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Anewly described coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), whichis the causative agent of coronavirus disease 2019
(COVID-19), hasinfected over 2.3 million people, led to the death of more than
160,000 individuals and caused worldwide social and economic disruption*?. There

areno antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor
arethere any vaccines that prevent infection with SARS-CoV-2, and efforts to develop
drugs and vaccines are hampered by the limited knowledge of the molecular details of
how SARS-CoV-2infects cells. Here we cloned, tagged and expressed 26 of the 29
SARS-CoV-2 proteins in human cells and identified the human proteins that physically
associated with each of the SARS-CoV-2 proteins using affinity-purification mass
spectrometry, identifying 332 high-confidence protein—-protein interactions between
SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human
proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved
by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical
compounds). We screened a subset of these in multiple viral assays and found two sets
of pharmacological agents that displayed antiviral activity: inhibitors of mMRNA
translation and predicted regulators of the sigma-1and sigma-2 receptors. Further
studies of these host-factor-targeting agents, including their combination with drugs
that directly target viral enzymes, could lead to a therapeutic regimen to treat

COVID-19.

SARS-CoV-2isanenveloped, positive-sense, single-stranded RNA beta-
coronavirus of the family Coronaviridae®*. Coronaviruses that infect
humans historically included several common cold viruses, including
hCoV-0C43, HKU and 229E°. However, over the past two decades,
highly pathogenic human coronaviruses have emerged, including
SARS-CoV in 2002, which is associated with 8,000 cases worldwide
andadeathrate ofaround10%, and Middle East respiratory syndrome
coronavirus (MERS-CoV) in2012, which caused 2,500 confirmed cases
and had a death rate of 36%. Infection with these highly pathogenic
coronaviruses canresultinacute respiratory distress syndrome, which
may lead to a long-term reduction in lung function, arrhythmia or
death. In comparison to MERS-CoV or SARS-CoV, SARS-CoV-2 has a
lower case-fatality rate but spreads more efficiently®, making it difficult
to contain. Todevise therapeutic strategies to counteract SARS-CoV-2
infection and the associated COVID-19 pathology, itis crucial to under-
stand how this coronavirus hijacks the host during infection, and to
apply this knowledge to develop new drugs and repurpose existing
ones.

Thus far, no clinically available antiviral drugs have been developed
for SARS-CoV, SARS-CoV-2 or MERS-CoV. Clinical trials are ongoing for
treatment of COVID-19 with the nucleoside-analogue RNA-dependent
RNA polymerase (RARP) inhibitor remdesivir’, and recent data suggest
that a new nucleoside analogue may be effective against SARS-CoV-2
infection in laboratory animals®. Clinical trials using several vaccine
candidates are also underway’, as are trials of repurposed compounds
that inhibit the human protease TMPRSS2'°. We believe that there is
great potential in systematically exploring the host dependencies of

the SARS-CoV-2 virus to identify other host proteins that are already
targeted by existing drugs. Therapies that target the host-virusinter-
face, where the emergence of mutational resistance is arguably less
likely, could potentially present durable, broad-spectrum treatment
modalities™. Unfortunately, limited knowledge of the molecular details
of SARS-CoV-2 precludes acomprehensive evaluation of small-molecule
candidates for host-directed therapies. We sought to address this gap by
systematically mapping theinteraction landscape between SARS-CoV-2
proteins and human proteins.

Cloning and expression of SARS-CoV-2 proteins

Sequence analysis of SARS-CoV-2 isolates suggests that the 30-kb
genome encodes as many as 14 open-reading frames (ORFs). ORFlaand
ORFlabencode polyproteins, which are auto-proteolytically processed
into16 non-structural proteins (NSP1-NSP16) that form the replicase-
transcriptase complex (Fig.1a). Thereplicase-transcriptase complex
consists of multiple enzymes, including the papain-like protease
(NSP3), the main protease (NSP5), the NSP7-NSP8 primase complex,
the primary RNA-dependent RNA polymerase (NSP12), a helicase-
triphosphatase (NSP13), an exoribonuclease (NSP14), an endonuclease
(NSP15) and N7- and 2’0-methyltransferases (NSP10 and NSP16)"%%3,
At the 3’ end of the viral genome, as many as 13 ORFs are expressed
from 9 predicted sub-genomic RNAs. These include four structural
proteins: spike (S), envelope (E), membrane (M) and nucleocapsid
(N)®, and nine putative accessory factors**? (Fig. 1a). The SARS-CoV-2
genome is very similar to SARS-CoV. Although both viruses have an
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Fig.1|AP-MS workflow for the identification of SARS-CoV-2-host protein-
proteininteractions.a, SARS-CoV-2genome annotation. The colour intensity
isproportional to the protein sequence similarity with SARS-CoV homologues

ORFlab that encodes the 16 predicted NSPs as well as the four typical
structural proteins of coronaviruses, they differ in their complement of
3’ ORFs:SARS-CoV-2 possesses an ORF3b and ORF10, which have limited
detectable homology to SARS-CoV proteins™'? (Extended Data Fig. 1a).

Mature NSPs, with the exception of NSP3 and NSP16, and all pre-
dicted proteins expressed from other SARS-CoV-2 ORFs (27 proteins
and one mutant) were codon-optimized and cloned into amammalian
expression vector that contained a 2xStrep-tag Il affinity tag that can
be used for affinity-purification-mass spectrometry (AP-MS)-based
proteomics when expressed in HEK-293T/17 cells. High-confidence
interacting proteins were identified using SAINTexpress and MiST
scoring algorithms™?®,

To verify the expression of viral proteins, we performed western
blot using an anti-Strep antibody on the input cell lysate, and with
the exception of NSP4, NSP6, NSP11, and ORF3b, we observed bands
consistent with the predicted protein sizes (24 out of 28 constructs)
(Extended Data Fig.1b). Despite the lack of detection by western blot,
we detected expression of viral peptides NSP4, NSP6 and ORF3b in
the proteomic analysis. The fourth construct not confirmed by west-
ern blot, the small peptide NSP11, had a predicted molecular mass of
4.8kDa (including tag) but an apparent mass of approximately 30 kDa
(Extended Data Fig. 1b).

Alignment of 2,784 SARS-CoV-2 sequences revealed a premature
stop codon at position14 of ORF3bin17.6% of isolates (Extended Data
Fig.1c), and two mutations were also observed that resulted in prema-
ture stop codonsin ORF9c (Extended DataFig.1d). These datasuggest
that ORF3b and ORF9c might not be bona fide SARS-CoV-2 reading
frames, or are dispensable for replication. Pending a comprehensive
evaluation of viral protein expression, we nevertheless proceeded with
the analysis for all possible viral proteins. Out of the 27 bait proteins
(Fig. 1b), the affinity purification of ORF7b showed an unusually high
number of background proteins and was therefore excluded from
protein interaction analysis. We have thus far sent these plasmids to
almost 300 laboratories in 35 countries.

Analysis of SARS-CoV-2-host proteininteractions

Our AP-MS analysis identified 332 high-confidence protein interac-
tions between SARS-CoV-2 proteins and human proteins, observing
correlations between replicate experiments of each viral bait (Pearson’s
R=0.46-0.72) (Extended Data Fig. 2 and Supplementary Tables 1, 2).
We studied the interacting human proteins with regards to their bio-
logical functions, anatomical expression patterns, expression changes
during SARS-CoV-2 infection’ and in relation to other maps of host-
pathogeninteracting proteins™" (Fig. 2a). We analysed each viral pro-
tein for Gene Ontology enrichment (Fig. 2b and Extended Data Fig. 3)
and identified the major cell processes of the interacting proteins,
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(when homologues exist). n=4 structural proteins; n=16 NSPs; n=9 accessory
factors. b, Experimental workflow for AP-MS studies. MS, mass spectrometry;
PPI, protein-proteininteraction.

including lipoprotein metabolism (S), nuclear transport (NSP7) and
ribonucleoprotein complex biogenesis (NSP8). To discover potential
binding interfaces, we enriched for domain families within the inter-
acting proteins of each viral bait (Extended Data Fig. 4). For instance,
DNA polymerase domains are enriched among proteins that interact
with NSP1, and bromodomains and extra-terminal domain (BET) family
domains are enriched among proteins thatinteract with E (Supplemen-
tary Discussion and Supplementary Methods).

Althoughthe celllineused for these AP-MS experiments, HEK-293T/17,
can be infected with the SARS-CoV-2 virus®, it does not represent the
primary physiological site of infection—lung tissue. From 29 human
tissues’, we identified the lung as the tissue with the highest expres-
sion of the prey proteins relative to the average proteome (Fig. 2c).
Consistent with this, the interacting proteins were enriched in the
lung relative to other tissues (Extended Data Fig. 5a), and compared
to overall RefSeq gene expression in the lung (median transcripts per
million (TPM) =3.198), proteins that interacted with SARS-CoV-2 pro-
teins were expressed at a higher level (median TPM =25.52, P=0.0007;
Student’s ¢-test) (Extended Data Fig. 5b), supporting the hypothesis
that SARS-CoV-2 preferentially hijacks proteins that are expressed in
lung tissue.

We also studied the evolutionary properties of the host proteins
bound by SARS-CoV-2 (Supplementary Table 3, Supplementary Meth-
odsand Supplementary Discussion). In addition, we analysed changes
in protein abundance during SARS-CoV-2 infection®. We calculated,
when possible, the correlation between changes in the abundance of
viral proteins and their human interaction partners across four time
points. Interacting pairs typically had stronger correlated changes than
other pairs of viral-human proteins (Fig. 2d) (Kolmogorov-Smirnov
test P=4.8 x107%), indicating that the AP-MS-derived interactions are
relevant for the target tissue and the infection context. We compared
our SARS-CoV-2 interaction map with those of ten other pathogens
(Fig. 2e) and found that West Nile virus?® and Mycobacterium tuber-
culosis® had the most similar host-protein interaction partners. The
association with M. tuberculosisis of particular interest asitalsoinfects
lung tissue.

The interactome reveals SARS-CoV-2biology

Our study highlights interactions between SARS-CoV-2 proteins and
human proteins that are involved in several complexes and biological
processes (Fig. 3). These included DNA replication (NSP1), epigenetic
and gene-expression regulators (NSP5, NSP8, NSP13 and E), vesicle
trafficking (NSP2, NSP6, NSP7, NSP10, NSP13, NSP15, ORF3a, E, M and
ORF8), lipid modification (S), RNA processing and regulation (NSP8
and N), ubiquitin ligases (ORF10), signalling (NSP7, NSP8, NSP13, N
and ORF9b), nuclear transport machinery (NSP9, NSP15 and ORFé6),
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Fig.2|Global analysis of SARS-CoV-2 proteininteractions. a, Overview of
global analyses performed. b, Gene Ontology (GO) enrichment analysis was
performed on the humaninteracting proteins of each viral protein. Pvalues
were calculated by hypergeometric test and afalse-discovery rate was used to
account for multiple hypothesistesting (Methods). The top GO term of each
viral protein was selected for visualization. ¢, Degree of differential protein
expression for the humaninteracting proteins (n=332) across human tissues.
We obtained protein abundance values for the proteome in 29 human tissues
and calculated the median level of abundance for the humaninteracting
proteins (top 16 tissues shown). This was then compared with the abundance
values for the full proteomein each tissue and summarized as a Z-score from
which a Pvalue was calculated. A false-discovery rate was used to account for
multiple hypothesistesting.d, The distribution of the correlation of protein
level changes during SARS-CoV-2infection for pairs of viral-human proteins

cytoskeleton (NSP1and NSP13), mitochondria (NSP4, NSP8 and ORF9c¢)
and the extracellular matrix (NSP9).

Approximately 40% of SARS-CoV-2-interacting proteins were associ-
ated with endomembrane compartments or vesicle trafficking path-
ways. Host interactions with NSP8 (signal recognition particle (SRP)),
ORF8 (protein quality controlin the endoplasmic reticulum), M (mor-
phology of the endoplasmic reticulum) and NSP13 (organization of the
centrosome and Golgi) may facilitate the marked reconfiguration of
endoplasmicreticulum and Golgi trafficking during coronavirus infec-
tion, andinteractions in peripheral compartments with NSP2 (WASH),
NSP6 and M (vacuolar ATPase), NSP7 (Rab proteins), NSP10 (AP2),
E (AP3) and ORF3a (HOPS) may also modify endomembrane compart-
ments to favour coronavirus replication. NSP6 and ORF9c interact
with Sigma receptors that have been implicated in lipid remodelling
and the stress response of the endoplasmic reticulum; these proteins
interact with many human drugs (see ‘Antiviral activity of host-directed
compounds’).

Trafficking into the endoplasmic reticulum and mitochondria may
alsobe affected by the main protease of SARS-CoV-2, NSP5. We identi-
fied one high-confidence interaction between wild-type NSP5and the
epigenetic regulator histone deacetylase 2 (HDAC2), and predicted a
cleavage site between the HDAC domain and the nuclear localization
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(median, whitecircles; interquartile range, black bars) is higher than
non-interacting pairs of viral-human proteins (P=4.8 x10~%; Kolmogorov-
Smirnov test). The violin plots show each viral-human protein correlation for
preys (n=210, minimum =-0.986, maximum = 0.999, quartile (Q)1=-0.468,
Q2=0.396,Q3=0.850) and non-preys (n=54765, minimum=-0.999,
maximum=0.999,Q1=-0.599,Q2=0.006,Q3=0.700). e, Significance of the
overlap of humaninteracting proteins between SARS-CoV-2 and other
pathogens using ahypergeometric test (unadjusted for multiple testing). The
background geneset for the test consisted of all unique proteins detected by
mass spectrometry across all pathogens (n=10,181 proteins). HCV, hepatitis C
virus; HIV, humanimmunodeficiency virus; HPV, human papillomavirus; KSHV,
Kaposi’s sarcoma-associated herpesvirus; Mtb, M. tuberculosis; WNV, West Nile
virus.

sequence of HDAC2 (Extended Data Fig. 6a-d), suggesting that NSP5
may inhibit the transport of HDAC2 into the nucleus and could poten-
tially affect the ability of HDAC2 to mediate the inflammation and
interferon response®*?*, We also identified an interaction between
catalytically dead NSP5(C145A) and tRNA methyltransferase 1(TRMTI),
which is responsible for the dimethylguanosine base modification
(m2,2G) in both nuclear and mitochondrial tRNAs?*. We predict that
TRMTl s also cleaved by NSP5 (Extended Data Fig. 6a-d), leading to
theremoval of its zinc finger and nuclear localization signal and prob-
ably resulting in an exclusively mitochondrial localization of TRMTIL.

SARS-CoV-2interacts withinnate immune pathways

Several innateimmune signalling proteins are targeted by SARS-CoV-2
viral proteins. The interferon pathway is targeted by NSP13 (TBK1 and
TBKBP1), NSP15 (RNF41 (also known as NRDP1)) and ORF9b (TOMM70);
and the NF-kB pathway is targeted by NSP13 (TLE1, TLE3 and TLE5) and
ORF9c (NLRX1, F2RL1and NDFIP2). Furthermore, two other E3 ubiquitin
ligases that regulate antiviral innate immune signalling, TRIM59 and
MIBL, are bound by ORF3a and NSP9, respectively?2,

We also identified interactions between SARS-CoV-2 ORF6 and
the NUP98-RAE1 complex (Fig. 4a), an interferon-inducible mRNA
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host proteins (thin black lines) were curated from CORUM, IntAct, and
Reactome. Aninteractive protein-proteininteraction map canbe found at
kroganlab.ucsf.edu/network-maps. ECM, extracellular matrix; ER,
endoplasmicreticulum; snRNP, small nuclear ribonucleoprotein.n=3
biologicallyindependent samples.
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basic, blue;acidic, red; and hydrophobic, black. d, Putative NUP98-RAE1
interaction motifs. Negatively charged residues (red) surround a conserved
methionine (yellow) inseveral virus species. e, N targets stress granule
proteins.f, Inhibition of casein kinase Il (by silmitasertib or TMCB) disrupts
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nuclear export complex? that is hijacked or degraded by multiple
viruses including vesicular stomatitis virus (VSV), influenza A, Kaposi’s
sarcoma-associated herpesvirus and poliovirus, and is a restriction
factor for influenza A infection®®*. The X-ray structure of the VSVM
protein complexed with NUP98-RAE1* reveals key binding interac-
tions, including a buried methionine residue on the M protein that
packs into a hydrophobic pocket in RAE1, and neighbouring acidic
residues thatinteract with abasic patch on the NUP98-RAE1 complex™.
These features are also present in a conserved motifin the C-terminal
region of SARS-CoV-2 ORF6 (Fig. 4b-d and Extended Data Fig. 7a, b),
providing a structural hypothesis for the observed interaction. ORF6
of SARS-CoV antagonizes host interferon signalling by perturbing
nuclear transport®, and the NUP98-RAE1 interaction with ORF6 may
perform the same function for SARS-CoV-2.

SARS-CoV-2interacts with host translation machinery

Nucleocapsid (N) of SARS-CoV-2 binds to the stress granule proteins
G3BP1and G3BP2, and to other host mRNA-binding proteins includ-
ing the mTOR-regulated translational repressor LARP1, two subunits

interaction of eIF4E with elF4G. Inhibition of eIF4A (zotatifin) may prevent the
unwinding of the viral 5 untranslated region to preventits translation.

h, Targeting the translation elongation factor-1A ternary complex (ternatin-4)
orthe Secé61translocon (PS3061) may prevent viral protein productionand
membraneinsertion, respectively. i, ORF10 interacts with the CUL27Y¢!'®
complex.j, Predicted secondary structure of ORF10. k, ORF10 possibly hijacks
CUL27Y°"Bfor the ubiquitination (Ub) of host proteins, which can be inhibited
by pevonedistat.l, The protein E interacts with bromodomain proteins.

j, Alignment of E proteins from SARS-CoV-2, SARS-CoV and bat-CoV with
histone H3 and NS1 protein of influenza AH3N2. Identical and similar amino
acids are highlighted. m, Bromodomaininhibitors (iBETs) may disrupt the
interactionbetween Eand BRDs. a, f-h, k, n, FDA-approved drugs are shownin
green, clinical candidates are shownin orange and preclinical candidates are
showninpurple.

of casein kinase 2 (CK2), and mRNA decay factors UPF1and MOV10
(Fig. 4e). Manipulation of the stress granule and related RNA biology
is common among Coronaviridae* ¢ and stress granule formation is
thought to be a primarily antiviral response. The promotion of G3BP
aggregation by elF4A inhibitors®** may partially explain their antiviral
activity (see ‘Antiviral activity of host-directed compounds’).

Allcoronavirus mRNAs rely on cap-dependent translation to produce
their proteins, a process enhanced in trans by the SARS-CoV N protein’®,
Key elF4F-cap binding complex constituents—the cap binding protein
elF4E, scaffold protein elF4G and the DEAD-box helicase elF4A—are
candidates for therapeutic targeting of coronaviruses®*°, Therapeutic
targeting (Fig. 4f, g) of viral translation by interfering with the elF4F
complex formation or the interactions between viral proteins N, NSP2
or NSP8and the translational machinery may have therapeutic benefits
(see ‘Antiviral activity of host-directed compounds’).

Cotranslational entry into the secretory pathway is a potential target
for SARS-CoV-2inhibition. Up to ten SARS-CoV-2 proteins are predicted
to undergo insertion into the membrane of the endoplasmic reticu-
lum mediated by the Secé1 translocon, which localizes to SARS-CoV
replication complexes*.. Furthermore, high-confidence interactions
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between NSP8 and three SRP components suggest that the virus hijacks
the Sec61-mediated protein translocation pathway for entry into the
endoplasmic reticulum. Sec61 inhibitors of protein biogenesis such
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as PS3061 (Fig. 4h), which has previously been shown to inhibit other
enveloped RNA viruses***, may also block SARS-CoV-2 replication
and assembly.
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SARS-CoV-2interacts with a Cullin ubiquitin ligase

Viruses commonly hijack ubiquitination pathways for replication and
pathogenesis**. The ORF10 of SARS-CoV-2 interacts with members
of a cullin-2 (CUL2) RING E3 ligase complex (Fig. 4i), specifically the
CUL27¥“"8 complex. ZYG11B s the highest scoring protein in the ORF10

threshold®. g, Dextromethorphanincreases viral titres. Red, viral titre (plaque
assay); black, cell viability. Dataare mean +s.d.; n=3 biologically independent
samples. h, On-target K values for the sigma-1and sigma-2 receptor compared
with the K, values for the hERG ion channel. PB28 and PD-144418 show 500- to
5,000-fold selectivity, whereas chloroquine and hydroxychloroquine have
about30-fold selectivity for these targets. pKivalues for hRERG compared with
sigma-1receptor compared with sigma-2 receptor are: chloroquine (5.5+0.1;
7.1+£0.1;6.3+0.1); hydroxychloroquine (5.6 +0.2; 6.9+ 0.2; 6.0+ 0.1); PB28
(6.0+0.1;8.7+0.1;8.6 +0.1); PD-144418 (5.0 +0.2; 8.7 + 0.1; 6.1+ 0.1); clemastine
(6.8+0.2;8.0+0.1;7.6 £0.1). Dataare mean +s.d.; PB28, clemastine, PD-144418,
n=9biologicallyindependent samples for sigma-land sigma-2 receptors and
hERG; chloroquine, hydroxychloroquine, n= 6 for sigma-1and sigma-2
receptorsandn=4for hERG.

interactome, suggesting that there is a direct interaction between
ORF10 and ZYGI11B. Despite its small size (38 amino acids), ORF10
appearsto contain an a-helical region (Fig. 4j) that may be adoptedin
complexwith CUL27°""®, The ubiquitin transfer to asubstrate requires
neddylation of CUL2 by NEDD8-activating enzyme (NAE), whichisa
druggable target® (Fig. 4k). ORF10 may bind to the CUL2?Y*"® complex
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and hijackit for ubiquitination and degradation of restriction factors,
or alternatively, ZYG11B may bind to the N-terminal glycine in ORF10
to target it for degradation®.

SARS-CoV-2interacts with bromodomain proteins

We found that the transmembrane E protein, whichis probably resident
onthe endoplasmicreticulum-Golgiintermediate compartmentand
Golgi membranes, binds to BRD2 and BRD4 (Fig. 41), members of the
bromodomain and extra-terminal (BET) domain family of epigenetic
readers that bind to acetylated histones to regulate gene transcrip-
tion*®. The C-terminal region of E mimics the N-terminal segment of
histone H3, which is a known interacting partner of bromodomains®.
Notably, this region of E is highly conserved in SARS and bat corona-
viruses, which suggests that it has a conserved function (Fig. 4m). A
similar short peptide motif has also beenidentified in the NS1protein
oftheinfluenza AH3N2 strain, inwhichitinterferes with transcriptional
processes that supportan antiviral response*’*8, Bromodomain inhibi-
torsmight disrupt theinteraction between protein Eand BRDs (Fig.4n).

For a more comprehensive overview of virus-host interactions,
see Supplementary Discussion and Supplementary Methods.

Identification of drugs that target host factors

To disrupt the SARS-CoV-2 interactome, we sought ligands of human
proteins that interact with viral proteins (Methods). Molecules were
prioritized by the MiST score of the interaction between the human and
viral proteins; by their status as approved drugs, investigational drugs
(drugsinclinicaltrials) or as preclinical candidates; by their selectivity;
and by theiravailability (Supplementary Tables 4, 5). Chemoinformat-
ics searches from the [IUPHAR/BPS Guide to Pharmacology (2020-3-
12) and the ChEMBL25 database on the human interactors yielded 16
approved drugs, 3 investigational drugs and 18 pre-clinical candidates
(Supplementary Table 4); and target- and pathway-specific literature
searchrevealed 13 approved drugs, 9 investigational drugs and 10 pre-
clinical candidates (Supplementary Table 5). Of the 332 human targets
that interact with the viral bait proteins with a high-confidence score
(Fig.3), 62 have 69 drugs, investigational drugs or preclinical molecules
that modulate them and can be overlaid on our protein-interaction
network (Fig. 5).

Antiviral activity of host-directed compounds

Wenextinvestigated theantiviralactivity of these drugsand compounds,
using two viral assays (Fig. 6a). First, at Mount Sinai Hospital in New
York, we developed a medium-throughputimmunofluorescence-based
assay (which detects the viral NP protein) to screen 37 compounds for
inhibition of SARS-CoV-2 infection in the Vero E6 cell line. Second, at
the Institut Pasteur in Paris, viral RNA was monitored using quantita-
tive PCRwithreverse transcription (RT-qPCR) after treatment with 44
drugs and compounds. Together, both locations tested 47 of the 69
compounds that we identified, plus 13 to expand testing of the sigma-1
and sigma-2receptors and mRNA translation targets, and 15additional
molecules that had been prioritized by other methods (Methods and
Supplementary Table 6). Viral growth and cytotoxicity were moni-
tored atbothinstitutions (Extended Data Figs. 8,9 and Supplementary
Table 6). Two classes of molecules emerged as effectively reducing
viralinfectivity: proteinbiogenesisinhibitors (zotatifin, ternatin-4 and
PS3061) (Fig. 6b and Extended Data Fig. 9) and ligands of the sigma-1
andsigma-2 receptors (haloperidol, PB28, PD-144418 and hydroxychlo-
roquine, which is undergoing clinical trials in patients with COVID-19
(ClinicalTrials.gov, trialnumber NCT04332991)). We also subsequently
found that the sigma-1- and sigma-2-receptor active drugs clemastine,
cloperastine and progesterone, and the clinical molecule siramesine,
were antiviral drugs (Fig. 6¢c and Extended Data Fig. 9). Median tissue
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cultureinfectious dose (TCIDs,) assays on supernatants frominfected
cells treated with PB28 (90% inhibitory concentration (ICy) = 0.278 uM)
and zotatifin (IC,,=0.037 uM) revealed a more potent inhibition than
was observed in the NP-staining assay (Fig. 6d). Notably, in this assay,
PB28 was around 20 times more potent than hydroxychloroquine
(ICyo=5.78 uM).

To better understand the mechanism by which these inhibitors exert
their antiviral effects, we performed a time course assay in which the
drugs were added at different times before or after infection (Fig. 6e).
Cellswereinfected during asingle cycle of infection at high multiplicity
ofinfection (MOI=2) over the course of 8 h,and the drugs were added
either 2h before infectionorat 0,2 or 4 hafter infection. PB28, zotati-
fin and hydroxychloroquine all decreased the detection of the viral
NP protein evenin this single cycle assay, indicating that the antiviral
effect occurs before viral egress from the cell (Fig. 6e). Furthermore,
allthree moleculesinhibited NP expressionwhen added up to 4 h after
infection, after viral entry has occurred. Thus, these molecules seem
to exert their antiviral effect during viral replication.

Coronaviruses rely on cap-dependent mRNA translation through the
translation machinery of the host. elF4H, which interacts with NSP9,
is a partner of el[F4A, and we observed a strong antiviral effect after
treatment withthe elF4A inhibitor zotatifin (Fig. 6b), whichis currently
inaphase-Iclinical trial for the treatment of cancer. We also observed
potent antiviral effects of the elongation factor-1A (eEF1A) inhibitor
ternatin-4*° (Fig. 6b), which may suggest that the rate of translation
elongation is critical for obtaining optimal levels of viral proteins. Of
note, the eEF1A inhibitor aplidin/plitidepsinis used clinically in patients
with multiple myeloma*®. Multiple SARS-CoV-2 proteins are predicted
toundergo SRP-and Sec61-mediated co-translational insertioninto the
endoplasmic reticulum, and SRP19, SRP54 and SRP72 were identified
as NSP8-interacting proteins (Fig. 3). Consistent with previous studies
of flaviviruses*, the Sec61 inhibitor PS3061 also blocked SARS-CoV-2
replication (Extended DataFig. 9). The two translation inhibitors had
cytostatic effects in uninfected Vero cells, which are immortalized
celllines with indefinite proliferative capacity that have mutationsin
key cell cycle inhibitors. These cells are more sensitive to anti-cancer
compounds, which affect the cell cycle state of immortalized cells
more strongly than non-immortalized cells. A critical question going
forwardis whether these or related inhibitors of viral protein biogenesis
will show therapeutic benefits in patients with COVID-19. Plitidepsin is
currently under consideration by the Spanish Medicines Agency for a
phase-Iltrialin hospitalized patients with COVID-19.

Molecules that target the sigma-1and sigma-2 receptors perturb the
virus through different mechanisms than the translation inhibitors,
which could include the cell stress response®. These molecules are also
active against other aminergic receptors; however, the only targets
shared among all of the tested molecules are the sigma-1and sigma-2
receptors (Fig. 6f), into which these drugs can be readily modelled
(Extended Data Fig. 10a). For instance, the antipsychotic drug halop-
eridol inhibits the dopamine D2 and histamine H1 receptors, whereas
clemastine and cloperastine are antihistamines; each of these drugsis
also aSigmareceptor ligand with antiviral activity (Fig. 6¢). Conversely,
the antipsychotic drug olanzapine, whichalso inhibits histamine Hl and
dopamine D2 receptors, haslittle Sigmareceptor activity and does not
show antiviral activity (Extended Data Fig. 10b). Which of the Sigma
receptorsis responsible for the activity remains uncertain, as does the
role of pharmacologically related targets, such as EBP and related sterol
isomerases, the ligand recognition of which resembles those of the
Sigmareceptors. Notably, the sigma-1-receptor benzomorphan agonist
dextromethorphan has proviral activity (Fig. 6g), further support-
ing therole of these receptors in viral infection. Overall, two features
should be emphasized. First, several of the molecules that target the
Sigmareceptors, such as clemastine, cloperastine and progesterone,
are approved drugs with along history in human therapy. Many other
widely used drugs, which show activity against the Sigma receptors,



remaintobetested; andindeed, several drugs such as astemizole, which
we show is a sigma-2 receptor ligand (with an K; of 95 nM) (Extended
Data Fig. 11), verapamil and amiodarone, have been reported by oth-
ers to be active in viral replication assays, although this has not been
linked to their Sigma receptor activity*>*>. Second, the Sigma receptor
ligands have a clear separation between antiviral and cytotoxic effects
(Fig. 6b, c), and ligands such as PB28 have substantial selectivity for
the Sigma receptors compared with side-effect targets, such as the
hERG ion channel. Indeed, the lack of selectivity of chloroquine and
hydroxychloroquine for hERG (Fig. 6h) and other off-targets (Extended
DataFig.12) may be related to the adverse cardiac drug reactions® that
have limited their use.

Discussion

In this study, we have identified 332 high-confidence SARS-CoV-2
protein-human protein interactions that are connected with multi-
ple biological processes, including protein trafficking, translation,
transcription and regulation of ubiquitination. We found 69 ligands,
including FDA-approved drugs, compounds in clinical trials and pre-
clinicalcompounds, that target these interactions. Antiviral testsin two
different laboratories reveal two broad sets of active drugs and com-
pounds; those that affect translation and those modulate the sigma-1
and sigma-2 receptors. Within these sets are at least five targets and
more than ten different chemotypes, providing a rich landscape for
optimization.

The chemo-proteomic analysis that emerges from this study not
only highlights clinically actionable drugs that target human proteins
in the interactome, but also provides a context for interpreting their
mechanism of action. The potent efficacy of the translation inhibitors
onviralinfectivity—inthe 10 to 100 nM range—makes these molecules
attractive as candidate antiviral agents, and also highlights this path-
way as a point of intervention. Although the mechanism of action of
the drugs that target the sigma-1and sigma-2 receptors remains less
defined, their activity as both anti- and proviral agents is mechanisti-
cally suggestive. The relatively strong efficacy of PB28, at an IC,, of
280 nMintheviraltitre assay, and its high selectivity against off-target
proteins, suggests that molecules of this class may be optimized as
therapeutic agents. Althoughitis unclear whether approved drugs such
as clemastine and cloperastine, which are used as antihistamines and
antitussive drugs, have pharmacokinetics that are suitable for antiviral
therapy, and although they are not free of binding to targets that cause
side effects (Fig. 6f and Extended DataFig. 12), these drugs have been
used for decades. We caution against their use outside of controlled
studies, because of their side-effect liabilities. By the same standard,
we find that the widely used antitussive drug dextromethorphan has
proviral activity and that therefore its use should merit caution and
further study in the context of the treatment of COVID-19. More posi-
tively, there are dozens of approved drugs that show activity against
the Sigmareceptors, not all of which are generally recognized as Sigma
receptor ligands. Many of these drugs remain to be tested asatreatment
for COVID-19; although some have begun to appear in other studies™*.
This area of pharmacology has great promise for the repurposing and
optimization of new agents in the fight against COVID-19.

Our approach of host-directed intervention as an antiviral strategy
overcomes problems associated with drug resistance and may also
provide panviral therapies as we prepare for the next pandemic. Fur-
thermore, the possibilities for cotherapies are expanded—for example,
withdrugs thatdirectly target the virus, including remdesivir—and, as
we demonstrate in this study, there are numerous opportunities for
the repurposing of FDA-approved drugs. More broadly, the pipeline
described here represents an approach for drug discovery not only
for panviral strategies, but also for the research of many diseases, and
illustrates the speed with which science can be moved forward using a
multi-disciplinary and collaborative approach.
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Methods

Genome annotation

The GenBank sequence for SARS-CoV-2 isolate 2019-nCoV/
USA-WA1/2020, accession MN985325, was downloaded on 24 Janu-
ary 2020. In total, we annotated 29 possible ORFs and proteolytically
mature proteins encoded by SARS-CoV-2"*2, Proteolytic products that
result from NSP3- and NSP5-mediated cleavage of the ORFla/ORFlab
polyprotein were predicted on the basis of the protease specificity
of SARS-CoV proteases®, and 16 predicted nonstructural proteins
(NSPs) were subsequently cloned (NSP1-NSP16). For the NSPS5 pro-
tease (3Clike/3CLpro), we also designed the catalytically dead mutant
NSP5(C145A)>"%8, ORFs at the 3’ end of the viral genome annotated in
the original GenBank fileincluded 4 structural proteins:S, E,M, N and
the additional ORFs ORF3a, ORF6, ORF7a, ORF8 and ORF10. On the
basis of the analysis of ORFsin the genome and comparisons with other
annotated SARS-CoV ORFs, we annotated a further four ORFs: ORF3b,
ORF7b, ORF9b and ORF9c.

Cloning

ORFs and proteolytically mature NSPs annotated in the SARS-
CoV-2 genome were human codon-optimized using the IDT codon-
optimization tool (https://www.idtdna.com/codonopt) and internal
EcoRl and BamHI sites were eliminated. Start and stop codons were
added as necessary to NSPs 1-16, a Kozak sequence was added before
each start codon, and a 2xStrep tag with linker was added to either
the N or Cterminus. To guide our tagging strategy, we used GPS-Lipid
to predict protein lipid modification of the termini (http:/lipid.
biocuckoo.org/webserver.php)*¢°, TMHMM Server v.2.0 to predict
transmembrane/hydrophobic regions (http://www.cbs.dtu.dk/
services/TMHMMY/)® and SignalP v.5.0 to predict signal peptides (http://
www.cbs.dtu.dk/services/SignalP/)®2. IDT gBlocks were ordered for
all reading frames with 15-bp overlaps that corresponded to flanking
sequences of the EcoRl and BamHI restriction sites in the lentiviral
constitutive expression vector pLVX-EFlalpha-IRES-Puro (Takara). Vec-
tors were digested and gel-purified, and gene fragments were cloned
using InFusion (Takara). The S protein was synthesized and cloned into
pTwist-EFlalpha-IRES-Puro (Twist Biosciences). NSP16 showed multiple
mutations that could not be repaired before the time-sensitive prepa-
ration of this manuscript, and NSP3 was too large to be synthesized in
time to be included in this study. Strep-tagged constructs encoding
NSP3,NSP3(C857A) (catalytically dead mutant) and NSP16 will be used
in future AP-MS experiments.

Cell culture

HEK-293T/17 cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Corning) supplemented with 10% fetal bovine serum (FBS;
Gibco, Life Technologies) and 1% penicillin-streptomycin (Corning) and
maintained at37 °Cin ahumidified atmosphere of 5% CO,. HEK-293T/17
cellswere procured from the UCSF Cell Culture Facility, now available
through UCSF’s Cell and Genome Engineering Core ((https://cgec.
ucsf.edu/cell-culture-and-banking-services); cell line collection listed
here: https://ucsf.app.box.com/s/6xkydeqhr8a2xesOmbo2333i3k1l
ndqv (CCLZRO076)). STR analysis by the Berkeley Cell Culture Facility
on 8 August 2017 authenticated HEK-293T/17 cells with 94% probabil-
ity. Cells were tested on 3 July 2019 using the MycoAlert Mycoplasma
Detection Kit (Lonza LT07-318) and were negative: B/A ratio <1 (no
detected mycoplasma).

Transfection

For each affinity purification (26 wild-type baits and one catalytically
dead SARS-CoV-2 bait, one GFP control and one empty vector con-
trol), ten million HEK-293T/17 cells were plated per 15-cm dish and
transfected with up to 15 pg of individual Strep-tagged expression
constructs after 20-24 h. Total plasmid was normalized to 15 pg with

empty vector and complexed with PolyJet Transfection Reagent (Sig-
naGen Laboratories) at al:3 pg:pl ratio of plasmid:transfection reagent
based onthe manufacturer’srecommendations. After morethan38h,
cells were dissociated at room temperature using 10 ml Dulbecco’s
phosphate-buffered saline without calcium and magnesium (DPBS)
supplemented with 10 mM EDTA for at least 5 min and subsequently
washed with 10 ml DPBS. Each step was followed by centrifugation at
200g, 4 °C for 5 min. Cell pellets were frozen on dry ice and stored at
—-80 °C. For each bait, n =3 independent biological replicates were
prepared for affinity purification.

Affinity purification

Frozen cell pellets were thawed onice for 15-20 min and resuspended
in 1 ml lysis buffer (IP buffer (50 mM Tris-HCI, pH 7.4 at 4 °C, 150 mM
NaCl,1mM EDTA) supplemented with 0.5% Non-idet P40 substitute
(NP40; Fluka Analytical) and cOmplete mini EDTA-free protease and
PhosSTOP phosphatase inhibitor cocktails (Roche)). Samples were then
frozen on dry ice for 10-20 min and partially thawed at 37 °C before
incubation on a tube rotator for 30 min at 4 °C and centrifugation at
13,000g, 4 °C for 15 min to pellet debris. After reserving 50 pl lysate,
up to 48 samples were arrayed into a 96-well Deepwell plate for affin-
ity purification on the KingFisher Flex Purification System (Thermo
Scientific) as follows: MagStrep ‘type3’ beads (30 pl; IBA Lifesciences)
were equilibrated twice with1 mlwash buffer (IP buffer supplemented
with 0.05% NP40) and incubated with 0.95 ml lysate for 2 h. Beads were
washed three times with 1 ml wash buffer and then once with 1 mI IP
buffer. Todirectly digest bead-bound proteins as well as elute proteins
with biotin, beads were manually suspended in IP buffer and dividedin
half before transferring to 50 pl denaturation-reduction buffer (2 M
urea, 50 mM Tris-HCI pH 8.0,1 mM DTT) and 50 pl 1x buffer BXT (IBA
Lifesciences) dispensed into a single 96-well KF microtitre plate. Puri-
fied proteins were first eluted at room temperature for 30 min with
constant shaking at 1,100 rpm on a ThermoMixer C incubator. After
removing eluates, on-bead digestion proceeded (see ‘On-bead diges-
tion’). Strep-tagged protein expression in lysates and enrichment in
eluates were assessed by western blot and silver stain, respectively.
The KingFisher Flex Purification System was placed in the cold room
and allowed to equilibrate to 4 °C overnight before use. Allautomated
protocol steps were performed using the slow mix speed and the fol-
lowing mix times: 30 s for equilibration and wash steps, 2 h for binding
and 1minforfinalbead release. Three 10-s bead collection times were
used between all steps.

On-bead digestion

Bead-bound proteins were denatured and reduced at 37 °C for 30 min
and after being brought to room temperature, alkylated in the dark
with 3 mM iodoacetamide for 45 min and quenched with3 mM DTT
for 10 min. Proteins were then incubated at 37 °C, initially for 4 hwith
1.5 pltrypsin (0.5 pg/pl; Promega) and then another 1-2 h with 0.5 pl
additional trypsin. To offset evaporation, 15 pul 50 mM Tris-HCI, pH 8.0
were added before trypsin digestion. All steps were performed with
constant shakingat1,100 rpm on a ThermoMixer Cincubator. Result-
ing peptides were combined with 50 pl 50 mM Tris-HCI, pH 8.0 used to
rinse beads and acidified with trifluoroacetic acid (0.5% final, pH <2.0).
Acidified peptides were desalted for MS analysis using a BioPureSPE
Mini 96-Well Plate (20 mg PROTO 300 C18; The Nest Group) according
to standard protocols.

MS data acquisition and analysis

Samples were resuspended in 4% formic acid, 2% acetonitrile solu-
tion, and separated by areversed-phase gradient over aNanoflow C18
column (DrMaisch). Each sample was directly injected viaan Easy-nLC
1200 (Thermo Fisher Scientific) into a Q-Exactive Plus mass spectrom-
eter (Thermo Fisher Scientific) and analysed with a 75 min acquisi-
tion, with allMS1and MS2 spectra collected in the orbitrap; datawere
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acquired using the Thermo software Xcalibur (4.2.47) and Tune (2.11
QF1Build3006). For all acquisitions, QCloud was used to control instru-
ment longitudinal performance during the project®. All proteomic
data were searched against the human proteome (Uniprot-reviewed
sequences downloaded 28 February 2020), the eGFP sequence and
the SARS-CoV-2 protein sequences using the default settings for
MaxQuant (v.1.6.11.0)¢*%. Detected peptides and proteins were fil-
tered to 1% false-discovery rate in MaxQuant, and identified proteins
were then subjected to protein-proteininteraction scoring withboth
SAINTexpress (v.3.6.3)"* and MiST (https://github.com/kroganlab/
mist)>%¢, We applied a two-step filtering strategy to determine the
final list of reported interactors, which relied on two different scoring
stringency cut-offs. In the first step, we chose all protein interactions
that had a MiST score > 0.7, a SAINTexpress Bayesian false-discovery
rate (BFDR) < 0.05 and an average spectral count > 2. For all proteins
that fulfilled these criteria, we extracted information about the stable
protein complexes that they participated in from the CORUM® database
of known protein complexes. In the second step, we then relaxed the
stringency and recovered additional interactors that (1) formed com-
plexes with interactors determined in filtering step 1 and (2) fulfilled
the following criteria: MiST score > 0.6, SAINTexpress BFDR < 0.05
and average spectral counts > 2. Proteins that fulfilled filtering cri-
teriain either step 1 or step 2 were considered to be high-confidence
protein-proteininteractions (HC-PPIs) and visualized with Cytoscape
(v.3.7.1)%8. Using this filtering criteria, nearly all of our baits recovered a
number of HC-PPIsin close alignment with previous datasets reporting
an average of around 6 PPIs per bait®”. However, for a subset of baits
(ORF8,NSP8,NSP13 and ORF9c), we observed amuch higher number
of PPIs that passed these filtering criteria. For these four baits, the MiST
scoring was instead performed using a larger in-house database of 87
baits that were prepared and processed in an analogous manner to this
SARS-CoV-2 dataset. This was done to provide amore comprehensive
collection of baits for comparison, to minimize the classification of
non-specifically binding background proteins as HC-PPIs. All MS raw
data and search results files have been deposited to the ProteomeX-
change Consortiumvia the PRIDE partner repository with the dataset
identifier PXD0181177”, PPI networks have also been uploaded to
NDEX.

GO overrepresentation analysis

The targets of each bait were tested for enrichment of GO biologi-
cal process terms. The overrepresentation analysis was based on
the hypergeometric distribution and performed using the enricher
function of clusterProfiler package in R with default parameters. The
GO terms were obtained from the c5 category of Molecular Signature
Database (MSigDBV6.1). Significant GO terms (1% false-discovery rate)
wereidentified and further refined to select non-redundant terms. To
select non-redundant gene sets, we first constructed a GO term tree
based ondistances (1-Jaccard similarity coefficients of shared genes)
between the significant terms. The GO term tree was cut at a specific
level (h=0.99) to identify clusters of non-redundant gene sets. For a
bait with multiple significant terms belonging to the same cluster, we
selected the broadest term that is, largest gene set size.

Virus interactome similarity analysis

Interactome similarity was assessed by comparing the number of
shared human-interacting proteins between pathogen pairs, using a
hypergeometric test to calculate significance. The background gene
set for the test consisted of all unique proteins detected by MS across
all pathogens (n=10,181 genes).

ORF6 peptide modelling

The proposedinteractionbetween ORF6 and the NUP98-RAE1 complex
was modelled in PyRosetta 4 (release v.2020.02-dev61090)7 using the
crystal structure of VSV matrix (M) protein bound to NUP98-RAE1 as

atemplate® (PDB 40WR; downloaded from the PDB-REDO server?).
The M protein chain (C) was truncated after residue 54 to restrict the
model to the putative interaction motif in ORF6 (M protein residues
49-54,sequence DEMDTH). These residues were mutated to the ORF6
sequence, QPMEID, using the mutate_residue function in the module
pyrosetta.toolbox, without repacking at this initial step. After all six
residues were mutated, the full model was relaxed to a low-energy
conformation using the FastRelax protocol in the module pyrosetta.
rosetta.protocols.relax. FastRelax was run with constraints to starting
coordinates and scored with the ref2015 score function. The result-
ing model was inspected for any large energetic penalties associated
withthe modelled peptide residues or those NUP98 and RAE1 residues
interacting with the peptide, and was found to have none. The model
was visualized in PyMOL (The PyMOL Molecular Graphics System,
v.3.4, Schrodinger).

ORF10 secondary structure prediction
Thesecondary structure of ORF10 was predicted usingJPRED (https://
www.compbio.dundee.ac.uk/jpred/index.html)™.

Protein E alignment

Protein E sequences from SARS-CoV-2 (YP_009724392.1), SARS-CoV
(NP_828854.1) and bat SARS-like CoV (AGZ48809.1) were aligned using
Clustal Omega”, and then manually aligned to the sequences of histone
H3 (P68431) and influenza A H3N2 NS1 (YP_308845.1).

Chemoinformatic analysis of SARS-CoV-2-interacting partners
Toidentify drugs and reagents that modulate the 332 host factors that
interact with SARS-CoV-2 and HEK-293T/17 cells (MiST = 0.70), we used
two approaches: (1) achemoinformatic analysis of open-source chemi-
cal databases and (2) a target- and pathway-specific literature search,
drawing on specialist knowledge within our group. Chemoinformati-
cally, we retrieved 2,472 molecules from the IUPHAR/BPS Guide to
Pharmacology (2020-3-12)* (Supplementary Table 7) that interacted
with 30 human ‘prey’ proteins (38 approved, 71 in clinical trials), and
found 10,883 molecules (95 approved, 369 in clinical trials) from the
ChEMBL25 database’ (Supplementary Table 8). For both approaches,
molecules were prioritized on their FDA approval status, activity at the
target of interest better than 1 uM and commercial availability, draw-
ingonthe ZINC database”. FDA-approved molecules were prioritized
except when clinical candidates or preclinical research molecules had
substantially better selectivity or potency on-target. In some cases,
we considered molecules with indirect mechanisms of action on the
general pathway of interest based solely on literature evidence (for
example, captopril modulates ACE2 indirectly viaits directinteraction
with angiotensin-converting enzyme, ACE). Finally, we predicted 6
additional molecules (2 approved, 1in clinical trials) for proteins with
MIST scores between 0.7 and 0.6 to viral baits (Supplementary Tables 4,
5). Complete methods can be found at https://github.com/momeara/
BioChemPantry/tree/master/vignette/COVID19.

Molecular docking

After their chemoinformatic assignment to the sigma-1receptor, clo-
perastine and clemastine were docked into the agonist-bound state
structure of the receptor (6DK1)”® using DOCK3.77°. The best scoring
configurations thation pair with Glu172 are shown; both L-cloperastine
and clemastine receive solvation-corrected docking scores between
-42 and —43 kcal/mol, indicating high complementarity.

Viral growth and cytotoxicity assays in the presence of
inhibitors

For studies carried out at Mount Sinai, SARS-CoV-2 (isolate
USA-WA1/2020 from BEI RESOURCES NR-52281) was propagated in
Vero E6 cells. Two thousand Vero E6 cells were seeded into 96-well
plates in DMEM (10% FBS) and incubated for 24 h at 37 °C, 5% CO.,.
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Vero E6 cells used were purchased from ATCC and thus authenticated
(VERO C1008 (Vero 76, clone E6, Vero E6) (ATCC CRL-1586); tested
negative for mycoplasma contamination before commencement).
Then, 2 h before infection, the medium was replaced with 100 pl of
DMEM (2% FBS) containing the compound of interest at concentra-
tions 50% greater than those indicated, includinga DMSO control. The
Vero E6 cell line used in this study is a kidney cell line; therefore, we
cannot exclude that lung cells yield different results for some inhibi-
tors (see also ‘Cellsand viruses’, ‘Antiviral activity assays’, ‘Cell viability
assays’ and ‘Plaque-forming assays’ for studies carried out at Institut
Pasteur). Plates were then transferred into the Biosafety Level 3 (BSL3)
facility and 100 PFU (MOI = 0.025) was added in 50 pl of DMEM (2%
FBS), bringing the final compound concentration to those indicated.
Plates were then incubated for 48 h at 37 °C. After infection, superna-
tants were removed and cells were fixed with 4% formaldehyde for
24 h before being removed from the BSL3 facility. The cells were then
immunostained for the viral NP protein (anti-sera produced in the
Garcia-Sastre laboratory; 1:10,000) with a DAPI counterstain. Infected
cells (488 nM) and total cells (DAPI) were quantified using the Celigo
(Nexcelcom) imaging cytometer. Infectivity ismeasured by the accumu-
lation of viral NP protein in the nucleus of the Vero E6 cells (fluorescence
accumulation). Percentage infection was quantified as ((infected cells/
total cells) - background) x 100 and the DMSO control was then set to
100%infection for analysis. The ICs,and IC,, for each experiment were
determined using the Prism (GraphPad) software. For some inhibitors,
infected supernatants were assayed for infectious viral titres using
the TCID,, method. For this, infectious supernatants were collected
at 48 h after infection and frozen at —80 °C until later use. Infectious
titres were quantified by limiting dilution titration on Vero E6 cells. In
brief, Vero E6 cells were seeded in 96-well plates at 20,000 cells per
well. The next day, SARS-CoV-2-containing supernatant was applied at
serial tenfold dilutions ranging from 107 to 10 ° and, after 5 days, viral
cytopathogenic effect was detected by staining cell monolayers with
crystalviolet. The TCIDs,/ml values were calculated using the previously
described method®. Cytotoxicity was also performed using the MTT
assay (Roche), according to the manufacturer’s instructions. Cytotox-
icity was performed in uninfected VeroE6 cells with same compound
dilutions and concurrent with viral replication assay. All assays were
performed in biologically independent triplicates.

Cellsand viruses

For studies at the Institut Pasteur, African green monkey kidney epithe-
lial Vero E6 cells (ATCC, CRL-1586, authenticated by ATCC and tested
negative for mycoplasma contamination before commencement (Vero
76, clone E6, Vero E6) (ATCC CRL-1586)) were maintained in a humidi-
fied atmosphere at 37 °C with 5% CO,, in DMEM containing 10% (v/v)
FBS (Invitrogen) and 5 units/ml penicillin and 5 pg/ml streptomycin
(Life Technologies). The Vero E6 cell line used in this study is a kidney
cell line; therefore, we cannot exclude that lung cells yield different
results for some inhibitors (see also ‘Viral growth and cytotoxicity
assays in the presence of inhibitors’ for studies performed at Mount
Sinai). SARS-CoV-2, isolate France/IDF0372/2020, was supplied by
the National Reference Centre for Respiratory Viruses hosted by the
Institut Pasteur and headed by S. van der Werf. The human sample from
which strain BetaCoV/France/IDF0372/2020 was isolated has been
provided by X. Lescure and Y. Yazdanpanah from the Bichat Hospital,
Paris, France. The BetaCoV/France/IDF0372/2020 strain was supplied
through the European Virus Archive goes Global (Evag) platform, a
project that has received funding from the European Union’s Horizon
2020 research and innovation programme under the grant agree-
ment no. 653316. Viral stocks were prepared by propagation in Vero
E6 cellsin DMEM supplemented with 2% FBS and 1 pg/mlI TPCK-trypsin
(Sigma-Aldrich). Viral titres were determined by plaque-forming assay
inminimum essential medium supplemented with 2% (v/v) FBS (Invit-
rogen) and 0.05% agarose. All experiments involving live SARS-CoV-2

were performed at the Institut Pasteur in compliance with the guide-
lines of the Institut Pasteur following BSL3 containment procedures
in approved laboratories. All experiments were performed in at least
three biologically independent samples.

Antiviral activity assays

Vero E6 cells were seeded at 1.5 x10* cells per well in 96-well plates 18 h
beforethe experiment. Then, 2hbeforeinfection, the cell-culture super-
natantof triplicate wells was replaced with medium containing 10 pM,
2uM,500nM,200nM, 100 nM or 10 nM of each compound or the equiv-
alent volume of maximum DMSO vehicle used as a control. At the time
of infection, the drug-containing mediumwas removed, and replaced
with virus inoculum (MOI of 0.1 PFU per cell) containing TPCK-trypsin
(Sigma-Aldrich). Following a1-h adsorption incubation at 37 °C, the
virusinoculumwas removed and 200 pl of drug- or vehicle-containing
medium was added. Then, 48 hafter infection, the cell-culture super-
natant was used to extract RNA using the Direct-zol-96 RNA extraction
kit (Zymo) following the manufacturer’s instructions. Detection of
viralgenomesin the extracted RNA was performed by RT-qPCR, using
previously published SARS-CoV-2-specific primers®. Specifically, the
primers target the Ngeneregion: 5-TAATCAGACAAGGAACTGATTA-3’
(forward) and 5-CGAAGGTGTGACTTCCATG-3’ (reverse). RT-qPCR was
performed using the Luna Universal One-Step RT-qPCRKit (NEB) inan
Applied Biosystems QuantStudio 6 thermocycler, using the following
cycling conditions: 55 °C for 10 min, 95 °C for 1 min, and 40 cycles of
95°Cfor10s, followed by 60 °C for 1 min. The quantity of viral genomes
is expressed as PFU equivalents, and was calculated by performing a
standard curve with RNA derived froma viral stock with a known viral
titre.Inaddition to measuring viral RNA in the supernatant derived from
drug-treated cells, infectious virus was quantified by plaque-forming
assay.

Cell viability assays

Cellviability in drug-treated cells was measured using Alamar blue rea-
gent (ThermoFisher). Inbrief, 48 hafter treatment, the drug-containing
medium was removed and replaced with Alamar blue and incubated
for1hat37 °C and fluorescence measured in a Tecan Infinity 2000
platereader. Percentage viability was calculated relative to untreated
cells (100% viability) and cells lysed with 20% ethanol (0% viability),
includedin each plate.

Plaque-forming assays

Viruses were quantified by plaque-forming assays. For this, Vero E6
cells were seeded in 24-well plates at a concentration of 7.5 x 10* cells
per well. The following day, tenfold serial dilutions of individual virus
samples in serum-free MEM medium were added to infect the cells at
37 °Cfor1h. After the adsorption time, the overlay mediumwas added
at final concentration of 2% FBS/MEM medium and 0.05% agarose to
achieve a semi-solid overlay. Plaque-forming assays were incubated
at 37 °C for 3 days before fixation with 4% formalin and visualization
using crystal violet solution.

Off-target assays for Sigmareceptor drugs and ligands

hERG binding assays were carried out as previously described®. In
brief, compounds were incubated with hERG membranes, prepared
from HEK-293 cells stably expressing hERG channels, and [*H]dofeti-
lide (5 nM final) in a total of 150 pl for 90 min at room temperature in
the dark. Reactions were stopped by filtering the mixture onto a glass
fibre and were quickly washed three times to remove unbound [*H]
dofetilide. The filter was dried in a microwave, melted with a scintil-
lant cocktail and wrapped in a plastic film. Radioactivity was counted
on a MicroBeta counter and results were analysed in Prism by fitting
to the built-in one binding function to obtain affinity K;. Radioligand
binding assays for the muscarinic and alpha-adrenergicreceptors were
performedas previously described®. Detailed protocols are available
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onthe NIMH PDSP website at https://pdspdb.unc.edu/html/tutorials/
UNC-CH%20Protocol%20Book.pdf.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The AP-MS raw data and searchresults files generated during the cur-
rent study are available in the ProteomeXchange Consortium via the
PRIDE partner repository with dataset identifier PXD018117 (https://
www.ebi.ac.uk/pride/archive/projects/PXD018117) and PPI networks
have also been uploaded to NDEXx (https://public.ndexbio.org/#/
network/43803262-6d69-11ea-bfdc-Oacl35e8bacf). An interactive
version of these networks, including relevant drug and functional infor-
mation, can be found at http://kroganlab.ucsf.edu/network-maps. All
datagenerated or analysed during this study areincludedinthearticle
and its Supplementary Information. Expression vectors used in this
study are readily available from the authors to biomedical research-
ers and educators in the non-profit sector. Source data are provided
with this paper.

Code availability

Complete methods for chemoinformatic analysis can be found on
GitHub (https://github.com/momeara/BioChemPantry/tree/master/
vignette/COVID19); details on MIST scoring can be found on GitHub
(https://github.com/kroganlab/mist).
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a Seq. Similarity (to
Protein Mol. Weight (kDa) SARS-CoV) Description
Nsp1 19.8 91.1% Suppress host antiviral response
Nsp2 70.5 82.9% Unknown
Nsp3 217.3 86.5% Nsp3-Nsp4-Nsp6 complex involved in viral replication
Nsp4 56.2 90.8% Nsp3-Nsp4-Nsp6 complex involved in viral replication
Nsp5 33.8 98.7% 3C-like protease
Nsp6 33.0 94.8% Nsp3-Nsp4-Nsp6 complex involved in viral replication
Nsp7 9.2 100.0% Nsp7-Nsp8 complex is part of RNA polymerase
Nsp8 21.9 99.0% Nsp7-Nsp8 complex is part of RNA polymerase
Nsp9 12.4 98.2% Unknown
Nsp10 14.8 99.3% Essential for Nsp16 methyltransferase activity
Nsp11 1.3 92.3% Unknown
Nsp12 106.7 98.3% RNA polymerase
Nsp13 66.9 100.0% Helicase/triphosphatase
Nsp14 59.8 98.7% 3-5' exonuclease
Nsp15 38.8 95.7% Uridine-specific endoribonuclease
Nsp16 333 98.0% RNA-cap methyltransferase
S 141.2 87.0% Spike protein, mediates binding to ACE2
Orf3a 31.1 85.1% Activates the NLRP3 inflammasome
Orf3b 6.5 9.5% Unknown
E 8.4 96.1% Envelope protein, involved in virus morphogenesis and assembly
M 25.1 96.4% Membrane glycoprotein, predominant component of the envelope
Orfé 7.3 85.7% Type | IFN antagonist
Orf7a 137 90.2% Unknown
Orf7b 52 84.1% Unknown
Orf8 13.8 45.3% Unknown
N 45.6 94.3% Nucleocapsid phosphoprotein, binds to RNA genome
Orfob 10.8 84.7% Suppress host antiviral response
Orfoc 8.0 78.1% Unknown
Orf10 44 - Unknown
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Extended DataFig.1|Mutationsin overlapping coding regionsresultin
premature termination of ORF3aand ORF9c. a, Table of the SARS-CoV-2
proteins, including molecular mass, sequence similarity with the SARS-CoV
homologue andinferred function based onthe SARS-CoV homologue.b,
Immunoblot detection of 2xStrep tag demonstrates expression of each baitin
inputsamples, asindicated by thered arrowheads. For each bait, input from
oneofthethreereplicates prepared and affinity purified for mass
spectrometry was used for westernblot (n=1). For gel source data, see

SupplementaryFig. 1. ¢, Schematic of ORF3a (light green) and ORF3b (dark
green) overlapping regions. A premature stop codonin ORF3b at position 14
(E14*) corresponds to a Q57H mutationin ORF3a.d, Schematic of the N (red),
ORF9b (green) and ORF9c (green) overlapping regions. Two mutationsintheN
protein (S194L and S197L) correspond to premature stop codons at positions 41
and 44 in ORF9c. The analysisisbased on 2,784 sequences obtained from
GISAID on 4 April 2020.
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Extended DataFig.2|Clustering analysis of the AP-MS dataset reveals
good correlation betweenbiological replicates of individual baits. All
AP-MS runs (n=3biologicallyindependent samples) were compared and
clustered using artMS8*. All Pearson’s pairwise correlations between MS runs
areshownand are clustered according to similar correlation patterns.
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Correlation betweenreplicates for individual baits ranges from 0.46t00.72,
and in most cases the experiments corresponding to each bait cluster together,
withthe exception of a few baits with lower numbers of specific hostinteractions
(forexample, E,NSP2, ORF6, ORF3aand ORF3b).
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Extended DataFig. 3 | Enrichment of GO biological processes for SARS- proteinand the top five most significant terms for each viral protein are shown.

CoV-2hostfactors. We performed GO biological process enrichmentanalyses  The Pvalues were calculated using a hypergeometric test and a false-discovery
(Methods) for the host factorsidentified as binding to each SARS-CoV-2 viral rate was used to account for multiple-hypothesis testing.
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Extended DataFig. 4 | Enrichment of Pfam protein families for SARS-CoV-2
hostfactors. The enrichments of individual protein family domains fromthe
Pfam database® was calculated using a hypergeometric test, for which success
isdefined as the number of domains, and the number of trials is the number of
individual preys that were affinity purified with each viral bait. The population
values were the numbers of individual Pfam domains in the human proteome.

SARS-CoV-2 protein as AP-MS bait

protein.
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The Pvalues were not adjusted for multiple testing. To make sure that the
Pvalues thatindicated enrichment were meaningful, we only considered Pfam
domains that have been affinity purified at least three times with any
SARS-CoV-2 proteinand that occurred in the human proteome at least five
times. Here, we show Pfam domains with the lowest Pvalue for agiven viral bait
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Extended DataFig.5|Lung mRNA expression and specificity of SARS-CoV-
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inlungexpression and show how most SARS-CoV-2-interacting proteins tend to
beenrichedinthelung.b, Gene expressioninthe lung of the high-confidence
human-interacting proteins was observed to be higher compared to all other
proteins. Blue, interacting proteins (n =332, median=25.52 TPM); grey, all
other proteins (n=13,583, median=3.198 TPM). P=0.0007 using a Student’s
t-test.
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- R Ll RN AN L LR o P 58385
Sequence position
b Reference sequence (1): ref|YP 009724394.1
Identities normalised by aligned length.
cov pid 1 [ . 5 - : K .] 61
1 ref|YP _009724394.1 100.0% 100.0% MFHLVDFQVTIAEILLIIMRTFKVSIWNLDYIINLIIKNLSKSLTENKYSQLDEEQPMEID
2 gb|QIG55989.1 100.0% 98.4% MFHLVDFQVTIAEILLIIMRTFKVSIWNLDYIINLIIKNLSKSLTVNKYSQLDEEQPMEID
3 gb|AVP78035.1 100.0% 93.4% MFHLVDFQVTIAEILLIIMRTFKVSIWNLDYIINLIIKNLSKPPTENNCSQLDEEQPMEID
4 gb|AGZ48837.1 100.0% 73.8% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDMIISSIVRQLFKPLTKNKYSELDDEEPMEID
5 gb|ALK02462.1 100.0% 72.1% MFHLVNFQVTIAEILIIIMRTFRIAIWNLDMIISSIVRQLFKPLTKNKYSELDDEEPMEID
6 gb|ACU31045.1 100.0% 70.5% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKKYSELDDEEPMELD
7 gb|AGZ48811.1 100.0% 70.5% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDMIISSIVRQLFKPLTKKKYSELDDEEPMELD
8 gb|ABD75318.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVLISSIVRQLFKPLTKKKYPQLDDEEPMELD
9 gb|AS066813.1 100.0% 67.2% MFHLVDFQVTIAEMLIIIMRTFRIAIWNLDVLISSIVRQLFKPLTKKKYPQLDDEEPMELD
10 sp|Q0Q471.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMKTFRVAIWNLDILISSIVRQLFKPLTKKKYSELDDEEPMELD
11 gb|AHX37562.1 100.0% 70.5% MFHLVDFQVTIAEILIIIMRTFKIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEEPMEIE
12 ref|NP 828856.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEEPMELD
13 gb|AT098150.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDMIISSIVRQLFKPLTKKNYSELDDEEPMELD
14 gb|AEA11018.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLLKPLTKKNYSELDDEEPMELD
15 gb|AT098137.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMRTFRITIWNLDMIISSIVRQLFKPLTKKNYSELDDEEPMELD
16 gb|AT098186.1 100.0% 68.9% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDIIISSIVRQLFKPLTKKNYSELDDEEPMELD
17 gb|AAS01069.1 100.0% 67.2% MFHLVDFQVTVAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEEPMELD
18 gb|ACZ71831.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVVISSIVRQLFKPLTKKNYSELDDEEPMELD
19 gb|AAP72979.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEEPMELB
20 gb|ARO76386.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVLISSIVRQLFKPLTKKNYSELDDEEPMELD
21 gb|AKZ19091.1 100.0% 70.5% MFHLVDFQVTIAEILVIIMRTFRIAIWNLDMITSSIVTQLFKPLTKKKYSELDDEVPMEID
22 gb|AT098162.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDMIISSIVRQLFKPLTKKNYPELDDEEPMELD
23 gb|ACZ72113.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEEPMKLD
24 sp|Q3Lzx8.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMKTFRVAIWNLDILISSIVRQLFKPLTKKNYSELDDEEPMELD
25 gb|AKZ19080.1 100.0% 70.5% MFHLVDFQVTIAEILVIIMRTFRIAIWNLDMITSSIVTQLFKPLTKKKYSELDDEVPMEID
26 gb|AGT21083.1 100.0% 67.2% MFHLVDFQVTIAEISIIIMRTFRIAIWNLDVIISSIVRQLLKPLTKKNYSELDDEEPMELD
27 gb|ANA96032.1 100.0% 65.6% MFHLVDFQVTIAEMLIIIMRTFRIAILNLDVLISSIVRQLFKPLTKKKYPQLDDEEPMELD
28 gb|AAP30035.1 100.0% 67.2% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEELMELD
29 gb|AIA62282.1 100.0% 62.3% MFHLVDFQVTIAEMLIIIMRTFRIAILDLDVLISSIVRQSFKPLTKKKYPQLDDEEPMELD
30 gb|AIA62334.1 82.0% 68.0% MFHPVDFQVTIAEILIIIMRTFRIAIWNLDVIISSIVRQLFKPLTKKNYS --——--=—===
31 gb|AP040583.1 100.0% 50.8% MFSLVEFQVTIAELLIIIMRSLGIGLVQFQIRMIALLKIISKHLDRNQHSKLDEEVPMEID
32 dbj|BAC81367.1 49.2% 86.7% MFHLVDFQVTIAEILIIIMRTFRIAIWNLD - === === === === — — oo o m oo
33 ref|YP 003858588.1 98.4% 47.5% MFSLVAFQVTVAELLILIMKSFGLALTHIQIGIVSLLKILTNRL-DRRYSKLDEEEPMEID
34 gb|ARS44598.1 65.6% 55.0% = ——mmmmmmmmmmmmmmmeeo FRIAIWNLDVIISSIVRQLFKPLTKKNYSELDDEEPMELD
35 gb|AAS44653.1 65.6% 55.0% = ——mmmmmmmmmmmm—mmemeo FRIAIWNLDVIISSIVRQLFKPLTKKNYSKLDDEEPMELD
consensus/100% e e e htlslhphp. . ..ottt ittt eeeeeenen
consensus/90% MFpLVsFQVT1AEhL1IIM+oF+1uIhNLDhlhs.Il+pL.KsLTcppYspLD-E.PMEl-
consensus/80% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDh1ISSIV+QLhKPLTK+pYSpLDDEpPMELD
consensus/70% MFHLVDFQVTIAEILIIIMRTFRIAIWNLDh1ISSIVRQLFKPLTKKpYScLDDEEPME1D
Extended DataFig.7|Consensus analysis of SARS-CoV-2 ORF6 sequences. Coloursindicated chemical properties of amino acids: polar (G, S,
homologues. a, Sequence logo of SARS-CoV-2 ORF6 homologues, showing T,Y, C; green), neutral (Q, N; purple), basic (K, R, H; blue), acidic (D, E; red) and
sequence conservation at each position computed from a multiple-sequence hydrophobic (A,V,L,1,P,W, F, M; black). b, Multiple-sequence alignment of
alignment of 35 sequences. The key methionine M58, and the acidic residues SARS-CoV-2 ORF6 homologues. The query sequence is shown at the top
ESS5,ES9 and D61 of the putative NUP98-RAE1-binding motif are showntobe (sequencel, ref|[YP_.009724394.1). Sequence coverage (cov) and percentage

highly conserved. Homology was determined from alignments to full-length identity (pid) are shown for each homologous sequence.
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Extended DataFig. 8| Viral growth and cytotoxicity for compounds tested
inNew York. Viralgrowth (percentage infection; red) and cytotoxicity (black)
results for compounds tested at Mount Sinaiin New York. TCID;, assay results
(green) for zotatifin, hydroxychloroquine and PB28 are also shown. Zotafitin

and midostaurin were tested intwo independent experiments and dataare
shownintwoindividual panels. Dataare mean +s.d.; n=3biologically
independent samples. The full datasetis available in Supplementary Table 6.
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Extended DataFig. 9| Virus plaque assays, qRT-PCR and cell viability for
compounds tested in Paris. Plaque assay (viral titre; red), QRT-PCR (viral RNA;
blue) and cell viability (Alamar blue; black) results for compounds tested at the
Pasteur Institute in Paris. PF-846 was tested in two independent experiments

SN W A O SN W s 0o N R R N ) AN Wwhs OO N R NI SN W s oo SN WA AN W h o SN WA OO

SN WA OO

4E2RCat 4EGI1 Compound 10 Compound 2 dBET6 Midostaurin
SRR || eenss | | B5aEE || s Forthes]
Mz1 Pazopanib PS3061 Tomivosertib PF-846 Ternatin 4
L S ik S S e SSes
Rapalink-1 Rapamycin INK128 Zotatifin Daunorubicin Lisinopril
l\'\"‘a—; \.\wv*,
RS-PPCC Loratadine PD-144418 Nafamostat Apicidin Camostat

= i

=t

I

=S ol

== el

Valproic acid

= 8 =

RVX-208

e 22

PB28

e

Minoxidil sulfate

e

1-Deoxynojirimycin

i

CPI-0610

ll‘iéﬁ%ﬂg!

Metformin

et

Ruxolitinib

Pﬁ%

Ja1

E-52862

iy

Captopril

L

PF-846

g

ABBV-744 ML240 Mycophenolic acid XL413 H-89 Chloramphenicol

Ribavirin Merimepodib Dextromethorphan AC-55541 AZ3451 Ponatinib
Cloperastine Clemastine Verapamil Indomethacin Bafilomycin A1 Haloperidol
Progesterone Ifenprodil Carbetapentane Siramesine BD1008 Brivudine

i

=

Log, [Drug] (M)

9 8 7 6 5
Log,[Drug] (M)

-#- Viral Titer (Plaque Assay)

Log, [Drug] (M)

and dataareshownintwoindividual panels. Dataare mean+s.d.; for virus

&~ Viral RNA (qRT-PCR)

9 8 -7 6 5
Log, [Drug] (M)

9 8 7 6 5
Log,[Drug] (M)

~@- Cell Viability (Alamar Blue)

9 8 7 6 5
Log,[Drug] (M)

plaque assay and RT-qPCR, n=3 biologically independent samples for

drug-treated cells, n=5for PS3061, n= 6 for DMSO controls; for cell viability,
n=6biologicallyindependent samples for drug-treated cellsand DMSO
controls. The full datasetis availablein Supplementary Table 6.
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Extended DataFig.10|Activity of sigmaligands. a, The drugs cloperastine
and clemastine can be readily fitinto the agonist-bound structure of the
sigma-1receptor.b, Compoundstested for antiviral activity with annotated
sigma-1receptor and/or sigma-2 receptor (alsoknown as TMEM97) activity are
shown. Inhibition pICs, values of SARS-CoV-2 infection are shown from blue to
yellow, mode of functional activity at the sigma-1receptor is shown by mark
shape (upwards triangle, agonist; downwards triangle, antagonist; circle,

. . b Activity at Sigma Receptors versus Viral Inhibition
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binding), and pKi values for the sigma-1receptor and sigma-2 receptor are
shownalongthe xandyaxes. We have not yet tested chloroquine for antiviral
activity. Binding of E-52862 at the sigma-2 receptoris reported to be greater
than1pM. Activities of pimozide and olanzapine at the sigma-2 receptor have
notbeenreported. Activity of olanzapine at the sigma-1receptoris reported to

begreater than5puM.
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Extended DataFig.11|Astemizoleis apotentsigma-2receptorligand. a,b, Concentration-response curves of astemizole fromradioligand displacement
assays for the sigma-2 (a; K;=95nM) and the sigma-1 (K;=1.3 pM) receptors are shown. Dataare mean + s.e.m.; n=4 independent assays for each receptor.
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Clemastine 6.77+0.05 632+0.08 665+0.08 7.70+0.03 693 +0.11 7.25+0.04 7.27+0.18 7.56+0.06

Extended DataFig.12| Off-target activities for characteristic Sigma
receptor ligands. Dose-response curves against a panel of eight targets that
can confer adverse cardiac responses, respiratory difficulties and dry-mouth

effects for chloroquine, hydroxychloroquine, PB28, PD-144418 and clemastine.

Theseresults are not meant torepresent or replaceacomprehensive test
against off-target panels, as might commonly be assayed in drug progression
for clinical use. The eight targets include the alpha-2A adrenergic receptors:

alpha2A (encoded by ADRA2A), alpha 2B (encoded by ADRA2B), and alpha 2C
(encoded by ADRA2C); as well as the muscarinic acetylcholine receptors: M1
(encoded by CHRMI), M2 (encoded by CHRM2), M3 (encoded by CHRM3), M4
(encoded by CHRM4) and M5 (encoded by CHRMS).Dataaremean+s.d.;n=3
biologicallyindependentsamples. The table summarizes the fitted pKi values
forthe five ligands at the eight targets.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection All MS data was acquired on a Thermo Fisher Scientific Q-Exactive Plus mass spectrometer using the Thermo software Xcalibur (4.2.47)
and Tune (2.11 QF1 Build 3006).

Data analysis Raw mass spectrometry data were searched using MaxQuant (version 1.6.11.0) and scored using MIST (available at https://github.com/
kroganlab/mist) and SAINT (version 3.6.3). Custom scripts were designed to map interacting proteins to drugs and compounds (avaialble
at https://github.com/momeara/BioChemPantry/tree/master/vignette/COVID19). Data on virus assays were analyzed using GraphPad
Prism version 7.00 for Mac (GraphPad Software, La Jolla California USA, www.graphpad.com). High-confidence protein-protein
interactions were visualized using Cytoscape version 3.7.1. The over-representation analysis (ORA) was performed using the enricher
function of clusterProfiler package in R with default parameters. Protein E sequences were aligned using Clustal Omega (https://
www.ebi.ac.uk/Tools/msa/clustalo/).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data availability: The mass spectrometry raw data and search results files generated during the current study are available in the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier PXD018117 (https://www.ebi.ac.uk/pride/archive/projects/PXD018117) and PPI networks have also been
uploaded to NDEx (https://public.ndexbio.org/#/network/43803262-6d69-11ea-bfdc-Oac135e8bacf). All data generated or analyzed during this study are included
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in this published article (and its supplementary information files).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size It is an accepted practice in the field of large-scale interactomics (via AP-MS), that biological triplicate measurements are sufficient for
measuring high confidence interactions using the methods and software performed in this study. At least three biological replicates were
independently prepared for affinity purification.

All antiviral experiments at Mount Sinai were performed in triplicate.

For experiments performed at the Institut Pasteur: A sample size of n=3 was chosen for each treatment assessing the effect of drug treatment
on viral RNA and infectious units following infection in pre-treated cells. In control-treated cells, n=6. This sample size was chosen as it is
sufficient in medium-throughput screening in order to identify differences in viral replication vitro following drug treatment compared to
control conditions. A sample size of n=6 was chosen for assessing the effect of drug treatment on cell viability (alamar blue). This was because
this larger sample size enabled us to identify any outliers.

Data exclusions  On cell viability assays performed at the Institut Pasteur, replicates were excluded if they were considered outliers (if cell viability was
significantly different compared to other replicates). No other data were excluded from the study.

Replication Reproducibility between bioreplicates can be measured by the degree of variance explained by matching LC-MS feature identifications
(peptide and charge) between replicates. We used standard artMS procedures. First, LC-MS features were identified and quantified by
MaxQuant in each LC-MS run. Next, the strength of effect was measured as a correlation coefficient (Pearson’s r) between each pair of LC-MS
runs, pairing individual feature intensities between runs by their peptide and charge identifications. Correlation patterns between LC-MS runs
from biological replicates are clustered here along the x and y axes, showing both high correlation coefficients (near 1.0) as well as a trend for
most same-bait replicates to cluster by similarity with each other, indicating consistent and bait-specific results.
For virus assays, all finding were replicated a minimum of 2 times at Mount Sinai. At the Institut Pasteur, drug screening of positive hits were
confirmed by replication of the experiment at least once.

Randomization  Sample randomization is not relevant to our study because experimental groups do not exist. Moreover, AP-MS samples were processed and
collected on the same instruments in a short time frame (roughly 3 weeks time). Therefore instrument performance did not have time to
drift. QCloud was used to control instrument longitudinal performance during the project.

Blinding Blinding is not relevant to the AP-MS data because our data are acquired and processed systematically with established scoring algorithms,
excluding human bias. For viral assays at Institut Pasteur, Investigators were blinded to group allocation by defining each drug with a number.
The name of each drug (numbered 1 to 66) were not revealed to investigators during the screening. Additionally, different investigators were
involved at different stages of the process (pre-treatment, infection, data collection, analysis).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|X| Antibodies |X| |:| ChiIP-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology |Z| |:| MRI-based neuroimaging

Animals and other organisms

X
0
0
0

Human research participants

XXXNX[O S

[] clinical data

Antibodies

Antibodies used Anti-strep antibody, Qiagen # 34850 (1:2,500). Anti-mouse-HRP conjugate, BioRad # 1706516 (1:20,000)
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Poly-clonal anti-SARS-CoV-NP antisera produced in a single rabbit, Garcia-Sastre lab at Mount Sinai (1:10,000). Due to the
current shelter-in-place order we were unable to identify the lot numbers of commercially available antibodies.

Validation Use of the anti-strep antibody and anti-mouse HRP conjugate by western blot only detects signal in cell lysate from cells
expressing Strep-tagged fusion proteins.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK-293T/17 cells were procured from the UCSF Cell Culture Facility, now available through UCSF's Cell and Genome
Engineering Core (https://cgec.ucsf.edu/cell-culture-and-banking-services); cell line collection listed here: https://
ucsf.app.box.com/s/6xkydeghr8a2xesOmbo2333i3k1Indqv (CCLZRO76) . Vero E6 cells used at Mount Sinai and Institut
Pasteur were purchased from ATCC (VERO C1008 [Vero 76, clone E6, Vero E6] (ATCC® CRL-1586™))

Authentication STR analysis by the Berkeley Cell Culture Facility on August 8, 2017 authenticates our HEK-293T/17 cells with 94% probability.
The African green monkey kidney epithelial Vero E6 (ATCC CRL-1586) is derived from ATCC, and thus is already
authenticated.
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Mycoplasma contamination Cells were tested on July 3, 2019 using the MycoAlertTM Mycoplasma Detection Kit (Lonza LT07-318) and were negative: B/A
ratio < 1 (no detected mycoplasma).
Vero E6 cells: The cell line was tested for mycoplasma contamination prior to commencement of experiments and was
negative.

Commonly misidentified lines No commonly misidentified cell lines were used in this study.
(See ICLAC register)
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