered out.
This step is part of our pipeline but had no
effect on the histone pE-MAP (because this
PE-MAP does not contain any deletion mutant
with more than 15% values missing). The num-
ber of ranked deletion mutants retained at the
end of pE-MAP postprocessing was chosen to be
25% of the number of deletions in the original
unfiltered pE-MAP (in accordance with the
histone pE-MAP processing).

For bacterial RNAP, owing to the very small
number of perturbations in this dataset, all the
perturbations (instead of the top 25%) were
retained for computing point mutant pheno-
typic profile similarities. In addition, owing to
differences in the experimental design for
generating the yeast pE-MAPs and the bacte-
rial RNAP CG-MAP, the bacterial RNAP MIC
distribution had a ~2-fold higher median and
greater spread than the other datasets. Corre-
spondingly, the bacterial RNAP MIC dis-
tribution was normalized using linear scaling,
decreasing its median to match that of the
histone MIC distribution. Importantly, this step
was based solely on the MIC distributions,
without reliance on any structural information.

Integrative structure determination

Integrative structure determination for each
system proceeded through the standard four
stages (3, 4, 5, 8, 41, 97) (Fig. 5 and tables S3,
S8, and S9): (i) gathering data, (ii) represent-
ing subunits and translating data into spatial
restraints, (iii) configurational sampling to
produce an ensemble of structures that satisfies
the restraints, and (iv) analyzing and validating
the ensemble structures and data. The integra-
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tive structure modeling protocol [i.e., stages (ii),
(iii), and (iv) was scripted using the Python
Modeling Interface (PMI) package, a library
for modeling macromolecular complexes based
on our open-source Integrative Modeling Plat-
Jform (IMP) package (5), version 2.8 (https://
integrativemodeling.org). Files containing the
input data, scripts, and output results are
available at https://integrativemodeling.org/
systems/pemap and the nascent integrative
methods benchmarking section of the world-
wide Protein Data Bank (wwPDB) PDB-Dev
repository for integrative structures and cor-
responding data (http://pdb-dev.wwpdb.org) (95).

(i) Gathering data

To mimic realistic integrative structure deter-
mination, we did not rely on the known atomic
structures of the subunits in the actual modeled
complex [correct docking of exact bound struc-
tures based on geometric complementarity is
easy, (99)]. Instead, we computed compara-
tive models of histones H3 and H4 based on
their alignments with structures of the 1TZY
(100) (89 and 92% sequence identity, respec-
tively), using MODELLER, version 9.21 (101).
The Ca-atom RMSDs between the crystal struc-
tures and comparative models is 2.8 and 5.5 A
for H3 and H4, respectively, corresponding to
medium- and low-accuracy comparative models.
The second major input information source was
a pE-MAP dataset of 308 point mutations in
histones H3 and H4 crossed against an array
of ~1370 gene deletion alleles, resulting in
946 MIC values above 0.3. Of these, 170 MIC
values were converted into distance restraints
between H3 and H4 residues (fig. S8 and
table S3).

Comparative models of subunits Rpbl and
Rpb2 of yeast RNAPII were computed based
on template structures 6GMH (102) (54% se-
quence identity) and 4AYB (103) (43% sequence
identity), respectively. The Ca RMSD between
the crystal structures of subunit Rpb1 and Rpb2
[2E2H (104)] and their comparative models are
7.3 and 5.2 A, respectively. A pE-MAP dataset of
53 single point mutants in yeast RNAPII (44 of
which reside in subunits Rpbl and Rpb2) and a
library of ~1200 gene-deletions resulted in
195 MIC values above 0.3. Of these, 123 MIC
values were converted into distance restraints
(fig. S8 and table S8). In addition, we com-
pared the RNAPII model based on the pE-MAP
to a model based on 22 previously published
chemical cross-links (67).

The structures of subunits RpoB and RpoC
of bacterial RNAP were obtained from the x-ray
structure of the entire complex (4YG2) (105). A
CG-MAP of 44 single point mutants of the two
subunits and a library of 83 conditions (e.g.,
treatments with chemicals and temperature
shocks) resulted in 109 MIC values above 0.3.
Of these, 63 MIC values were converted into
distance restraints between the subunits
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(fig. S8 and table S9). In addition, we com-
pared the bacterial RNAP model based on the
CG-MAP to a model computed based on dis-
tance restraints derived from the interfacial
contacts predicted using the RaptorX protein
complex contact prediction server (65, 66)

(i) Representing subunits and translating
data into spatial restraints

To maximize computational efficiency while
avoiding using too coarse a representation, we
represented each complex in a multiscale fashion.
In particular, the subunits and domains of
each complex were coarse-grained using beads
of varying sizes representing either a rigid body
or a flexible string, based on the available com-
parative models, as follows (tables S3, S8, and
S9). The comparative models were coarse-grained
into two representations at different resolu-
tions. First, we identified loop regions of at
least eight residues using DSSP (106, 107) and
represented them by flexible strings of beads
of up to 10 residues each. Second, for the re-
maining residues each bead corresponded to
an individual residue, centered at the position
of its Co atom. With this representation in hand,
we next translated the input information into
spatial restraints as follows.

The defining and most important restraint
for our method is extracted from the pE-MAP
and CG-MAP data. The collected pE-MAP and
CG-MAP MIC values were used to construct the
Bayesian term in the scoring function that re-
strained the distances spanned by the mutated
residues as described above. The pE-MAP re-
straint was applied to the one residue-per-bead
representation for the comparative models as
well as to the flexible beads. To improve com-
putational efficiency, we only considered point
mutation pairs with MIC values greater than
0.3. This restraint was applied to all three com-
plexes (tables S3, S8, and S9). In addition to
the pE-MAP data, integrative modeling can
benefit from many other types of input in-
formation. Here, we have supplemented the
PE-MAP and CG-MAP data by additional
simple terms accounting for excluded vol-
ume and sequence connectivity. First, the ex-
cluded volume restraints were applied to each
bead in the one-residue (or the closest) bead
representations, using the statistical relation-
ship between the volume and the number of
residues that it covered (4, 108). Second, we
applied the sequence connectivity restraint,
using a harmonic upper bound on the distance
between consecutive beads in a subunit, with
a threshold distance equal to four times the
sum of the radii of the two connected beads.
The bead radius was calculated from the ex-
cluded volume of the corresponding bead,
assuming standard protein density (4, 108).
Moreover, we evaluated the utility of the pE-MAP
and CG-MAP data by considering two addi-
tional types of restraints. First, the 22 previ-
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ously determined BS3 RNAPII cross-links (67)
were used to construct a Bayesian term that
restrained the distances spanned by the cross-
linked residues (30 A) (209, 110). The cross-link
restraints were applied to the one residue-per-
bead representation for the comparative mod-
els as well as flexible beads, only for RNAPII
(table S8). Second, we applied the evolutionary
coupling restraints to determine the structures
of the RpoB and RpoC subunits of bacterial
RNA polymerase. Coupling strengths between
residue pairs were obtained using the RaptorX
ComplexContact server (http://raptorx.uchicago.
edu/ComplexContact/) (65, 66) with default pa-
rameters. The top L/50 coupling strengths
(fig. S9) with sequence separation of three or
greater were converted into distance restraints
using a harmonic upper bound on the distances
between the residues. The threshold distance
was set to 12 A. This restraint was applied only
to a subset of bacterial RNAP modeling in-
stances (table S9).

Configurational sampling to produce
an ensemble of structures that satisfy
the restraints

The initial positions and orientations of rigid
bodies and flexible beads were randomized.
The generation of structural models was per-
formed using Replica Exchange Gibbs sampl-
ing, based on the Metropolis Monte Carlo (MC)
algorithm (710, 111). Each MC step consisted of
a series of random transformations (i.e., rota-
tion and translation) of the positions of the
flexible beads and rigid bodies. Details about
the MC runs for each system are in tables S3,
S8, and S9.

Analyzing and validating the ensemble
structures and data

Model validation follows four major steps
(8, 112): (i) selection of the models for valida-
tion, (ii) estimation of sampling precision, (iii)
estimation of model precision, and (iv) quanti-
fication of the degree to which a model satisfies
the information used to compute it. These
validations are based on the nascent wwPDB
effort on archival, validation, and dissemina-
tion of integrative structures (98, 113). We now
discuss each one of these validations in turn.

(i) Selection of models for validation: The
first step is to objectively define the ensemble
of models that will be further analyzed. For
each trajectory, we automatically determined
the MC step at which all data likelihoods and
priors have equilibrated (run equilibration
step), and all prior frames are discarded (114).
Discarding the initial, nonequilibrated steps of
each run is helpful because nontypical early
configurations (e.g., a random configuration
of beads, an extended configuration of beads,
and beads far apart from each other) are re-
moved from the statistical sample used for
posterior model estimates.
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With this ensemble of sampled structures
and their corresponding scores in hand, we
analyze the data likelihoods and priors. We
used HDBSCAN clustering, a hierarchical
density-based clustering algorithm, to iden-
tify all high-density regions in the likelihoods
and priors (115). If a single cluster was iden-
tified, we consider all the models after discard-
ing the initial steps; otherwise, we consider all
models in the clusters that satisfy the input
information, within the uncertainty of the
data, for further analysis (below).

(ii) Estimation of sampling precision: Next,
we estimate the precision at which sampling
sampled the selected structures (sampling
precision) (112); the sampling precision must
be at least as high as the precision of the
structure ensemble consistent with the input
data (model precision). As a proxy for testing
the thoroughness of sampling, we performed
four sampling convergence tests: (i) verify that
the scores of refined structures do not continue
to improve as more structures are computed,
(ii) confirm that the selected structures in
independent sets of sampling runs (sample
A and sample B) satisfy the data equally well,
(iii) cluster the structural models and deter-
mine the sampling precision at which the
structural features can be interpreted (fig. S10),
and (iv) compare the localization probability
density maps for each protein obtained from
independent sets of runs. Details about all the
tests are described in (712). For each modeling
instance, the results from the convergence
tests are summarized in tables S3, S8, and S9.

(iii) Estimation of model precision: In the
third step, the model uncertainty (precision)
is estimated. The most explicit description of
model uncertainty is provided by the set of all
models that are sufficiently consistent with
the input information (i.e., the ensemble).
Model precision can be quantified by the vari-
ability among the models in the ensemble; in
the end, the ensemble can be described by
one or more representative models and their
uncertainties. For example, if the structures
in the ensemble are clustered into a single
cluster, the model precision is defined as the
RMSD between models in the cluster. Impor-
tantly, the uncertainty may not be distributed
evenly across the ensemble, such that some
regions are determined at a higher precision
than others.

(iv) Quantification of the degree to which a
model satisfies the data used to compute it: An
accurate structure needs to satisfy the input
information used to compute it; all structures
at computed precision that are consistent with
the data are provided in the ensemble. A pE-
MAP derived restraint is satisfied by a cluster
of structures if the corresponding Co-Ca dis-
tance in any of the structures in the cluster is
lower than the distance predicted by the MIC
value (Eq. 1). A BS3 cross-link restraint is satisfied
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by a cluster of structures if the corresponding
Ca-Co distance in any of the structures in the
cluster is less than 30 A (116). The remainder
of the restraints are harmonic, with a specified
standard deviation. Therefore, a restraint is
satisfied by a cluster of structures if the res-
trained distance in any structure in the cluster
is violated by less than three standard devia-
tions, specified for the restraint. Tables S3, S8,
and S9 show that all models satisfy the input
information within its uncertainty.

Benchmark

To benchmark the four-stage protocol described
above, we computed the distribution of the
accuracy for each structure in the ensemble of
solutions obtained by integrative modeling.
The accuracy is defined as the mean of Co
RMSD between the x-ray structure and each of
the structures in the ensemble. The PDB ac-
cession code and accuracies for each modeling
instance are summarized in tables S3, S8, and S9.

To assess the information content of the
histone pE-MAP, we computed the models of
the H3-H4 complex based on random subsets
of the data. To this end, from the dataset of
computed MIC values for pairs of mutated
residues, we performed three independent
random selections of 80, 60, 40, and 20% of
the data each. As expected, the more pE-MAP
data that are used, the more accurate and
precise are the models (Fig. 6C).

Finally, as another test, we computed the
model based on datasets with randomly shuffled
MIC values for the same pE-MAP or CG-MAP
residue pairs, for each of the complexes.

Estimation of the number of mutations
per protein

To estimate the suggested number of mutated
positions per protein for integrative structure
determination, we computed the number of
mutations that would result in four or more
MIC values above a 0.4, 0.45, 0.5, or 0.55
threshold. Based on our scoring function, MIC
values above these thresholds will result in
distance restraints with an upper distance
bound in the 12- to 34-A range. These dis-
tances are comparable to the upper distance
bounds used for chemical cross-links (e.g., DSS,
DSSO, EDC). A previous systematic study es-
tablished that at least four chemical cross-links
are needed to determine the binding mode of
protein dimers if the subunit structures are
known (e.g., from x-ray, NMR, or comparative
models) (110). In general, adding more chem-
ical cross-links does not further improve the
accuracy, although it increases the precision of
the resulting ensemble. By analogy, we esti-
mate that, for systems in which the structures
of the components are known, a good num-
ber of mutations per protein is 35 to 40 (fig.
S5A). This data can be used as a guideline to
decide on the number of mutations to use for
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generating a pE-MAP or CG-MAP. Important-
ly, this estimate is an upper bound on the
number of mutations, and in many cases, the
number might be smaller for the following two
reasons. First, this estimation was done as-
suming protein-wide mutations of residues,
often to alanine. In practice, the number of
necessary mutations can be reduced by specif-
ically designing point mutations that target
surface residues and/or residues known to
be functionally important, and by choosing
substitutions likely to give rise to functional
perturbations. In general, we did not find a
correlation between the secondary structure
of the residue pairs and their associated MIC
value (fig. S5B). Second, this estimation only
relies on the residue pairs with high MIC
values. In contrast to chemical cross-links, the
upper distance bound of pE-MAP derived re-
straints are obtained from the statistical asso-
ciation between the MIC values and distance
between residues. Consequently, residue pairs
with low MIC values still carry structural in-
formation, even if at low resolution. Con-
sistent with these considerations, the RNAPII
dataset contains only 31 and 9 mutated resi-
dues for Rpbl and Rpb2, respectively. Simi-
larly, the bacterial RNAP dataset contains 23
and 15 mutated residues for Rpob and Rpoc,
respectively.

Docking

To assess the relative value of pE-MAP re-
straints for structure determination, we com-
puted the structures of the H3-H4 and RNAPIIL
complexes by molecular docking. Specifically,
we followed an integrative docking protocol
(117) using the rigid-body docking program
PatchDock (39). In each case, we used the same
comparative models and rigid-body definitions
used for integrative modeling (figs. S4 and S11)
and default parameter values (figs. S4 and S11).

Visualizations

The pE-MAP was hierarchically clustered in
both histone mutant and gene deletion dimen-
sions using Cluster 3.0 (718) and displayed
using Java Treeview (119) (Fig. 3). Images
highlighting histone residues in context of the
nucleosome structure (PDB 1ID3 or its modified
version in data S2) were created using ChimeraX
(Figs. 3A and 7C; and figs. S1D and S6) (48).

Distance of clustered pE-MAP profiles

First, all histone alleles affecting residues not
included in the structural reference (PDB 1ID3,
H3A1-H3K37 and H4S1-H4R17) were removed
and the remaining data (n = 222) clustered
hierarchically using Cluster 3.0 (118). For each
node of the clustergram, the mean distance
among member residues was calculated and
plotted versus the normalized branch length
(where the first node is set to branch length =
0 and the last node to branch length = 1) of the
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respective node (fig. S2A, red dots, and random
distribution plotted in black).

Generation of the correlation map

Pearson correlation coefficients were computed
for each of the 350 H3 and H4 mutants against
all genes and alleles (rows) in a merged map of
previously published genetic interaction data
[dataset S4 from (45)]. If the overlap between
a histone mutant and a S-score vector from the
merged map was <150 scores, the resulting
correlation was not considered (i.e., replaced
by “NaN”) (data S3). Pearson correlation co-
efficients were chosen over MIC for this analysis
because we found Pearson correlation more
robust than MIC when many missing values
were present.

Structural mapping of genetic
interactions—stEMAP app

The hierarchically clustered pE-MAP data was
imported into Cytoscape (47), creating an ini-
tial network, and then linked to a modified
version of the nucleosome structure 1ID3 (data
S2) using the stEMAP app, developed to facili-
tate interactive exploration of the pE-MAP. The
original nucleosome structure was modified
by adding the N-terminal disordered regions
of histone H3 and H4 and manually position-
ing them for clarity. The linking proceeds
as follows: First, the structure is opened in
ChimeraX (48) by structureVizX (120) and
positioned in response to commands from
the stEMAP app. Then, a residue interaction
network (RIN) is created by the structureVizX
app where nodes are positioned to reflect the
nucleosome structure through the help of the
RINalyzer app (721). Finally, the RIN network
and the network created by the original cluster
files are merged, and edges are drawn between
genes and residues with interactions passing a
user-defined threshold (fig. S6A). All of the
preceding steps happen automatically through
the stEMAP app interface, which takes as
input any given PDB file and a short user-
defined JSON configuration file defining inter-
action thresholds (here: correlation > 0.2), colors
of edges (here: color-gradient from white to red
for positive correlations), and display style of the
structure in ChimeraX.

Selection of individual genes triggers the
interacting residues to be selected, and, in the
ChimeraX window, those residues are shown
as space-filling atoms, which are colored accord-
ing to the edge colors. When multiple genes
are selected (e.g., genes belonging to the same
complex), there might be multiple edges con-
necting an individual residue. In this case, the
color reflects the significance and consistency
of the interactions (see below). To assist in
interpretation and interactive exploration of
complex data sets (i) colors are quantized into
10 bins, five positive and five negative; (ii) a
heatmap is presented that shows only the
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values for the selected genes and their inter-
acting residues; (iii) sets of genes belonging to
a complex can be selected using the setsApp
(122); and (iv) a slider provides a filter to re-
strict the selection to only those mutations
with a minimum number of interactions.

To determine if a gene set is connected to a
given residue, the stEMAP app calculates the
median Pearson correlation coefficient across
all genes of the gene set against all different
mutations at that residue. If this median cor-
relation is above the threshold of 0.2 (defined
in the JSON file), the respective residue is colored
according to the median. To instead determine
if a gene set is connected to an individual
mutation, the same method is used, except
the median correlation coefficient is now cal-
culated across all genes of the gene set against
the single given mutation (instead of all muta-
tions of the residue).

ROC curves

Only library deletion mutants that exist in
both this study and the two previously pub-
lished E-MAP datasets [Braberg et al. (15)
and Collins et al. (29)] were included (n = 389)
in this analysis. Based on their pE-MAP profiles,
Pearson correlation coefficients were calculated
for all pairwise combinations of these 389
deletion mutants. To determine the power of
these correlations to predict physical inter-
actions between encoded proteins, an ROC
curve was computed, where a physical inter-
action between proteins was defined if their
PE score is greater than 2 (69). From the
Collins et al. E-MAP, query strain profiles with
more missing data than the sparsest histone
mutant were removed, as were query mutants
that also existed in the library mutant set. Be-
cause the Braberg et al. pE-MAP only includes
53 query mutants (rows), we used subsets of
53 query mutants each for the histone and
Collins et al. E-MAPs when generating their
ROC curves, to make all three systems com-
parable. To this end, for the Collins et al. E-MAP
and histone pE-MAP, 53 query mutant profiles
were randomly selected 1000 times, and a ROC
curve was generated for each run. The median
areas under the ROC curves (AROCs) and cor-
responding ROC curves are reported together
with the ROC curve of the pE-MAP from
Braberg et al. in Fig. 2F.

RNA-seq expression analysis

Ten ml of overnight cultures of 29 histone
mutant strains (table S2) were harvested in
mid-log phase [optical density at 600 nm
(ODgpo) = 1.0] and washed with DEPC-ddH,0.
RNA was extracted with hot acidic phenol as
described previously (7123). RNA-seq libraries
were generated using the QuantSeq 3’ mRNA-
Seq Library Prep Kit FWD for Illumina
(Lexogen). Single-end, 50-base reads were se-
quenced using an Illumina HiSeq 4000 se-
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quencer. Reads were filtered for quality and
aligned to the yeast genome using tophat (124,).
Nonunique reads and reads mapping to ribo-
somal RNA were removed before analysis.
Transcript counts were extracted using htseq-
count (125), and differential expression was
measured using the Dseq2 package in R (126).

Identification of functional links between H3 and
H4 mutants and biological processes

The correlation map (data S3) was used as the
basis for this analysis. First, a curated annota-
tion of all genes in the correlation map relevant
to nuclear function was devised. Biological
process definitions for genes in nuclear pro-
cesses were assigned manually based on litera-
ture and annotations from previous genetic
interaction maps (29, 127, 128) (table S5). To
identify links between H3 and H4 residues
and nuclear processes that were highly cor-
related, we used a one-sided Mann-Whitney
U test to compare the correlation distribu-
tion between the mutants of each H3 and H4
residue and the members of each process to
(i) the correlations between the same H3 and
H4 mutants and all genes not in that process
and to (ii) the correlations between the same
process and all other H3 and H4 mutants. The
highest p value of the comparison to (i) or (ii)
was recorded. False discovery rates (FDRs)
for the links were then computed using the
method of Benjamini and Hochberg (129) and
are reported in table S5. The most significant
links with FDR <107° were used for follow-ups.

Spontaneous mutation frequency

Cells were grown to saturation and then plated
on yeast extract peptone dextrose (YEPD)- and
5-fluoroorotic acid (5-FOA)-supplemented
media. Mutants growing on 5-FOA were counted
only after confirming that colonies growing on
YEPD for all the strains were of equal size. The
assay was repeated three times independently
(table S6).

MS quantification of H3K56ac levels
Sample preparation

Histone mutant cultures (WT, H3R63K, and
H4R36K) were harvested in mid-log phase
(ODggo = 1.0) using a 250-mm ceramic filter
funnel and 30-pum nitrocellulose membranes
connected to high continuous wall suction.
Yeast were removed from the nitrocellulose
membrane and flash frozen for storage or
used immediately for protein extraction. Per
gram of yeast pellet, 3 ml of Yeast-Protein
Extract Reagent (Y-PER; ThermoFisher Sci-
entific) with added protease inhibitors (cOm-
plete Sigma-Aldrich, one tablet per 50 ml),
phosphatase inhibitors (PhosSTOP Sigma-
Aldrich; one tablet per 50 ml), histone deacety-
lase inhibitors (sodium butyrate 100 mM and
nicotinamide 100 mM), and B-mercaptoethanol
(15 mM) were added. The suspension was mixed
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on a gyrator at 4°C for 30 min and centrifuged.
Pellets were resuspended in fresh Y-PER me-
dium, and extraction was repeated two ad-
ditional times for a total of three extractions.
Pellets were sequentially washed twice with
3 ml ddH,O0 per gram of yeast. Histone extrac-
tion was performed in the presence of 2.5 ml
of 8M urea/0.4N sulfuric acid per gram of
yeast protein pellets, incubated for 1 hour,
centrifuged, and supernatants collected. Pro-
teins were precipitated using a methanol-
chloroform precipitation as previously described
(130). Extracted proteins were trypsin digested;
desalted and acetylated peptides were enriched
as previously described (131).

Generation of selected reaction monitoring
(SRM) assays for acetylation sites

Peptide mixtures (obtained from ThermoFisher)
were analyzed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) on a
Thermo Scientific Orbitrap Fusion mass spec-
trometry system equipped with a Proxeon
Easy nLC 1200 ultra-high-pressure LC and
autosampler system. Samples were injected
onto a C18 column (25 cm x 75 um L.D. packed
with ReproSil Pur C18 AQ 1.9-um particles) in
0.1% formic acid and then separated with a
60-min gradient from 5 to 40% buffer B (90%
ACN/10% water/0.1% formic acid) at a flow
rate of 300 nl/min. The mass spectrometer
collected data in a data-dependent fashion,
collecting one full scan in the Orbitrap fol-
lowed by collision-induced dissociation MS/
MS scans in the dual linear ion trap for the 20
most intense peaks from the full scan. Dynamic
exclusion was enabled for 30 s with a repeat
count of 1. Charge state screening was used
to reject analysis of singly charged species or
species for which a charge could not be as-
signed. The raw data was matched to protein
sequences using the MaxQuant algorithm (ver-
sion 1.5.2.8) (132). Data were searched against
a database containing SwissProt Human protein
sequences concatenated to a decoy database
where each protein sequence was randomized
in order to estimate the FDR. Variable modi-
fications were allowed for methionine oxida-
tion and protein N-terminal acetylation and
lysine acetylation. A fixed modification was
indicated for cysteine carbamidomethylation.
Full trypsin specificity was required. The first
search was performed with a mass accuracy
of £20 parts per million and the main search
was performed with a mass accuracy of +4.5
parts per million. A maximum of five modifi-
cations were allowed per peptide. A maximum
of two missed cleavages were allowed. The
maximum charge allowed was 7+. Individual
peptide mass tolerances were allowed. For
MS/MS matching, a mass tolerance of 0.8 Da
was allowed, and the top eight peaks per 100 Da,
were analyzed. MS/MS matching was allowed
for higher charge states and water and ammonia

14 of 18

0202 ‘TT Joquiadaq uo /1o’ Bewasusalas aaualos)/:dny woly papeojumoq


http://science.sciencemag.org/

RESEARCH | RESEARCH ARTICLE

loss events. The data were filtered to obtain
a peptide, protein, and site-level FDR of 0.01.
The minimum peptide length was seven amino
acids. Selected reaction monitoring (SRM) as-
says were generated for selected acetylation
sites. SRM assay generation was performed
using Skyline (133). For all targeted proteins,
proteotypic peptides and optimal transitions
for identification and quantification were selected
based on a spectral library generated from the
shotgun MS experiments. The Skyline spectral
library was used to extract optimal coordinates
for the SRM assays, for example, peptide frag-
ments and peptide retention times. For each
peptide, the five best SRM transitions were
selected based on intensity and peak shape.

Acquisition and quantification of
acetylation sites by SRM

Digested peptide mixtures were analyzed by
LC-SRM on a Thermo Scientific TSQ Quantiva
MS system equipped with a Proxeon Easy nL.C
1200 ultra-high-pressure LC and autosampler
system. Samples were injected onto a C18 column
(25 cm x 75 um LD. packed with ReproSil Pur
C18 AQ 1.9-um particles) in 0.1% formic acid
and then separated with a 60-min gradient
from 5 to 40% buffer B (90% ACN/10% water/
0.1% formic acid) at a flow rate of 300 nl/min.
SRM acquisition was performed operating Q1
and Q3 at 0.7-unit-mass resolution. For each
peptide, the best five transitions were moni-
tored in a scheduled fashion with a retention
time window of 5 min and a cycle time fixed to
2 s. Argon was used as the collision gas at a
nominal pressure of 1.5 mTorr. Collision ener-
gies were calculated by, CE = 0.0348 x (m/z2) +
0.4551 and CE = 0.0271 x (m/2) + 1.5910 (CE,
collision energy and m/=, mass to charge ratio)
for doubly and triply charged precursor ions,
respectively. SRM data was processed using
Skyline (133). Protein significance analysis was
performed using MSstats (134). Normalization
of the intensities across samples was performed
using the acetylated peptides H3K9_H3K14
(peptide containing both acetylation sites),
H3K23 and H3K14 as global standards, which
did not show any change across the mutants.
Log, fold changes were calculated from three
independent runs and plotted (fig. S7C and
table S6).

Cryptic transcription—qPCR

Total RNA was extracted from 10 ODg( units
of mid-log phase cells (WT and respective
mutant strains) using hot acid phenol-chloroform
extraction method as described. Ten pg of total
RNA was DNAse I treated (Promega) followed
by purification using an RNeasy minikit (Qjagen).
One pg of DNAse I-treated total RNA was used
to synthesize cDNA using SuperScript III first
strand synthesis system (Life Technologies)
and random hexamer primers. cDNA was diluted
1:25 before amplification by PCR using primers

Braberg et al., Science 370, eaaz4910 (2020)

designed for the 5’ and the 3’ ends of the STEI11
gene. JPCR was performed using SYBR green
(Biorad) as described previously (135). Relative
change in the transcript levels were estimated
using the AAC, method described in (136) and
were normalized to ACTI transcript (table S7).
Primer sequences are available upon request.

Western blotting

Whole-yeast-cell lysates were prepared using
trichloroacetic acid (TCA) lysis as described
previously (137). Lysates were subjected to im-
munoblotting according to standard proce-
dures, and proteins were detected using ECL
Prime (Amersham Biosciences). Membranes
were probed with cH3K36me3 antibody
purchased from (Abcam, catalog no. 9050).
Glyceraldehyde-phosphate dehydrogenase
(GAPDH) was used as a loading control and
detected using an antibody purchased from
Sigma (catalog no. A9521).

ATAC-seq

Yeast cells (2.5 x 10%) were grown to mid-log
phase, pelleted, washed with SB-buffer (1.4 M
Sorbitol, 40 mM HEPES-KOH pH 7.5, 0.5 mM
MgCl2), resuspended in 200 pul SB buffer +
10 mM DTT with 10 ul of 10 mg/ml 100T
zymolyase (MP Biomedicals) solution and
incubated for 5 min at 30°C. Spheroblasted
cells were washed with SB-buffer and incu-
bated for 15 min at 37°C in 25 pl of transposase
solution (12.5 ul 2x TD buffer, 1.25 ul Nextera
enzyme, 11.25 ul water). DNA was purified
(Qiagen MinElute DNA Purification Kit), am-
plified, and barcoded by PCR. Purified PCR
products were sequenced using an Illumina
HiSeq 4000 sequencer. Sequence reads were
trimmed and aligned to the genome of Saccha-
romyces cerevisiae (version SacCer3 from
hgdownload.cse.ucsc.edu/downloads.html),
and reads with a length <100 basepairs (bp)
were removed. Replicates belonging to an allele
(WT, H3K36A, H3K122A, set2A) were merged
and normalized to the smallest read number.
For visualization of STEII read coverage using
the IGV genome browser (138) (fig. S7G), each
track was scaled linearly so that the largest
peak in the displayed window is the same height
for all tracks. Count files were generated with
“featureCounts v1.5.3” (139).

Gene body plots (fig. STH) were generated
as follows: First, counts from genes reported
to be targets of cryptic transcription (n = 11;
FLOS8, AVOI1, LCB5,SMC3, SPB4, APM2, DDCI,
SYFI1, OMS1, PUS4, STEII), as well as counts
400 bp up- and downstream of the respective
gene bodies, were extracted. Second, up- and
downstream regions were split into 50 bins of
equal size (8 bp), whereas the gene body was
split into 300 equal bins, resulting in 400 bins
for each gene in each tested strain (WT, set2A,
H3K36A and H3K122A). Third, for each of the
400 bins, the average for the 11 target genes
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was calculated. Fourth, each mutant allele was
then scaled linearly so that the first bin (i.e.,
400 bp upstream of the gene body start) was
equal to that of WT. Finally, the WT counts
were subtracted from the mutant counts for
each bin.
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From phenotype to structure

Much insight has come from structures of macromolecular complexes determined by methods such as
crystallography or cryo—electron microscopy. However, looking at transient complexes remains challenging, as does
determining structures in the context of the cellular environment. Braberg et al. used an integrative approach in which
they mapped the phenotypic profiles of a comprehensive set of mutants in a protein complex in the context of gene
deletions or environmental perturbations (see the Perspective by Wang). By associating the similarity between
phenotypic profiles with the distance between residues, they determined structures for the yeast histone H3-H4 complex,
subunits Rpb1-Rpb2 of yeast RNA polymerase Il, and subunits RpoB-RpoC of bacterial RNA polymerase. Comparison
with known structures shows that the accuracy is comparable to structures determined based on chemical cross-links.

Science, this issue p. eaaz4910; see also p. 1269
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