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A SARS-CoV-2 protein interaction map 
reveals targets for drug repurposing

A newly described coronavirus named severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 
(COVID-19), has infected over 2.3 million people, led to the death of more than 
160,000 individuals and caused worldwide social and economic disruption1,2. There 
are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor 
are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop 
drugs and vaccines are hampered by the limited knowledge of the molecular details of 
how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 
SARS-CoV-2 proteins in human cells and identified the human proteins that physically 
associated with each of the SARS-CoV-2 proteins using affinity-purification mass 
spectrometry, identifying 332 high-confidence protein–protein interactions between 
SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human 
proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved 
by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical 
compounds). We screened a subset of these in multiple viral assays and found two sets 
of pharmacological agents that displayed antiviral activity: inhibitors of mRNA 
translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further 
studies of these host-factor-targeting agents, including their combination with drugs 
that directly target viral enzymes, could lead to a therapeutic regimen to treat 
COVID-19.

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA beta-
coronavirus of the family Coronaviridae3,4. Coronaviruses that infect 
humans historically included several common cold viruses, including 
hCoV-OC43, HKU and 229E5. However, over the past two decades, 
highly pathogenic human coronaviruses have emerged, including 
SARS-CoV in 2002, which is associated with 8,000 cases worldwide 
and a death rate of around 10%, and Middle East respiratory syndrome 
coronavirus (MERS-CoV) in 2012, which caused 2,500 confirmed cases 
and had a death rate of 36%. Infection with these highly pathogenic 
coronaviruses can result in acute respiratory distress syndrome, which 
may lead to a long-term reduction in lung function, arrhythmia or 
death. In comparison to MERS-CoV or SARS-CoV, SARS-CoV-2 has a 
lower case-fatality rate but spreads more efficiently6, making it difficult 
to contain. To devise therapeutic strategies to counteract SARS-CoV-2 
infection and the associated COVID-19 pathology, it is crucial to under-
stand how this coronavirus hijacks the host during infection, and to 
apply this knowledge to develop new drugs and repurpose existing 
ones.

Thus far, no clinically available antiviral drugs have been developed 
for SARS-CoV, SARS-CoV-2 or MERS-CoV. Clinical trials are ongoing for 
treatment of COVID-19 with the nucleoside-analogue RNA-dependent 
RNA polymerase (RdRP) inhibitor remdesivir7, and recent data suggest 
that a new nucleoside analogue may be effective against SARS-CoV-2 
infection in laboratory animals8. Clinical trials using several vaccine 
candidates are also underway9, as are trials of repurposed compounds 
that inhibit the human protease TMPRSS210. We believe that there is 
great potential in systematically exploring the host dependencies of 

the SARS-CoV-2 virus to identify other host proteins that are already 
targeted by existing drugs. Therapies that target the host–virus inter-
face, where the emergence of mutational resistance is arguably less 
likely, could potentially present durable, broad-spectrum treatment 
modalities11. Unfortunately, limited knowledge of the molecular details 
of SARS-CoV-2 precludes a comprehensive evaluation of small-molecule 
candidates for host-directed therapies. We sought to address this gap by 
systematically mapping the interaction landscape between SARS-CoV-2 
proteins and human proteins.

Cloning and expression of SARS-CoV-2 proteins
Sequence analysis of SARS-CoV-2 isolates suggests that the 30-kb 
genome encodes as many as 14 open-reading frames (ORFs). ORF1a and 
ORF1ab encode polyproteins, which are auto-proteolytically processed 
into 16 non-structural proteins (NSP1–NSP16) that form the replicase–
transcriptase complex (Fig. 1a). The replicase–transcriptase complex 
consists of multiple enzymes, including the papain-like protease 
(NSP3), the main protease (NSP5), the NSP7–NSP8 primase complex, 
the primary RNA-dependent RNA polymerase (NSP12), a helicase–
triphosphatase (NSP13), an exoribonuclease (NSP14), an endonuclease 
(NSP15) and N7- and 2′O-methyltransferases (NSP10 and NSP16)1,12,13. 
At the 3′ end of the viral genome, as many as 13 ORFs are expressed 
from 9 predicted sub-genomic RNAs. These include four structural 
proteins: spike (S), envelope (E), membrane (M) and nucleocapsid 
(N)13, and nine putative accessory factors1,12 (Fig. 1a). The SARS-CoV-2 
genome is very similar to SARS-CoV. Although both viruses have an 
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ORF1ab that encodes the 16 predicted NSPs as well as the four typical 
structural proteins of coronaviruses, they differ in their complement of 
3′ ORFs: SARS-CoV-2 possesses an ORF3b and ORF10, which have limited 
detectable homology to SARS-CoV proteins1,12 (Extended Data Fig. 1a).

Mature NSPs, with the exception of NSP3 and NSP16, and all pre-
dicted proteins expressed from other SARS-CoV-2 ORFs (27 proteins 
and one mutant) were codon-optimized and cloned into a mammalian 
expression vector that contained a 2×Strep-tag II affinity tag that can 
be used for affinity-purification–mass spectrometry (AP-MS)-based 
proteomics when expressed in HEK-293T/17 cells. High-confidence 
interacting proteins were identified using SAINTexpress and MiST 
scoring algorithms14,15.

To verify the expression of viral proteins, we performed western 
blot using an anti-Strep antibody on the input cell lysate, and with 
the exception of NSP4, NSP6, NSP11, and ORF3b, we observed bands 
consistent with the predicted protein sizes (24 out of 28 constructs) 
(Extended Data Fig. 1b). Despite the lack of detection by western blot, 
we detected expression of viral peptides NSP4, NSP6 and ORF3b in 
the proteomic analysis. The fourth construct not confirmed by west-
ern blot, the small peptide NSP11, had a predicted molecular mass of 
4.8 kDa (including tag) but an apparent mass of approximately 30 kDa 
(Extended Data Fig. 1b).

Alignment of 2,784 SARS-CoV-2 sequences revealed a premature 
stop codon at position 14 of ORF3b in 17.6% of isolates (Extended Data 
Fig. 1c), and two mutations were also observed that resulted in prema-
ture stop codons in ORF9c (Extended Data Fig. 1d). These data suggest 
that ORF3b and ORF9c might not be bona fide SARS-CoV-2 reading 
frames, or are dispensable for replication. Pending a comprehensive 
evaluation of viral protein expression, we nevertheless proceeded with 
the analysis for all possible viral proteins. Out of the 27 bait proteins 
(Fig. 1b), the affinity purification of ORF7b showed an unusually high 
number of background proteins and was therefore excluded from 
protein interaction analysis. We have thus far sent these plasmids to 
almost 300 laboratories in 35 countries.

Analysis of SARS-CoV-2–host protein interactions
Our AP-MS analysis identified 332 high-confidence protein interac-
tions between SARS-CoV-2 proteins and human proteins, observing 
correlations between replicate experiments of each viral bait (Pearson’s 
R = 0.46–0.72) (Extended Data Fig. 2 and Supplementary Tables 1, 2). 
We studied the interacting human proteins with regards to their bio-
logical functions, anatomical expression patterns, expression changes 
during SARS-CoV-2 infection16 and in relation to other maps of host–
pathogen interacting proteins15,17 (Fig. 2a). We analysed each viral pro-
tein for Gene Ontology enrichment (Fig. 2b and Extended Data Fig. 3) 
and identified the major cell processes of the interacting proteins, 

including lipoprotein metabolism (S), nuclear transport (NSP7) and 
ribonucleoprotein complex biogenesis (NSP8). To discover potential 
binding interfaces, we enriched for domain families within the inter-
acting proteins of each viral bait (Extended Data Fig. 4). For instance, 
DNA polymerase domains are enriched among proteins that interact 
with NSP1, and bromodomains and extra-terminal domain (BET) family 
domains are enriched among proteins that interact with E (Supplemen-
tary Discussion and Supplementary Methods).

Although the cell line used for these AP-MS experiments, HEK-293T/17, 
can be infected with the SARS-CoV-2 virus18, it does not represent the 
primary physiological site of infection—lung tissue. From 29 human 
tissues19, we identified the lung as the tissue with the highest expres-
sion of the prey proteins relative to the average proteome (Fig. 2c). 
Consistent with this, the interacting proteins were enriched in the 
lung relative to other tissues (Extended Data Fig. 5a), and compared 
to overall RefSeq gene expression in the lung (median transcripts per 
million (TPM) = 3.198), proteins that interacted with SARS-CoV-2 pro-
teins were expressed at a higher level (median TPM = 25.52, P = 0.0007; 
Student’s t-test) (Extended Data Fig. 5b), supporting the hypothesis 
that SARS-CoV-2 preferentially hijacks proteins that are expressed in 
lung tissue.

We also studied the evolutionary properties of the host proteins 
bound by SARS-CoV-2 (Supplementary Table 3, Supplementary Meth-
ods and Supplementary Discussion). In addition, we analysed changes 
in protein abundance during SARS-CoV-2 infection16. We calculated, 
when possible, the correlation between changes in the abundance of 
viral proteins and their human interaction partners across four time 
points. Interacting pairs typically had stronger correlated changes than 
other pairs of viral–human proteins (Fig. 2d) (Kolmogorov–Smirnov 
test P = 4.8 × 10−5), indicating that the AP-MS-derived interactions are 
relevant for the target tissue and the infection context. We compared 
our SARS-CoV-2 interaction map with those of ten other pathogens 
(Fig. 2e) and found that West Nile virus20 and Mycobacterium tuber-
culosis21 had the most similar host-protein interaction partners. The 
association with M. tuberculosis is of particular interest as it also infects 
lung tissue.

The interactome reveals SARS-CoV-2 biology
Our study highlights interactions between SARS-CoV-2 proteins and 
human proteins that are involved in several complexes and biological 
processes (Fig. 3). These included DNA replication (NSP1), epigenetic 
and gene-expression regulators (NSP5, NSP8, NSP13 and E), vesicle 
trafficking (NSP2, NSP6, NSP7, NSP10, NSP13, NSP15, ORF3a, E, M and 
ORF8), lipid modification (S), RNA processing and regulation (NSP8 
and N), ubiquitin ligases (ORF10), signalling (NSP7, NSP8, NSP13, N 
and ORF9b), nuclear transport machinery (NSP9, NSP15 and ORF6), 
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cytoskeleton (NSP1 and NSP13), mitochondria (NSP4, NSP8 and ORF9c) 
and the extracellular matrix (NSP9).

Approximately 40% of SARS-CoV-2-interacting proteins were associ-
ated with endomembrane compartments or vesicle trafficking path-
ways. Host interactions with NSP8 (signal recognition particle (SRP)), 
ORF8 (protein quality control in the endoplasmic reticulum), M (mor-
phology of the endoplasmic reticulum) and NSP13 (organization of the 
centrosome and Golgi) may facilitate the marked reconfiguration of 
endoplasmic reticulum and Golgi trafficking during coronavirus infec-
tion, and interactions in peripheral compartments with NSP2 (WASH), 
NSP6 and M (vacuolar ATPase), NSP7 (Rab proteins), NSP10 (AP2),  
E (AP3) and ORF3a (HOPS) may also modify endomembrane compart-
ments to favour coronavirus replication. NSP6 and ORF9c interact 
with Sigma receptors that have been implicated in lipid remodelling 
and the stress response of the endoplasmic reticulum; these proteins 
interact with many human drugs (see ‘Antiviral activity of host-directed 
compounds’).

Trafficking into the endoplasmic reticulum and mitochondria may 
also be affected by the main protease of SARS-CoV-2, NSP5. We identi-
fied one high-confidence interaction between wild-type NSP5 and the 
epigenetic regulator histone deacetylase 2 (HDAC2), and predicted a 
cleavage site between the HDAC domain and the nuclear localization 

sequence of HDAC2 (Extended Data Fig. 6a–d), suggesting that NSP5 
may inhibit the transport of HDAC2 into the nucleus and could poten-
tially affect the ability of HDAC2 to mediate the inflammation and 
interferon response22,23. We also identified an interaction between 
catalytically dead NSP5(C145A) and tRNA methyltransferase 1 (TRMT1), 
which is responsible for the dimethylguanosine base modification 
(m2,2G) in both nuclear and mitochondrial tRNAs24. We predict that 
TRMT1 is also cleaved by NSP5 (Extended Data Fig. 6a–d), leading to 
the removal of its zinc finger and nuclear localization signal and prob-
ably resulting in an exclusively mitochondrial localization of TRMT1.

SARS-CoV-2 interacts with innate immune pathways
Several innate immune signalling proteins are targeted by SARS-CoV-2 
viral proteins. The interferon pathway is targeted by NSP13 (TBK1 and 
TBKBP1), NSP15 (RNF41 (also known as NRDP1)) and ORF9b (TOMM70); 
and the NF-κB pathway is targeted by NSP13 (TLE1, TLE3 and TLE5) and 
ORF9c (NLRX1, F2RL1 and NDFIP2). Furthermore, two other E3 ubiquitin 
ligases that regulate antiviral innate immune signalling, TRIM59 and 
MIB1, are bound by ORF3a and NSP9, respectively25,26.

We also identified interactions between SARS-CoV-2 ORF6 and 
the NUP98–RAE1 complex (Fig. 4a), an interferon-inducible mRNA 
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nuclear export complex27 that is hijacked or degraded by multiple 
viruses including vesicular stomatitis virus (VSV), influenza A, Kaposi’s 
sarcoma-associated herpesvirus and poliovirus, and is a restriction 
factor for influenza A infection28–31. The X-ray structure of the VSV M 
protein complexed with NUP98–RAE132 reveals key binding interac-
tions, including a buried methionine residue on the M protein that 
packs into a hydrophobic pocket in RAE1, and neighbouring acidic 
residues that interact with a basic patch on the NUP98–RAE1 complex32. 
These features are also present in a conserved motif in the C-terminal 
region of SARS-CoV-2 ORF6 (Fig. 4b–d and Extended Data Fig. 7a, b), 
providing a structural hypothesis for the observed interaction. ORF6 
of SARS-CoV antagonizes host interferon signalling by perturbing 
nuclear transport33, and the NUP98–RAE1 interaction with ORF6 may 
perform the same function for SARS-CoV-2.

SARS-CoV-2 interacts with host translation machinery
Nucleocapsid (N) of SARS-CoV-2 binds to the stress granule proteins 
G3BP1 and G3BP2, and to other host mRNA-binding proteins includ-
ing the mTOR-regulated translational repressor LARP1, two subunits 

of casein kinase 2 (CK2), and mRNA decay factors UPF1 and MOV10 
(Fig. 4e). Manipulation of the stress granule and related RNA biology 
is common among Coronaviridae34–36 and stress granule formation is 
thought to be a primarily antiviral response. The promotion of G3BP 
aggregation by eIF4A inhibitors28,37 may partially explain their antiviral 
activity (see ‘Antiviral activity of host-directed compounds’).

All coronavirus mRNAs rely on cap-dependent translation to produce 
their proteins, a process enhanced in trans by the SARS-CoV N protein38. 
Key eIF4F–cap binding complex constituents—the cap binding protein 
eIF4E, scaffold protein eIF4G and the DEAD-box helicase eIF4A—are 
candidates for therapeutic targeting of coronaviruses39,40. Therapeutic 
targeting (Fig. 4f, g) of viral translation by interfering with the eIF4F 
complex formation or the interactions between viral proteins N, NSP2 
or NSP8 and the translational machinery may have therapeutic benefits 
(see ‘Antiviral activity of host-directed compounds’).

Cotranslational entry into the secretory pathway is a potential target 
for SARS-CoV-2 inhibition. Up to ten SARS-CoV-2 proteins are predicted 
to undergo insertion into the membrane of the endoplasmic reticu-
lum mediated by the Sec61 translocon, which localizes to SARS-CoV 
replication complexes41. Furthermore, high-confidence interactions 
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between NSP8 and three SRP components suggest that the virus hijacks 
the Sec61-mediated protein translocation pathway for entry into the 
endoplasmic reticulum. Sec61 inhibitors of protein biogenesis such 

as PS3061 (Fig. 4h), which has previously been shown to inhibit other 
enveloped RNA viruses42,43, may also block SARS-CoV-2 replication 
and assembly.
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SARS-CoV-2 interacts with a Cullin ubiquitin ligase
Viruses commonly hijack ubiquitination pathways for replication and 
pathogenesis44. The ORF10 of SARS-CoV-2 interacts with members 
of a cullin-2 (CUL2) RING E3 ligase complex (Fig. 4i), specifically the 
CUL2ZYG11B complex. ZYG11B is the highest scoring protein in the ORF10 

interactome, suggesting that there is a direct interaction between 
ORF10 and ZYG11B. Despite its small size (38 amino acids), ORF10 
appears to contain an α-helical region (Fig. 4j) that may be adopted in 
complex with CUL2ZYG11B. The ubiquitin transfer to a substrate requires 
neddylation of CUL2 by NEDD8-activating enzyme (NAE), which is a 
druggable target45 (Fig. 4k). ORF10 may bind to the CUL2ZYG11B complex 
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and hijack it for ubiquitination and degradation of restriction factors, 
or alternatively, ZYG11B may bind to the N-terminal glycine in ORF10 
to target it for degradation31.

SARS-CoV-2 interacts with bromodomain proteins
We found that the transmembrane E protein, which is probably resident 
on the endoplasmic reticulum–Golgi intermediate compartment and 
Golgi membranes, binds to BRD2 and BRD4 (Fig. 4l), members of the 
bromodomain and extra-terminal (BET) domain family of epigenetic 
readers that bind to acetylated histones to regulate gene transcrip-
tion46. The C-terminal region of E mimics the N-terminal segment of 
histone H3, which is a known interacting partner of bromodomains47. 
Notably, this region of E is highly conserved in SARS and bat corona-
viruses, which suggests that it has a conserved function (Fig. 4m). A 
similar short peptide motif has also been identified in the NS1 protein 
of the influenza A H3N2 strain, in which it interferes with transcriptional 
processes that support an antiviral response47,48. Bromodomain inhibi-
tors might disrupt the interaction between protein E and BRDs (Fig. 4n).

For a more comprehensive overview of virus–host interactions, 
see Supplementary Discussion and Supplementary Methods.

Identification of drugs that target host factors
To disrupt the SARS-CoV-2 interactome, we sought ligands of human 
proteins that interact with viral proteins (Methods). Molecules were 
prioritized by the MiST score of the interaction between the human and 
viral proteins; by their status as approved drugs, investigational drugs 
(drugs in clinical trials) or as preclinical candidates; by their selectivity; 
and by their availability (Supplementary Tables 4, 5). Chemoinformat-
ics searches from the IUPHAR/BPS Guide to Pharmacology (2020-3-
12) and the ChEMBL25 database on the human interactors yielded 16 
approved drugs, 3 investigational drugs and 18 pre-clinical candidates 
(Supplementary Table 4); and target- and pathway-specific literature 
search revealed 13 approved drugs, 9 investigational drugs and 10 pre-
clinical candidates (Supplementary Table 5). Of the 332 human targets 
that interact with the viral bait proteins with a high-confidence score 
(Fig. 3), 62 have 69 drugs, investigational drugs or preclinical molecules 
that modulate them and can be overlaid on our protein-interaction 
network (Fig. 5).

Antiviral activity of host-directed compounds
We next investigated the antiviral activity of these drugs and compounds, 
using two viral assays (Fig. 6a). First, at Mount Sinai Hospital in New 
York, we developed a medium-throughput immunofluorescence-based 
assay (which detects the viral NP protein) to screen 37 compounds for 
inhibition of SARS-CoV-2 infection in the Vero E6 cell line. Second, at 
the Institut Pasteur in Paris, viral RNA was monitored using quantita-
tive PCR with reverse transcription (RT–qPCR) after treatment with 44 
drugs and compounds. Together, both locations tested 47 of the 69 
compounds that we identified, plus 13 to expand testing of the sigma-1 
and sigma-2 receptors and mRNA translation targets, and 15 additional 
molecules that had been prioritized by other methods (Methods and 
Supplementary Table 6). Viral growth and cytotoxicity were moni-
tored at both institutions (Extended Data Figs. 8, 9 and Supplementary 
Table 6). Two classes of molecules emerged as effectively reducing 
viral infectivity: protein biogenesis inhibitors (zotatifin, ternatin-4 and 
PS3061) (Fig. 6b and Extended Data Fig. 9) and ligands of the sigma-1 
and sigma-2 receptors (haloperidol, PB28, PD-144418 and hydroxychlo-
roquine, which is undergoing clinical trials in patients with COVID-19 
(ClinicalTrials.gov, trial number NCT04332991)). We also subsequently 
found that the sigma-1- and sigma-2-receptor active drugs clemastine, 
cloperastine and progesterone, and the clinical molecule siramesine, 
were antiviral drugs (Fig. 6c and Extended Data Fig. 9). Median tissue 

culture infectious dose (TCID50) assays on supernatants from infected 
cells treated with PB28 (90% inhibitory concentration (IC90) = 0.278 μM) 
and zotatifin (IC90 = 0.037 μM) revealed a more potent inhibition than 
was observed in the NP-staining assay (Fig. 6d). Notably, in this assay, 
PB28 was around 20 times more potent than hydroxychloroquine 
(IC90 = 5.78 μM).

To better understand the mechanism by which these inhibitors exert 
their antiviral effects, we performed a time course assay in which the 
drugs were added at different times before or after infection (Fig. 6e). 
Cells were infected during a single cycle of infection at high multiplicity 
of infection (MOI = 2) over the course of 8 h, and the drugs were added 
either 2 h before infection or at 0, 2 or 4 h after infection. PB28, zotati-
fin and hydroxychloroquine all decreased the detection of the viral 
NP protein even in this single cycle assay, indicating that the antiviral 
effect occurs before viral egress from the cell (Fig. 6e). Furthermore, 
all three molecules inhibited NP expression when added up to 4 h after 
infection, after viral entry has occurred. Thus, these molecules seem 
to exert their antiviral effect during viral replication.

Coronaviruses rely on cap-dependent mRNA translation through the 
translation machinery of the host. eIF4H, which interacts with NSP9, 
is a partner of eIF4A, and we observed a strong antiviral effect after 
treatment with the eIF4A inhibitor zotatifin (Fig. 6b), which is currently 
in a phase-I clinical trial for the treatment of cancer. We also observed 
potent antiviral effects of the elongation factor-1A (eEF1A) inhibitor 
ternatin-449 (Fig. 6b), which may suggest that the rate of translation 
elongation is critical for obtaining optimal levels of viral proteins. Of 
note, the eEF1A inhibitor aplidin/plitidepsin is used clinically in patients 
with multiple myeloma50. Multiple SARS-CoV-2 proteins are predicted 
to undergo SRP- and Sec61-mediated co-translational insertion into the 
endoplasmic reticulum, and SRP19, SRP54 and SRP72 were identified 
as NSP8-interacting proteins (Fig. 3). Consistent with previous studies 
of flaviviruses42, the Sec61 inhibitor PS3061 also blocked SARS-CoV-2 
replication (Extended Data Fig. 9). The two translation inhibitors had 
cytostatic effects in uninfected Vero cells, which are immortalized 
cell lines with indefinite proliferative capacity that have mutations in 
key cell cycle inhibitors. These cells are more sensitive to anti-cancer 
compounds, which affect the cell cycle state of immortalized cells 
more strongly than non-immortalized cells. A critical question going 
forward is whether these or related inhibitors of viral protein biogenesis 
will show therapeutic benefits in patients with COVID-19. Plitidepsin is 
currently under consideration by the Spanish Medicines Agency for a 
phase-II trial in hospitalized patients with COVID-19.

Molecules that target the sigma-1 and sigma-2 receptors perturb the 
virus through different mechanisms than the translation inhibitors, 
which could include the cell stress response51. These molecules are also 
active against other aminergic receptors; however, the only targets 
shared among all of the tested molecules are the sigma-1 and sigma-2 
receptors (Fig. 6f), into which these drugs can be readily modelled 
(Extended Data Fig. 10a). For instance, the antipsychotic drug halop-
eridol inhibits the dopamine D2 and histamine H1 receptors, whereas 
clemastine and cloperastine are antihistamines; each of these drugs is 
also a Sigma receptor ligand with antiviral activity (Fig. 6c). Conversely, 
the antipsychotic drug olanzapine, which also inhibits histamine H1 and 
dopamine D2 receptors, has little Sigma receptor activity and does not 
show antiviral activity (Extended Data Fig. 10b). Which of the Sigma 
receptors is responsible for the activity remains uncertain, as does the 
role of pharmacologically related targets, such as EBP and related sterol 
isomerases, the ligand recognition of which resembles those of the 
Sigma receptors. Notably, the sigma-1-receptor benzomorphan agonist 
dextromethorphan has proviral activity (Fig. 6g), further support-
ing the role of these receptors in viral infection. Overall, two features 
should be emphasized. First, several of the molecules that target the 
Sigma receptors, such as clemastine, cloperastine and progesterone, 
are approved drugs with a long history in human therapy. Many other 
widely used drugs, which show activity against the Sigma receptors, 
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remain to be tested; and indeed, several drugs such as astemizole, which 
we show is a sigma-2 receptor ligand (with an Ki of 95 nM) (Extended 
Data Fig. 11), verapamil and amiodarone, have been reported by oth-
ers to be active in viral replication assays, although this has not been 
linked to their Sigma receptor activity52,53. Second, the Sigma receptor 
ligands have a clear separation between antiviral and cytotoxic effects 
(Fig. 6b, c), and ligands such as PB28 have substantial selectivity for 
the Sigma receptors compared with side-effect targets, such as the 
hERG ion channel. Indeed, the lack of selectivity of chloroquine and 
hydroxychloroquine for hERG (Fig. 6h) and other off-targets (Extended 
Data Fig. 12) may be related to the adverse cardiac drug reactions54 that 
have limited their use.

Discussion
In this study, we have identified 332 high-confidence SARS-CoV-2 
protein–human protein interactions that are connected with multi-
ple biological processes, including protein trafficking, translation, 
transcription and regulation of ubiquitination. We found 69 ligands, 
including FDA-approved drugs, compounds in clinical trials and pre-
clinical compounds, that target these interactions. Antiviral tests in two 
different laboratories reveal two broad sets of active drugs and com-
pounds; those that affect translation and those modulate the sigma-1 
and sigma-2 receptors. Within these sets are at least five targets and 
more than ten different chemotypes, providing a rich landscape for 
optimization.

The chemo-proteomic analysis that emerges from this study not 
only highlights clinically actionable drugs that target human proteins 
in the interactome, but also provides a context for interpreting their 
mechanism of action. The potent efficacy of the translation inhibitors 
on viral infectivity—in the 10 to 100 nM range—makes these molecules 
attractive as candidate antiviral agents, and also highlights this path-
way as a point of intervention. Although the mechanism of action of 
the drugs that target the sigma-1 and sigma-2 receptors remains less 
defined, their activity as both anti- and proviral agents is mechanisti-
cally suggestive. The relatively strong efficacy of PB28, at an IC90 of 
280 nM in the viral titre assay, and its high selectivity against off-target 
proteins, suggests that molecules of this class may be optimized as 
therapeutic agents. Although it is unclear whether approved drugs such 
as clemastine and cloperastine, which are used as antihistamines and 
antitussive drugs, have pharmacokinetics that are suitable for antiviral 
therapy, and although they are not free of binding to targets that cause 
side effects (Fig. 6f and Extended Data Fig. 12), these drugs have been 
used for decades. We caution against their use outside of controlled 
studies, because of their side-effect liabilities. By the same standard, 
we find that the widely used antitussive drug dextromethorphan has 
proviral activity and that therefore its use should merit caution and 
further study in the context of the treatment of COVID-19. More posi-
tively, there are dozens of approved drugs that show activity against 
the Sigma receptors, not all of which are generally recognized as Sigma 
receptor ligands. Many of these drugs remain to be tested as a treatment 
for COVID-19; although some have begun to appear in other studies52,53. 
This area of pharmacology has great promise for the repurposing and 
optimization of new agents in the fight against COVID-19.

Our approach of host-directed intervention as an antiviral strategy 
overcomes problems associated with drug resistance and may also 
provide panviral therapies as we prepare for the next pandemic. Fur-
thermore, the possibilities for cotherapies are expanded—for example, 
with drugs that directly target the virus, including remdesivir—and, as 
we demonstrate in this study, there are numerous opportunities for 
the repurposing of FDA-approved drugs. More broadly, the pipeline 
described here represents an approach for drug discovery not only 
for panviral strategies, but also for the research of many diseases, and 
illustrates the speed with which science can be moved forward using a 
multi-disciplinary and collaborative approach.
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Methods

Genome annotation
The GenBank sequence for SARS-CoV-2 isolate 2019-nCoV/
USA-WA1/2020, accession MN985325, was downloaded on 24 Janu-
ary 2020. In total, we annotated 29 possible ORFs and proteolytically 
mature proteins encoded by SARS-CoV-21,12. Proteolytic products that 
result from NSP3- and NSP5-mediated cleavage of the ORF1a/ORF1ab 
polyprotein were predicted on the basis of the protease specificity 
of SARS-CoV proteases56, and 16 predicted nonstructural proteins 
(NSPs) were subsequently cloned (NSP1–NSP16). For the NSP5 pro-
tease (3Clike/3CLpro), we also designed the catalytically dead mutant 
NSP5(C145A)57,58. ORFs at the 3′ end of the viral genome annotated in 
the original GenBank file included 4 structural proteins: S, E, M, N and 
the additional ORFs ORF3a, ORF6, ORF7a, ORF8 and ORF10. On the 
basis of the analysis of ORFs in the genome and comparisons with other 
annotated SARS-CoV ORFs, we annotated a further four ORFs: ORF3b, 
ORF7b, ORF9b and ORF9c.

Cloning
ORFs and proteolytically mature NSPs annotated in the SARS- 
CoV-2 genome were human codon-optimized using the IDT codon- 
optimization tool (https://www.idtdna.com/codonopt) and internal 
EcoRI and BamHI sites were eliminated. Start and stop codons were 
added as necessary to NSPs 1–16, a Kozak sequence was added before 
each start codon, and a 2×Strep tag with linker was added to either 
the N or C terminus. To guide our tagging strategy, we used GPS-Lipid 
to predict protein lipid modification of the termini (http://lipid. 
biocuckoo.org/webserver.php)59,60, TMHMM Server v.2.0 to predict  
transmembrane/hydrophobic regions (http://www.cbs.dtu.dk/ 
services/TMHMM/)61 and SignalP v.5.0 to predict signal peptides (http://
www.cbs.dtu.dk/services/SignalP/)62. IDT gBlocks were ordered for 
all reading frames with 15-bp overlaps that corresponded to flanking 
sequences of the EcoRI and BamHI restriction sites in the lentiviral 
constitutive expression vector pLVX-EF1alpha-IRES-Puro (Takara). Vec-
tors were digested and gel-purified, and gene fragments were cloned 
using InFusion (Takara). The S protein was synthesized and cloned into 
pTwist-EF1alpha-IRES-Puro (Twist Biosciences). NSP16 showed multiple 
mutations that could not be repaired before the time-sensitive prepa-
ration of this manuscript, and NSP3 was too large to be synthesized in 
time to be included in this study. Strep-tagged constructs encoding 
NSP3, NSP3(C857A) (catalytically dead mutant) and NSP16 will be used 
in future AP-MS experiments.

Cell culture
HEK-293T/17 cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM; Corning) supplemented with 10% fetal bovine serum (FBS; 
Gibco, Life Technologies) and 1% penicillin–streptomycin (Corning) and 
maintained at 37 °C in a humidified atmosphere of 5% CO2. HEK-293T/17 
cells were procured from the UCSF Cell Culture Facility, now available 
through UCSF’s Cell and Genome Engineering Core ((https://cgec.
ucsf.edu/cell-culture-and-banking-services); cell line collection listed 
here: https://ucsf.app.box.com/s/6xkydeqhr8a2xes0mbo2333i3k1l
ndqv (CCLZR076)). STR analysis by the Berkeley Cell Culture Facility 
on 8 August 2017 authenticated HEK-293T/17 cells with 94% probabil-
ity. Cells were tested on 3 July 2019 using the MycoAlert Mycoplasma 
Detection Kit (Lonza LT07-318) and were negative: B/A ratio < 1 (no 
detected mycoplasma).

Transfection
For each affinity purification (26 wild-type baits and one catalytically 
dead SARS-CoV-2 bait, one GFP control and one empty vector con-
trol), ten million HEK-293T/17 cells were plated per 15-cm dish and 
transfected with up to 15 μg of individual Strep-tagged expression 
constructs after 20–24 h. Total plasmid was normalized to 15 μg with 

empty vector and complexed with PolyJet Transfection Reagent (Sig-
naGen Laboratories) at a 1:3 μg:μl ratio of plasmid:transfection reagent 
based on the manufacturer’s recommendations. After more than 38 h, 
cells were dissociated at room temperature using 10 ml Dulbecco’s 
phosphate-buffered saline without calcium and magnesium (DPBS) 
supplemented with 10 mM EDTA for at least 5 min and subsequently 
washed with 10 ml DPBS. Each step was followed by centrifugation at 
200g, 4 °C for 5 min. Cell pellets were frozen on dry ice and stored at 
−80 °C. For each bait, n = 3 independent biological replicates were 
prepared for affinity purification.

Affinity purification
Frozen cell pellets were thawed on ice for 15–20 min and resuspended 
in 1 ml lysis buffer (IP buffer (50 mM Tris-HCl, pH 7.4 at 4 °C, 150 mM 
NaCl, 1 mM EDTA) supplemented with 0.5% Non-idet P40 substitute 
(NP40; Fluka Analytical) and cOmplete mini EDTA-free protease and 
PhosSTOP phosphatase inhibitor cocktails (Roche)). Samples were then 
frozen on dry ice for 10–20 min and partially thawed at 37 °C before 
incubation on a tube rotator for 30 min at 4 °C and centrifugation at 
13,000g, 4 °C for 15 min to pellet debris. After reserving 50 μl lysate, 
up to 48 samples were arrayed into a 96-well Deepwell plate for affin-
ity purification on the KingFisher Flex Purification System (Thermo 
Scientific) as follows: MagStrep ‘type3’ beads (30 μl; IBA Lifesciences) 
were equilibrated twice with 1 ml wash buffer (IP buffer supplemented 
with 0.05% NP40) and incubated with 0.95 ml lysate for 2 h. Beads were 
washed three times with 1 ml wash buffer and then once with 1 ml IP 
buffer. To directly digest bead-bound proteins as well as elute proteins 
with biotin, beads were manually suspended in IP buffer and divided in 
half before transferring to 50 μl denaturation–reduction buffer (2 M 
urea, 50 mM Tris-HCl pH 8.0, 1 mM DTT) and 50 μl 1× buffer BXT (IBA 
Lifesciences) dispensed into a single 96-well KF microtitre plate. Puri-
fied proteins were first eluted at room temperature for 30 min with 
constant shaking at 1,100 rpm on a ThermoMixer C incubator. After 
removing eluates, on-bead digestion proceeded (see ‘On-bead diges-
tion’). Strep-tagged protein expression in lysates and enrichment in 
eluates were assessed by western blot and silver stain, respectively. 
The KingFisher Flex Purification System was placed in the cold room 
and allowed to equilibrate to 4 °C overnight before use. All automated 
protocol steps were performed using the slow mix speed and the fol-
lowing mix times: 30 s for equilibration and wash steps, 2 h for binding 
and 1 min for final bead release. Three 10-s bead collection times were 
used between all steps.

On-bead digestion
Bead-bound proteins were denatured and reduced at 37 °C for 30 min 
and after being brought to room temperature, alkylated in the dark 
with 3 mM iodoacetamide for 45 min and quenched with 3 mM DTT 
for 10 min. Proteins were then incubated at 37 °C, initially for 4 h with 
1.5 μl trypsin (0.5 μg/μl; Promega) and then another 1–2 h with 0.5 μl 
additional trypsin. To offset evaporation, 15 μl 50 mM Tris-HCl, pH 8.0 
were added before trypsin digestion. All steps were performed with 
constant shaking at 1,100 rpm on a ThermoMixer C incubator. Result-
ing peptides were combined with 50 μl 50 mM Tris-HCl, pH 8.0 used to 
rinse beads and acidified with trifluoroacetic acid (0.5% final, pH < 2.0). 
Acidified peptides were desalted for MS analysis using a BioPureSPE 
Mini 96-Well Plate (20 mg PROTO 300 C18; The Nest Group) according 
to standard protocols.

MS data acquisition and analysis
Samples were resuspended in 4% formic acid, 2% acetonitrile solu-
tion, and separated by a reversed-phase gradient over a Nanoflow C18 
column (Dr Maisch). Each sample was directly injected via an Easy-nLC 
1200 (Thermo Fisher Scientific) into a Q-Exactive Plus mass spectrom-
eter (Thermo Fisher Scientific) and analysed with a 75 min acquisi-
tion, with all MS1 and MS2 spectra collected in the orbitrap; data were 
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acquired using the Thermo software Xcalibur (4.2.47) and Tune (2.11 
QF1 Build 3006). For all acquisitions, QCloud was used to control instru-
ment longitudinal performance during the project63. All proteomic 
data were searched against the human proteome (Uniprot-reviewed 
sequences downloaded 28 February 2020), the eGFP sequence and 
the SARS-CoV-2 protein sequences using the default settings for 
MaxQuant (v.1.6.11.0)64,65. Detected peptides and proteins were fil-
tered to 1% false-discovery rate in MaxQuant, and identified proteins 
were then subjected to protein–protein interaction scoring with both 
SAINTexpress (v.3.6.3)14 and MiST (https://github.com/kroganlab/
mist)15,66. We applied a two-step filtering strategy to determine the 
final list of reported interactors, which relied on two different scoring 
stringency cut-offs. In the first step, we chose all protein interactions 
that had a MiST score ≥ 0.7, a SAINTexpress Bayesian false-discovery 
rate (BFDR) ≤ 0.05 and an average spectral count ≥ 2. For all proteins 
that fulfilled these criteria, we extracted information about the stable 
protein complexes that they participated in from the CORUM67 database 
of known protein complexes. In the second step, we then relaxed the 
stringency and recovered additional interactors that (1) formed com-
plexes with interactors determined in filtering step 1 and (2) fulfilled 
the following criteria: MiST score ≥ 0.6, SAINTexpress BFDR ≤ 0.05 
and average spectral counts ≥ 2. Proteins that fulfilled filtering cri-
teria in either step 1 or step 2 were considered to be high-confidence 
protein–protein interactions (HC-PPIs) and visualized with Cytoscape 
(v.3.7.1)68. Using this filtering criteria, nearly all of our baits recovered a 
number of HC-PPIs in close alignment with previous datasets reporting 
an average of around 6 PPIs per bait69. However, for a subset of baits 
(ORF8, NSP8, NSP13 and ORF9c), we observed a much higher number 
of PPIs that passed these filtering criteria. For these four baits, the MiST 
scoring was instead performed using a larger in-house database of 87 
baits that were prepared and processed in an analogous manner to this 
SARS-CoV-2 dataset. This was done to provide a more comprehensive 
collection of baits for comparison, to minimize the classification of 
non-specifically binding background proteins as HC-PPIs. All MS raw 
data and search results files have been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository with the dataset 
identifier PXD01811770,71. PPI networks have also been uploaded to 
NDEx.

GO overrepresentation analysis
The targets of each bait were tested for enrichment of GO biologi-
cal process terms. The overrepresentation analysis was based on 
the hypergeometric distribution and performed using the enricher 
function of clusterProfiler package in R with default parameters. The 
GO terms were obtained from the c5 category of Molecular Signature 
Database (MSigDBv6.1). Significant GO terms (1% false-discovery rate) 
were identified and further refined to select non-redundant terms. To 
select non-redundant gene sets, we first constructed a GO term tree 
based on distances (1 − Jaccard similarity coefficients of shared genes) 
between the significant terms. The GO term tree was cut at a specific 
level (h = 0.99) to identify clusters of non-redundant gene sets. For a 
bait with multiple significant terms belonging to the same cluster, we 
selected the broadest term that is, largest gene set size.

Virus interactome similarity analysis
Interactome similarity was assessed by comparing the number of 
shared human-interacting proteins between pathogen pairs, using a 
hypergeometric test to calculate significance. The background gene 
set for the test consisted of all unique proteins detected by MS across 
all pathogens (n = 10,181 genes).

ORF6 peptide modelling
The proposed interaction between ORF6 and the NUP98–RAE1 complex 
was modelled in PyRosetta 4 (release v.2020.02-dev61090)72 using the 
crystal structure of VSV matrix (M) protein bound to NUP98–RAE1 as 

a template32 (PDB 4OWR; downloaded from the PDB-REDO server73). 
The M protein chain (C) was truncated after residue 54 to restrict the 
model to the putative interaction motif in ORF6 (M protein residues 
49–54, sequence DEMDTH). These residues were mutated to the ORF6 
sequence, QPMEID, using the mutate_residue function in the module 
pyrosetta.toolbox, without repacking at this initial step. After all six 
residues were mutated, the full model was relaxed to a low-energy 
conformation using the FastRelax protocol in the module pyrosetta.
rosetta.protocols.relax. FastRelax was run with constraints to starting 
coordinates and scored with the ref2015 score function. The result-
ing model was inspected for any large energetic penalties associated 
with the modelled peptide residues or those NUP98 and RAE1 residues 
interacting with the peptide, and was found to have none. The model 
was visualized in PyMOL (The PyMOL Molecular Graphics System, 
v.3.4, Schrödinger).

ORF10 secondary structure prediction
The secondary structure of ORF10 was predicted using JPRED (https://
www.compbio.dundee.ac.uk/jpred/index.html)74.

Protein E alignment
Protein E sequences from SARS-CoV-2 (YP_009724392.1), SARS-CoV 
(NP_828854.1) and bat SARS-like CoV (AGZ48809.1) were aligned using 
Clustal Omega75, and then manually aligned to the sequences of histone 
H3 (P68431) and influenza A H3N2 NS1 (YP_308845.1).

Chemoinformatic analysis of SARS-CoV-2-interacting partners
To identify drugs and reagents that modulate the 332 host factors that 
interact with SARS-CoV-2 and HEK-293T/17 cells (MiST ≥ 0.70), we used 
two approaches: (1) a chemoinformatic analysis of open-source chemi-
cal databases and (2) a target- and pathway-specific literature search, 
drawing on specialist knowledge within our group. Chemoinformati-
cally, we retrieved 2,472 molecules from the IUPHAR/BPS Guide to 
Pharmacology (2020-3-12)55 (Supplementary Table 7) that interacted 
with 30 human ‘prey’ proteins (38 approved, 71 in clinical trials), and 
found 10,883 molecules (95 approved, 369 in clinical trials) from the 
ChEMBL25 database76 (Supplementary Table 8). For both approaches, 
molecules were prioritized on their FDA approval status, activity at the 
target of interest better than 1 μM and commercial availability, draw-
ing on the ZINC database77. FDA-approved molecules were prioritized 
except when clinical candidates or preclinical research molecules had 
substantially better selectivity or potency on-target. In some cases, 
we considered molecules with indirect mechanisms of action on the 
general pathway of interest based solely on literature evidence (for 
example, captopril modulates ACE2 indirectly via its direct interaction 
with angiotensin-converting enzyme, ACE). Finally, we predicted 6 
additional molecules (2 approved, 1 in clinical trials) for proteins with 
MIST scores between 0.7 and 0.6 to viral baits (Supplementary Tables 4, 
5). Complete methods can be found at https://github.com/momeara/
BioChemPantry/tree/master/vignette/COVID19.

Molecular docking
After their chemoinformatic assignment to the sigma-1 receptor, clo-
perastine and clemastine were docked into the agonist-bound state 
structure of the receptor (6DK1)78 using DOCK3.779. The best scoring 
configurations that ion pair with Glu172 are shown; both l-cloperastine 
and clemastine receive solvation-corrected docking scores between 
−42 and −43 kcal/mol, indicating high complementarity.

Viral growth and cytotoxicity assays in the presence of 
inhibitors
For studies carried out  at Mount Sinai, SARS-CoV-2 (isolate 
USA-WA1/2020 from BEI RESOURCES NR-52281) was propagated in 
Vero E6 cells. Two thousand Vero E6 cells were seeded into 96-well 
plates in DMEM (10% FBS) and incubated for 24 h at 37 °C, 5% CO2. 

https://github.com/kroganlab/mist
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Vero E6 cells used were purchased from ATCC and thus authenticated 
(VERO C1008 (Vero 76, clone E6, Vero E6) (ATCC CRL-1586); tested 
negative for mycoplasma contamination before commencement). 
Then, 2 h before infection, the medium was replaced with 100 μl of 
DMEM (2% FBS) containing the compound of interest at concentra-
tions 50% greater than those indicated, including a DMSO control. The 
Vero E6 cell line used in this study is a kidney cell line; therefore, we 
cannot exclude that lung cells yield different results for some inhibi-
tors (see also ‘Cells and viruses’, ‘Antiviral activity assays’, ‘Cell viability 
assays’ and ‘Plaque-forming assays’ for studies carried out at Institut 
Pasteur). Plates were then transferred into the Biosafety Level 3 (BSL3) 
facility and 100 PFU (MOI = 0.025) was added in 50 μl of DMEM (2% 
FBS), bringing the final compound concentration to those indicated. 
Plates were then incubated for 48 h at 37 °C. After infection, superna-
tants were removed and cells were fixed with 4% formaldehyde for 
24 h before being removed from the BSL3 facility. The cells were then 
immunostained for the viral NP protein (anti-sera produced in the 
García -Sastre laboratory; 1:10,000) with a DAPI counterstain. Infected 
cells (488 nM) and total cells (DAPI) were quantified using the Celigo 
(Nexcelcom) imaging cytometer. Infectivity is measured by the accumu-
lation of viral NP protein in the nucleus of the Vero E6 cells (fluorescence 
accumulation). Percentage infection was quantified as ((infected cells/
total cells) − background) × 100 and the DMSO control was then set to 
100% infection for analysis. The IC50 and IC90 for each experiment were 
determined using the Prism (GraphPad) software. For some inhibitors, 
infected supernatants were assayed for infectious viral titres using 
the TCID50 method. For this, infectious supernatants were collected 
at 48 h after infection and frozen at −80 °C until later use. Infectious 
titres were quantified by limiting dilution titration on Vero E6 cells. In 
brief, Vero E6 cells were seeded in 96-well plates at 20,000 cells per 
well. The next day, SARS-CoV-2-containing supernatant was applied at 
serial tenfold dilutions ranging from 10−1 to 10−6 and, after 5 days, viral 
cytopathogenic effect was detected by staining cell monolayers with 
crystal violet. The TCID50/ml values were calculated using the previously 
described method80. Cytotoxicity was also performed using the MTT 
assay (Roche), according to the manufacturer’s instructions. Cytotox-
icity was performed in uninfected VeroE6 cells with same compound 
dilutions and concurrent with viral replication assay. All assays were 
performed in biologically independent triplicates.

Cells and viruses
For studies at the Institut Pasteur, African green monkey kidney epithe-
lial Vero E6 cells (ATCC, CRL-1586, authenticated by ATCC and tested 
negative for mycoplasma contamination before commencement (Vero 
76, clone E6, Vero E6) (ATCC CRL-1586)) were maintained in a humidi-
fied atmosphere at 37 °C with 5% CO2, in DMEM containing 10% (v/v) 
FBS (Invitrogen) and 5 units/ml penicillin and 5 μg/ml streptomycin 
(Life Technologies). The Vero E6 cell line used in this study is a kidney 
cell line; therefore, we cannot exclude that lung cells yield different 
results for some inhibitors (see also ‘Viral growth and cytotoxicity 
assays in the presence of inhibitors’ for studies performed at Mount 
Sinai). SARS-CoV-2, isolate France/IDF0372/2020, was supplied by 
the National Reference Centre for Respiratory Viruses hosted by the 
Institut Pasteur and headed by S. van der Werf. The human sample from 
which strain BetaCoV/France/IDF0372/2020 was isolated has been 
provided by X. Lescure and Y. Yazdanpanah from the Bichat Hospital, 
Paris, France. The BetaCoV/France/IDF0372/2020 strain was supplied 
through the European Virus Archive goes Global (Evag) platform, a 
project that has received funding from the European Union’s Horizon 
2020 research and innovation programme under the grant agree-
ment no. 653316. Viral stocks were prepared by propagation in Vero 
E6 cells in DMEM supplemented with 2% FBS and 1 μg/ml TPCK-trypsin 
(Sigma-Aldrich). Viral titres were determined by plaque-forming assay 
in minimum essential medium supplemented with 2% (v/v) FBS (Invit-
rogen) and 0.05% agarose. All experiments involving live SARS-CoV-2 

were performed at the Institut Pasteur in compliance with the guide-
lines of the Institut Pasteur following BSL3 containment procedures 
in approved laboratories. All experiments were performed in at least 
three biologically independent samples.

Antiviral activity assays
Vero E6 cells were seeded at 1.5 × 104 cells per well in 96-well plates 18 h 
before the experiment. Then, 2 h before infection, the cell-culture super-
natant of triplicate wells was replaced with medium containing 10 μM, 
2 μM, 500 nM, 200 nM, 100 nM or 10 nM of each compound or the equiv-
alent volume of maximum DMSO vehicle used as a control. At the time 
of infection, the drug-containing medium was removed, and replaced 
with virus inoculum (MOI of 0.1 PFU per cell) containing TPCK-trypsin 
(Sigma-Aldrich). Following a 1-h adsorption incubation at 37 °C, the 
virus inoculum was removed and 200 μl of drug- or vehicle-containing 
medium was added. Then, 48 h after infection, the cell-culture super-
natant was used to extract RNA using the Direct-zol-96 RNA extraction 
kit (Zymo) following the manufacturer’s instructions. Detection of 
viral genomes in the extracted RNA was performed by RT–qPCR, using 
previously published SARS-CoV-2-specific primers81. Specifically, the 
primers target the N gene region: 5′-TAATCAGACAAGGAACTGATTA-3′ 
(forward) and 5′-CGAAGGTGTGACTTCCATG-3′ (reverse). RT–qPCR was 
performed using the Luna Universal One-Step RT–qPCR Kit (NEB) in an 
Applied Biosystems QuantStudio 6 thermocycler, using the following 
cycling conditions: 55 °C for 10 min, 95 °C for 1 min, and 40 cycles of 
95 °C for 10 s, followed by 60 °C for 1 min. The quantity of viral genomes 
is expressed as PFU equivalents, and was calculated by performing a 
standard curve with RNA derived from a viral stock with a known viral 
titre. In addition to measuring viral RNA in the supernatant derived from 
drug-treated cells, infectious virus was quantified by plaque-forming 
assay.

Cell viability assays
Cell viability in drug-treated cells was measured using Alamar blue rea-
gent (ThermoFisher). In brief, 48 h after treatment, the drug-containing 
medium was removed and replaced with Alamar blue and incubated 
for 1 h at 37 °C and fluorescence measured in a Tecan Infinity 2000 
plate reader. Percentage viability was calculated relative to untreated 
cells (100% viability) and cells lysed with 20% ethanol (0% viability), 
included in each plate.

Plaque-forming assays
Viruses were quantified by plaque-forming assays. For this, Vero E6 
cells were seeded in 24-well plates at a concentration of 7.5 × 104 cells 
per well. The following day, tenfold serial dilutions of individual virus 
samples in serum-free MEM medium were added to infect the cells at 
37 °C for 1 h. After the adsorption time, the overlay medium was added 
at final concentration of 2% FBS/MEM medium and 0.05% agarose to 
achieve a semi-solid overlay. Plaque-forming assays were incubated 
at 37 °C for 3 days before fixation with 4% formalin and visualization 
using crystal violet solution.

Off-target assays for Sigma receptor drugs and ligands
hERG binding assays were carried out as previously described82. In 
brief, compounds were incubated with hERG membranes, prepared 
from HEK-293 cells stably expressing hERG channels, and [3H]dofeti-
lide (5 nM final) in a total of 150 μl for 90 min at room temperature in 
the dark. Reactions were stopped by filtering the mixture onto a glass 
fibre and were quickly washed three times to remove unbound [3H]
dofetilide. The filter was dried in a microwave, melted with a scintil-
lant cocktail and wrapped in a plastic film. Radioactivity was counted 
on a MicroBeta counter and results were analysed in Prism by fitting 
to the built-in one binding function to obtain affinity Ki. Radioligand 
binding assays for the muscarinic and alpha-adrenergic receptors were 
performed as previously described83. Detailed protocols are available 
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on the NIMH PDSP website at https://pdspdb.unc.edu/html/tutorials/
UNC-CH%20Protocol%20Book.pdf.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The AP-MS raw data and search results files generated during the cur-
rent study are available in the ProteomeXchange Consortium via the 
PRIDE partner repository with dataset identifier PXD018117 (https://
www.ebi.ac.uk/pride/archive/projects/PXD018117) and PPI networks 
have also been uploaded to NDEx (https://public.ndexbio.org/#/
network/43803262-6d69-11ea-bfdc-0ac135e8bacf). An interactive 
version of these networks, including relevant drug and functional infor-
mation, can be found at http://kroganlab.ucsf.edu/network-maps. All 
data generated or analysed during this study are included in the article 
and its Supplementary Information. Expression vectors used in this 
study are readily available from the authors to biomedical research-
ers and educators in the non-profit sector. Source data are provided 
with this paper.

Code availability
Complete methods for chemoinformatic analysis can be found on 
GitHub (https://github.com/momeara/BioChemPantry/tree/master/
vignette/COVID19); details on MIST scoring can be found on GitHub 
(https://github.com/kroganlab/mist).
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Extended Data Fig. 1 | Mutations in overlapping coding regions result in 
premature termination of ORF3a and ORF9c. a, Table of the SARS-CoV-2 
proteins, including molecular mass, sequence similarity with the SARS-CoV 
homologue and inferred function based on the SARS-CoV homologue. b, 
Immunoblot detection of 2×Strep tag demonstrates expression of each bait in 
input samples, as indicated by the red arrowheads. For each bait, input from 
one of the three replicates prepared and affinity purified for mass 
spectrometry was used for western blot (n = 1). For gel source data, see 

Supplementary Fig. 1. c, Schematic of ORF3a (light green) and ORF3b (dark 
green) overlapping regions. A premature stop codon in ORF3b at position 14 
(E14*) corresponds to a Q57H mutation in ORF3a. d, Schematic of the N (red), 
ORF9b (green) and ORF9c (green) overlapping regions. Two mutations in the N 
protein (S194L and S197L) correspond to premature stop codons at positions 41 
and 44 in ORF9c. The analysis is based on 2,784 sequences obtained from 
GISAID on 4 April 2020.



Extended Data Fig. 2 | Clustering analysis of the AP-MS dataset reveals 
good correlation between biological replicates of individual baits. All 
AP-MS runs (n = 3 biologically independent samples) were compared and 
clustered using artMS84. All Pearson’s pairwise correlations between MS runs 
are shown and are clustered according to similar correlation patterns. 

Correlation between replicates for individual baits ranges from 0.46 to 0.72, 
and in most cases the experiments corresponding to each bait cluster together, 
with the exception of a few baits with lower numbers of specific host interactions  
(for example, E, NSP2, ORF6, ORF3a and ORF3b).
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Extended Data Fig. 3 | Enrichment of GO biological processes for SARS- 
CoV-2 host factors. We performed GO biological process enrichment analyses 
(Methods) for the host factors identified as binding to each SARS-CoV-2 viral 

protein and the top five most significant terms for each viral protein are shown. 
The P values were calculated using a hypergeometric test and a false-discovery 
rate was used to account for multiple-hypothesis testing.



Extended Data Fig. 4 | Enrichment of Pfam protein families for SARS-CoV-2 
host factors. The enrichments of individual protein family domains from the 
Pfam database85 was calculated using a hypergeometric test, for which success 
is defined as the number of domains, and the number of trials is the number of 
individual preys that were affinity purified with each viral bait. The population 
values were the numbers of individual Pfam domains in the human proteome. 

The P values were not adjusted for multiple testing. To make sure that the  
P values that indicated enrichment were meaningful, we only considered Pfam 
domains that have been affinity purified at least three times with any 
SARS-CoV-2 protein and that occurred in the human proteome at least five 
times. Here, we show Pfam domains with the lowest P value for a given viral bait 
protein.
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Extended Data Fig. 5 | Lung mRNA expression and specificity of SARS-CoV-
2-interacting human proteins relative to other proteins. a, Scatterplot of 
the lung mRNA expression (TPM) versus enrichment of lung mRNA expression 
(lung TPM/median of all tissue TPM) for human-interacting proteins. Red 
points denote drug targets that are labelled with their gene names. Points 
above the horizontal blue line represent interacting proteins that are enriched 

in lung expression and show how most SARS-CoV-2-interacting proteins tend to 
be enriched in the lung. b, Gene expression in the lung of the high-confidence 
human-interacting proteins was observed to be higher compared to all other 
proteins. Blue, interacting proteins (n = 332, median = 25.52 TPM); grey, all 
other proteins (n = 13,583, median = 3.198 TPM). P = 0.0007 using a Student’s 
t-test.



Extended Data Fig. 6 | Candidate targets for the viral NSP5 protease.  
a, Wild-type NSP5 and NSP5(C145A) (catalytic dead mutant) interactome.  
b, Domain maps of HDAC2 and TRMT1, illustrating predicted cleavage sites 
(using NetCorona 1.0). HDAC, histone deacetylase domain; NLS, nuclear 
localization sequence; MTS, mitochondrial targeting sequence; SAM-MT, 

S-adenosylmethionine-dependent methyltransferase domain. c, Peptide 
docking of predicted cleavage peptides into the crystal structure of SARS-CoV 
NSP5. d, NSP5-cleavage consensus site for SARS-CoV (left) and SARS-CoV-2 
(right).
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Extended Data Fig. 7 | Consensus analysis of SARS-CoV-2 ORF6 
homologues. a, Sequence logo of SARS-CoV-2 ORF6 homologues, showing 
sequence conservation at each position computed from a multiple-sequence 
alignment of 35 sequences. The key methionine M58, and the acidic residues 
E55, E59 and D61 of the putative NUP98–RAE1-binding motif are shown to be 
highly conserved. Homology was determined from alignments to full-length 

sequences. Colours indicated chemical properties of amino acids: polar (G, S, 
T, Y, C; green), neutral (Q, N; purple), basic (K, R, H; blue), acidic (D, E; red) and 
hydrophobic (A, V, L, I, P, W, F, M; black). b, Multiple-sequence alignment of 
SARS-CoV-2 ORF6 homologues. The query sequence is shown at the top 
(sequence 1, ref|YP_009724394.1). Sequence coverage (cov) and percentage 
identity (pid) are shown for each homologous sequence.



Extended Data Fig. 8 | Viral growth and cytotoxicity for compounds tested 
in New York. Viral growth (percentage infection; red) and cytotoxicity (black) 
results for compounds tested at Mount Sinai in New York. TCID50 assay results 
(green) for zotatifin, hydroxychloroquine and PB28 are also shown. Zotafitin 

and midostaurin were tested in two independent experiments and data are 
shown in two individual panels. Data are mean ± s.d.; n = 3 biologically 
independent samples. The full dataset is available in Supplementary Table 6.



Article

Extended Data Fig. 9 | Virus plaque assays, qRT–PCR and cell viability for 
compounds tested in Paris. Plaque assay (viral titre; red), qRT–PCR (viral RNA; 
blue) and cell viability (Alamar blue; black) results for compounds tested at the 
Pasteur Institute in Paris. PF-846 was tested in two independent experiments 
and data are shown in two individual panels. Data are mean ± s.d.; for virus 

plaque assay and RT–qPCR, n = 3 biologically independent samples for 
drug-treated cells, n = 5 for PS3061, n = 6 for DMSO controls; for cell viability, 
n = 6 biologically independent samples for drug-treated cells and DMSO 
controls. The full dataset is available in Supplementary Table 6.



Extended Data Fig. 10 | Activity of sigma ligands. a, The drugs cloperastine 
and clemastine can be readily fit into the agonist-bound structure of the 
sigma-1 receptor. b, Compounds tested for antiviral activity with annotated 
sigma-1 receptor and/or sigma-2 receptor (also known as TMEM97) activity are 
shown. Inhibition pIC50 values of SARS-CoV-2 infection are shown from blue to 
yellow, mode of functional activity at the sigma-1 receptor is shown by mark 
shape (upwards triangle, agonist; downwards triangle, antagonist; circle, 

binding), and pKi values for the sigma-1 receptor and sigma-2 receptor are 
shown along the x and y axes. We have not yet tested chloroquine for antiviral 
activity. Binding of E-52862 at the sigma-2 receptor is reported to be greater 
than 1 μM. Activities of pimozide and olanzapine at the sigma-2 receptor have 
not been reported. Activity of olanzapine at the sigma-1 receptor is reported to 
be greater than 5 μM.
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Extended Data Fig. 11 | Astemizole is a potent sigma-2 receptor ligand. a, b, Concentration–response curves of astemizole from radioligand displacement 
assays for the sigma-2 (a; Ki = 95 nM) and the sigma-1 (Ki = 1.3 μM) receptors are shown. Data are mean ± s.e.m.; n = 4 independent assays for each receptor.



Extended Data Fig. 12 | Off-target activities for characteristic Sigma 
receptor ligands. Dose–response curves against a panel of eight targets that 
can confer adverse cardiac responses, respiratory difficulties and dry-mouth 
effects for chloroquine, hydroxychloroquine, PB28, PD-144418 and clemastine. 
These results are not meant to represent or replace a comprehensive test 
against off-target panels, as might commonly be assayed in drug progression 
for clinical use. The eight targets include the alpha-2A adrenergic receptors: 

alpha 2A (encoded by ADRA2A), alpha 2B (encoded by ADRA2B), and alpha 2C 
(encoded by ADRA2C); as well as the muscarinic acetylcholine receptors: M1 
(encoded by CHRM1), M2 (encoded by CHRM2), M3 (encoded by CHRM3), M4 
(encoded by CHRM4) and M5 (encoded by CHRM5). Data are mean ± s.d.; n = 3 
biologically independent samples. The table summarizes the fitted pKi values 
for the five ligands at the eight targets.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All MS data was acquired on a Thermo Fisher Scientific Q-Exactive Plus mass spectrometer using the Thermo software Xcalibur (4.2.47) 
and Tune (2.11 QF1 Build 3006).

Data analysis Raw mass spectrometry data were searched using MaxQuant (version 1.6.11.0) and scored using MIST (available at https://github.com/
kroganlab/mist) and SAINT (version 3.6.3). Custom scripts were designed to map interacting proteins to drugs and compounds (avaialble 
at https://github.com/momeara/BioChemPantry/tree/master/vignette/COVID19). Data on virus assays were analyzed using  GraphPad 
Prism version 7.00 for Mac (GraphPad Software, La Jolla California USA, www.graphpad.com). High-confidence protein-protein 
interactions were visualized using Cytoscape version 3.7.1. The over-representation analysis (ORA) was performed using the enricher 
function of clusterProfiler package in R with default parameters.  Protein E sequences were aligned using Clustal Omega (https://
www.ebi.ac.uk/Tools/msa/clustalo/).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability: The mass spectrometry raw data and search results files generated during the current study are available in the ProteomeXchange Consortium via 
the PRIDE partner repository with the dataset identifier PXD018117 (https://www.ebi.ac.uk/pride/archive/projects/PXD018117) and PPI networks have also been 
uploaded to NDEx (https://public.ndexbio.org/#/network/43803262-6d69-11ea-bfdc-0ac135e8bacf). All data generated or analyzed during this study are included 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size It is an accepted practice in the field of large-scale interactomics (via AP-MS), that biological triplicate measurements are sufficient for 
measuring high confidence interactions using the methods and software performed in this study.  At least three biological replicates were 
independently prepared for affinity purification. 
All antiviral experiments at Mount Sinai were performed in triplicate. 
For experiments performed at the Institut Pasteur: A sample size of n=3 was chosen for each treatment assessing the effect of drug treatment 
on viral RNA and infectious units following infection in pre-treated cells. In control-treated cells, n=6. This sample size was chosen as it is 
sufficient in medium-throughput screening in order to identify differences in viral replication vitro following drug treatment compared to 
control conditions. A sample size of n=6 was chosen for assessing the effect of drug treatment on cell viability (alamar blue). This was because 
this larger sample size enabled us to identify any outliers. 

Data exclusions On cell viability assays performed at the Institut Pasteur, replicates were excluded if they were considered outliers (if cell viability was 
significantly different compared to other replicates). No other data were excluded from the study.

Replication Reproducibility between bioreplicates can be measured by the degree of variance explained by matching LC-MS feature identifications 
(peptide and charge) between replicates. We used standard artMS procedures. First, LC-MS features were identified and quantified by 
MaxQuant in each LC-MS run. Next, the strength of effect was measured as a correlation coefficient (Pearson’s r) between each pair of LC-MS 
runs, pairing individual feature intensities between runs by their peptide and charge identifications. Correlation patterns between LC-MS runs 
from biological replicates are clustered here along the x and y axes, showing both high correlation coefficients (near 1.0) as well as a trend for 
most same-bait replicates to cluster by similarity with each other, indicating consistent and bait-specific results. 
For virus assays, all finding were replicated a minimum of 2 times at Mount Sinai. At the Institut Pasteur, drug screening of positive hits were 
confirmed by replication of the experiment at least once.

Randomization Sample randomization is not relevant to our study because experimental groups do not exist. Moreover, AP-MS samples were processed and 
collected on the same instruments in a short time frame (roughly 3 weeks time).  Therefore instrument performance did not have time to 
drift.  QCloud was used to control instrument longitudinal performance during the project.

Blinding Blinding is not relevant to the AP-MS data because our data are acquired and processed systematically with established scoring algorithms, 
excluding human bias. For viral assays at Institut Pasteur, Investigators were blinded to group allocation by defining each drug with a number. 
The name of each drug (numbered 1 to 66) were not revealed to investigators during the screening. Additionally, different investigators were 
involved at different stages of the process (pre-treatment, infection, data collection, analysis).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Anti-strep antibody, Qiagen # 34850 (1:2,500).  Anti-mouse-HRP conjugate, BioRad # 1706516 (1:20,000) 
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Poly-clonal anti-SARS-CoV-NP antisera produced in a single rabbit, Garcia-Sastre lab at Mount Sinai (1:10,000). Due to the 
current shelter-in-place order we were unable to identify the lot numbers of commercially available antibodies.

Validation Use of the anti-strep antibody and anti-mouse HRP conjugate by western blot only detects signal in cell lysate from cells 
expressing Strep-tagged fusion proteins.  

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK-293T/17 cells were procured from the UCSF Cell Culture Facility, now available through UCSF's Cell and Genome 
Engineering Core (https://cgec.ucsf.edu/cell-culture-and-banking-services); cell line collection listed here: https://
ucsf.app.box.com/s/6xkydeqhr8a2xes0mbo2333i3k1lndqv (CCLZR076) . Vero E6 cells used at Mount Sinai and Institut 
Pasteur were purchased from ATCC (VERO C1008 [Vero 76, clone E6, Vero E6] (ATCC® CRL-1586™))

Authentication STR analysis by the Berkeley Cell Culture Facility on August 8, 2017 authenticates our HEK-293T/17 cells with 94% probability. 
The African green monkey kidney epithelial Vero E6 (ATCC CRL-1586)  is derived from ATCC, and thus is already 
authenticated.

Mycoplasma contamination Cells were tested on July 3, 2019 using the MycoAlertTM Mycoplasma Detection Kit (Lonza LT07-318) and were negative: B/A 
ratio < 1 (no detected mycoplasma). 
Vero E6 cells: The cell line was tested for mycoplasma contamination prior to commencement of experiments and was 
negative.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.
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