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ScienceDirect
Understanding allosteric regulation of proteins is fundamental

to our study of protein structure and function. Moreover,

allosteric binding pockets have become a major target of drug

discovery efforts in recent years. However, even though the

function of almost every protein can be influenced by allostery,

it remains a challenge to discover, rationalise and validate

putative allosteric binding pockets. This review examines how

the discovery and analysis of putative allosteric binding sites

have been influenced by the availability of centralised facilities

for crystallographic fragment screening, along with newly

developed computational methods for modelling low

occupancy features. We discuss the experimental parameters

required for success, and how new methods could influence

the field in the future. Finally, we reflect on the general problem

of how to translate these findings into actual ligand

development programs.
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Introduction
The concept of allostery is fundamental to our under-

standing of biomolecular reactions. It means that struc-

tural perturbations away from the active site, can lead to

modulation of protein function. The field was initially

defined by the KNF (Koshland–Nemethy–Filmer) [1]
www.sciencedirect.com 
and MWC (Monod–Wyman–Changeux) [2] models

which were derived from oligomeric proteins where allo-

steric regulation was described through conformational

changes between well-defined structural states. But the

concept was considerably refined with the introduction of

the energy landscape model [3] and the realisation that

allostery can manifest itself without discernible confor-

mational changes [4]. This has eventually resulted in a

unified view of allostery [5,6] where proteins are now seen

as an ensemble of structures which populate different

conformations with different energies [3]. Nevertheless,

allostery remains challenging to rationalise, because

structural changes are often minute and differences in

free energy may be dominated by changes in entropy

related to protein, solvent, or ligand dynamics [4,7].

Allostery is not only fundamental to our understanding of

protein structure and function, but also highly relevant to

drug discovery. Extracellular targets like G-protein-cou-

pled receptors (GPCRs) have a long history of allosteric

modulators [8��], and there is new attention on exploiting

allostery in intracellular targets like kinases [9] or

GTPases [10]. Small molecules that bind in allosteric

binding pockets open up new possibilities to target pro-

teins involved in disease, especially those that have

previously been deemed ‘undruggable’. Allosteric com-

pounds may present an alternative targeting strategy for

targets that have been avoided because their active sites

are too conserved: allosteric binding pockets tend to be

less conserved, making them more tractable for develop-

ing target-specific compounds [11].

Recent successes also demonstrate how allosteric mole-

cules can circumvent other problems of designing small

molecules against orthosteric sites [12]. For example, Ras

has been a posterchild for ‘undruggable’ proteins because

it has high affinity at its active site for its highly abundant

natural ligands (GTP/GDP). Recent efforts identified

molecules that bind allosteric binding pockets achieving

reasonable potency either through covalent linkage to a

nearby mutant cysteine [13] or by targeting the switch I/II

pocket which was previously deemed undruggable [14�].
A second example where allosteric modulation is a better

strategy comes from the family of protein tyrosine phos-

phatases (PTPs). Their active sites are generally highly

positively charged, to accommodate the negative charge

on the phosphotyrosine. Consequently, in vitro inhibitors

of phosphatases are generally highly charged as well,

meaning they cannot cross cell membranes. A clever

screening strategy was employed on SHP2 PTP, which
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counter-selected against hits that were likely to target the

orthosteric site, to yield a molecule that inhibits allosteri-

cally by ‘gluing’ the regulatory SH2 domains over the

active site [15]. Molecules designed to bind this site, and

another allosteric pocket [16] have favourable drug-like

properties, avoiding the problems that have faced PTP

inhibitors in the past. Thus, although allosteric pockets

may generally be smaller than orthosteric pockets, this

does not prevent their drugability [14�].

Despite the practical and theoretical importance of

allosteric regulation, it remains a major challenge to

describe the energy landscape of proteins, as well as to

predict sites and investigate the effect of modulating

agents. Most computational and experimental methods

interrogate only one aspect and invariably require

orthogonal experiments [17]. Instead, crystallography

has the potential to provide comprehensive insights

from a single approach, now that fragment screening

directly in crystals has become routinely accessible.

This review examines how the directly observed map

of protein–ligand interactions across the entire protein

surface might allow allosteric opportunities to be

directly inferred, and indeed be more thoroughly

probed through chemical elaboration of fragment hits

to achieve binding potency; and what the future holds

for this approach.

Crystal packing does not preclude studying
protein dynamics
Protein crystals tend to be seen as static entities and

therefore unsuitable for studying allosteric events,

given that these involve conformational changes. How-

ever, it has been known for a long time that proteins

remain catalytically active within crystals [18], despite

the environment within a crystal lattice having little

resemblance to the actual cellular neighbourhood of a

protein. Proteins are highly dynamic molecules, but

even though the lattice restrains their accessible con-

formational space (Figure 1), they retain a remarkable

degree of plasticity [19] and often display surprisingly

large-scale conformational changes during ligand bind-

ing [20] (Supplementary Movie 1). The accessible

conformational space depends on how the protein has

packed in a given crystal form, and analysis of multiple

crystal forms gives a more complete picture of the

conformational landscape [21].

This means there is in fact a vast need to get better at

discovering multiple crystal forms for any crystallising

protein, because the energy landscape model highlights

that unexpected conformations cannot simply be dis-

missed as ‘crystallographic artefacts’, since crystal con-

tacts are weak. Instead, it is far more instructive to think

of crystals as capturing (purifying) low-energy states of

the protein, even ones that are not highly populated

under some physiological conditions (Figure 1b). Any
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such conformation is thus relevant for study and targeting

with small molecules. Different crystal forms are most

often obtained by chance and it is still not possible to

produce crystal forms on demand, but productive

approaches include matrix seeding [22], changing expres-

sion constructs [23] or surface mutations [24,25].

Recently, new methods have been devised which explic-

itly take advantage of the structural plasticity of proteins

in crystals to study allostery. Ranganathan et al. monitored

the structural changes caused by an electric field through

time-dependent Laue diffraction experiments [26],

whereas Fraser et al. have established multi-temperature

crystallography as a means to reliably map allosteric net-

works by defining and explicitly modeling structural

elements that populate different conformations as the

data collection temperature is shifted in steps from the

standard 100 K to 273�310 K [27].

Crystallographic fragment screens modulate
the energy landscape
The use of X-ray crystallography to probe the binding

characteristics of the entire protein surface is not new, and

several elegant studies in the 90s mapped surface inter-

actions by immersing cross-linked protein crystals in pure

organic solvents [28,29].

At around the same time, fragment-based lead discovery

(FBLD) emerged as an alternative to high-throughput

screening (HTS) for inhibitor discovery [30]. The basic

concept is simple: chemical starting points for inhibitor

development are identified by screening simple, frag-

ment-like compounds, rather than complex, lead-like

molecules. Fragment libraries can be orders of magnitude

smaller than HTS libraries, because their low molecular

weight and consequential low molecular complexity

means they sample chemical space more efficiently

[31]. The drawback is that fragments bind weakly, so

the screening technique and validation cascade are crucial

[32], and accordingly many methodologies have been

explored and refined over the years [33]; but the earliest

approach [34], of soaking compounds into crystals to

directly observe binding structurally, has remained rele-

vant throughout.

The primary aim of most screening campaigns is to find

starting points for chemical probe or drug discovery

projects, which therefore tend to focus on hits found in

well-characterised, orthosteric sites. Nevertheless,

screening by X-ray crystallography routinely finds frag-

ments bound all over the protein surface (Figure 3)

[11,35,36] and fragment binding to such secondary pock-

ets can lead to rearrangements around the site of interac-

tion which can result in subtle perturbations in distant

parts of the structure (Figure 2). However, to consider a

site truly allosteric requires orthogonal experiments to

establish whether modulating them has measureable
www.sciencedirect.com
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Figure 1

(a) (b)
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Accessible conformational landscape in protein crystals. (a) The plots show a schematic representation of the energy landscape. Binding of an

allosteric effector molecule leads to a conformational change which shifts the energy landscape from the active (top) to the inactive form (bottom).

The shaded regions indicate the accessible conformational space in two different crystal forms. In the example, crystal form 1 can accommodate

conformational changes which accompany binding of an allosteric effector, whereas crystal from 2 can only accommodate one conformation. (b)

Structure of human KDM4D in two different crystal lattices. KDM4D is a histone demethylase and the region encircled in orange indicates the

active site pocket. The protein conformation crystallised in space group P3221 is identical with a structure of KDM4D in complex with H3K9Me3,

whereas the conformation crystallised in space group P43212 has a distorted active site pocket and appears to represent an inactive

conformation. Hence, any ligands that are able to stabilise this unusual conformation, whether by binding to the active site or to any other

conformation-specific pocket, should in principle be able to serve as inhibitors. The conformation observed in space group P43212 is stabilised

through a loop which is part of the active site (coloured in red), but which is involved in crystal contacts and which therefore does not allow

conformational changes that would lead to a properly formed active site pocket.
biochemical effects, and therefore they are here denoted

‘putative allosteric’ pockets to highlight the tentative

nature of these non-orthosteric binding events. While

binding is often too weak to give a measurable signal

in biophysical or biochemical assays, these direct obser-

vations can provide a blueprint for the analysis of alloste-

ric networks [37��]. In other cases, fragment binding can

uncover conformational states which deviate considerably

from the average [20]. Hence, a global analysis of the

individual snapshots obtained from a fragment screen can

give a surprisingly dynamic picture of the energy land-

scape which resemble trajectories from MD simulations

(Supplementary Movies 2 and 3).
www.sciencedirect.com 
X-ray crystallography is now a routine method
for fragment screening
While fragments are excellent probes for characterising

the binding landscape of proteins, not only are their

interactions weak so that binding is difficult to detect

[38], but also to associate them with putative allosteric

pockets requires direct 3-dimensional readout from X-ray

crystallography or NMR spectroscopy. For a long time,

crystallography as primary screening method remained

comparatively rare, given the technical difficulty to all but

a few well-optimised organisations [39,40]. However, the

last decade has seen vast technological advances regard-

ing beam intensity, beamline instrumentation, robotics
Current Opinion in Structural Biology 2020, 65:209–216
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Figure 2

(a) (b) (c)
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Fragment binding modulates the surface topography of proteins. The figure shows a comparison of the ground-state structure of the SARS-Cov-2

main protease (Mpro) (PDB ID 5R8T) and in complex with a fragment (PDB ID 5RF5). The protein crystallised with one molecule in the asymmetric

unit, but forms a dimer in solution which is present as a crystallographic dimer in the crystal. (a) Superposition of the two proteins shows no

discernible differences in the main-chain conformation of the two structures. (b),(c) Surface representation of ligand-free and fragment-bound

Mpro. The active site pocket of the protein of one subunit is indicated with an orange circle, and the fragment (red) binds on the back side of the

other subunit. The insets on the top provide a magnified view of the affected region and highlight subtle conformational changes which are caused

by fragment binding and which seem to propagate all the way to the active site of the adjacent protomer. In this case, the difficulty remains

establishing whether these are merely baseline structural fluctuations, or instead the result of true allosteric signalling.

Figure 3

STAG1 STAG1 human Brachyury human ALAS2
N-terminal domain
(PDB G_1002083)

central domain
(PDB G_1002084)

(PDB G_1002080) (PDB G_1002078)
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Crystallographic fragment screening comprehensively explores the binding surface of proteins. Overlay of fragment hits from four recent screening

campaigns conducted at the DLS XChem facility by SGC Oxford. The structures are available from the PDB under the provided group deposition

ID. Additional information about the targets and fragment hits can be found at the SGC website (https://www.thesgc.org/tep). Results from all

SGC Oxford fragment campaigns can be accessed via Fragalysis (https://fragalysis.diamond.ac.uk).
and software which all have resulted in a step-change in

terms of productivity [41]. This has led to the develop-

ment of dedicated, crystallographic screening centres,

most notably at the Diamond Light Source (XChem),
Current Opinion in Structural Biology 2020, 65:209–216 
ESRF/EMBL Grenoble, BESSY (HZB) and MAX IV

(FragMAX). These publicly accessible facilities provide

platforms which enable screening of hundreds of frag-

ment molecules per day [42�]. Availability of these
www.sciencedirect.com
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centres has turned crystallography into one of the most

popular fragment screening methods [43].

Another major, but rarely discussed, advantage of the

approach is the existence of a well-established data dis-

semination platform, namely the Protein Data Bank

(PDB) [44] (Figure 3), providing a vast and freely avail-

able resource of data for meta-analyses [45�]. Other plat-

forms exist, such as the Fragalysis Cloud (https://

fragalysis.diamond.ac.uk) [46] that we developed to serve

data from all our fragment campaigns.

New algorithms enable identification of low-
occupancy conformations
Structural models resulting from X-ray crystallography

represent an average of the billions of molecules in a

crystal. As a consequence, less-populated, high-energy,

conformational states, tend to be ‘blurred out’, even

though these minor states remain present in electron

density maps [47] and indeed frequently make map

interpretation difficult. To make that process less subjec-

tive, methods like RINGER [47] and qFit [48] were

devised to algorithmically sample electron density maps

and thereby expose hidden alternative conformations

(Figure 4b). Alternatively, ensemble refinement, where

local molecular vibrations are sampled by molecular-

dynamics (MD) simulations constrained by agreement

to the experimental data, can be used to better model the

inherent dynamics of protein molecules [49] (Figure 4a).

These methods are helpful in finding allosteric networks,

but do not directly reveal the ligand-bound conformation
Figure 4

(a) (b) 

Strategies to model hidden alternative conformations in X-ray crystal structu

Algorithmic sampling of electron density maps with qFit (PDB ID 6NI9). (c) M

conformations (PDB ID 5PHL).

www.sciencedirect.com 
on its own, which is problematic for weakly binding

fragment which do not bind to a majority of protein

molecules in a crystal. The PanDDA (Pan-Dataset Den-

sity Analysis) algorithm addresses this by taking advan-

tage of the large number of datasets collected during a

fragment campaign to detect partial-occupancy ligands

that are not visible in normal crystallographic maps [50��].
PanDDA uses a statistical analysis to identify bound

ligands and resulting conformational changes, and then

generates an ‘event map’ for the bound state of the

crystal. The event map approximates what would be

observed if the ligand was bound at full occupancy,

and is generated by subtracting the unbound fraction

of the crystal from the partial-occupancy dataset. The

observed structural changes are often imperceptible in

standard crystallographic maps and therefore facilitate

identification of binding pockets and provide a direct

readout of the effect of modulating agents (Figure 4c).

Routine room-temperature crystallography
opens up new possibilities to study allostery
For decades, routine crystallographic data collection has

relied on frozen crystals at 100 K, because cryogenic

conditions increase crystal lifetime by mitigating radia-

tion damage, and consequently, sample handling and

logistics are highly optimised for cryo-crystallography,

both at synchrotron sources and home labs [51]. However,

cryogenic temperatures tend to mask alternate conforma-

tional states that are only accessible at ambient tempera-

tures and therefore bias our conclusions [52,53]. Room

temperature data collection is thus of great scientific
(c)
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res. (a) MD-driven ensemble refinement (PDB ID 3CA7). (b)
ulti-crystal PanDDA method for extracting low-occupancy

Current Opinion in Structural Biology 2020, 65:209–216
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interest, but until recently has been very difficult to

perform, and certainly not routinely.

This is changing fast: the development of new light

sources and sample handling procedures has brought a

resurgence of room-temperature crystallography. X-ray

free-electron lasers (XFELs) can produce radiation-dam-

age free room temperature structures [54,55], but remain

difficult to access. Instead, the intensity of state-of-the-art

synchrotron sources, combined with ultra-fast detectors,

enables many similar experiments [51,56]. Alternatively,

dedicated end-stations for in-situ experiments consider-

ably extend experiments that can be made with standard

crystal plates [57–59]. These developments will power-

fully complement established multi-temperature experi-

ments, which enable mapping of allosteric networks in

proteins [37��]. Combined information on bound ligands

at physiologically relevant temperatures and knowledge

of the underlying ‘connecting rods’ will greatly facilitate

discovery of allosteric drugs.

Outlook
The self-evident power of structure-based mapping of

protein surfaces is tempered by the remaining challenge

of assessing the biochemical or biological relevance of

these pockets. Developing high-affinity small molecule

ligands is even more difficult for these pockets than for

orthosteric sites, especially if a very specific modulation of

protein function is required, so for the time being, com-

plementary approaches will remain vital. Disulphide

tethering and mutational studies are established methods

for functional validation of putative allosteric pockets

[13,60] and the availability of cheap synthetic genes

combined with high-throughput purification simplifies

their application. Covalent fragments offer an attractive

possibility for developing site-specific binders due to

their unmatched potency, selectivity, and duration of

action [61] and work on new warheads will greatly expand

the scope of the method beyond cysteine residues [62].

An interesting new approach comes from the PROTACs

field (proteolysis-targeting chimeras) [63]: these bivalent

compounds mediate interactions between a target protein

and E3 ligases, thereby labelling the protein for cellular

degradation by the proteasome. Substrate degradation

seems to be driven by cooperative protein–protein recog-

nition, rather than target binding affinity and therefore

even suboptimal ligands can end up potent enough when

complemented with the right ligase [64]. This conceiv-

ably puts many putative pockets in reach of the tech-

nique, either for studying in vivo through actual degrada-

tion behaviour, or in vitro by using the cooperatively

achieved potency to study enzyme or other kinetics.

Crystallographic fragment screens can routinely identify

putative allosteric pockets, but they may contain addi-

tional, still unrealised insights. Typically, less than 10% of

all collected datasets of a screening campaign have
Current Opinion in Structural Biology 2020, 65:209–216 
fragments bound, so there are a large number of structures

available that should allow us to determine crystal form

dependent, baseline conformational states. This would

enable us to determine whether the observed, subtle

perturbations of fragments bound to putative allosteric

sites are indeed caused through allosteric communication

or are still within expected conformational fluctuations

(Figure 2).

A key open question in the fragment field is whether

crystallographically observed but weakly binding frag-

ments are useful starting points for compound elabora-

tion; this question is even more important for probing

putative allosteric sites where the biochemical effect may

not even be known, so that only biophysical binding can

be assessed. As the fragment field in general develops

new technologies and methods for rapid fragment elabo-

ration to address this challenge [65,66], it will directly

advance the discovery of allosteric drugging opportunities

too.

The advent of 4th generation synchrotron facilities will

further increase throughput, enable new experiments and

ultimately lead to many more and diverse fragment

screening campaigns. In the longer term, this will be

complemented by cryo-EM for systems that are not

suitable for crystallographic analysis [67]. A big challenge

for the coming years will be how to transform the wealth

of information from protein-fragment structures and

multi-dataset experiments into novel biological and med-

ical insights. We still lack the necessary infrastructure for

data presentation and analysis in order to quickly devise

new hypotheses and turn them into orthogonal experi-

ments. The sheer amount of available data will require a

concerted, interdisciplinary effort in order to harness the

full potential of the method. Technical approaches like

the Fragalysis cloud computing platform will help tackle

these challenges, and initiatives like it will allow not only

discovering true allosteric sites, but lead to an increasingly

thorough understanding of the structural principles gov-

erning allosteric regulation.
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