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Abstract

Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level
ensemble models that accurately represent conformational heterogeneity is vital to
deepen our understanding of how proteins work. Modeling ensemble information from
X-ray diffraction data has been challenging, as traditional cryo-crystallography restricts
conformational variability while minimizing radiation damage. Recent advances have
enabled the collection of high quality diffraction data at ambient temperatures,
revealing innate conformational heterogeneity and temperature-driven changes. Here,
we used diffraction datasets for Proteinase K collected at temperatures ranging from
313 to 363 K to provide a tutorial for the refinement of multiconformer ensemble
models. Integrating automated sampling and refinement tools with manual adjust-
ments, we obtained multiconformer models that describe alternative backbone and
sidechain conformations, their relative occupancies, and interconnections between
conformers. Our models revealed extensive and diverse conformational changes across
temperature, including increased bound peptide ligand occupancies, different Ca2+

binding site configurations and altered rotameric distributions. These insights empha-
size the value and need for multiconformer model refinement to extract ensemble
information from diffraction data and to understand ensemble–function relationships.

1. Introduction

All molecular processes are defined by energy landscapes, which are
in turn manifested by an ensemble of interconverting conformational states
(Austin, Beeson, Eisenstein, Frauenfelder, & Gunsalus, 1975; Benkovic &
Hammes-Schiffer, 2003; Benkovic, Hammes, & Hammes-Schiffer, 2008;
Frauenfelder, Parak, & Young, 1988; Frauenfelder, Sligar, & Wolynes,
1991; Hammes, Benkovic, & Hammes-Schiffer, 2011). For example,
ligand binding affinity is defined by the relative population of the bound to
the unbound state(s), and enzymatic rates by the possibility of crossing to the
transition state from the ground state. Therefore, understanding protein
functions requires obtaining and comparing conformational ensembles in
different ligand-bound states under physiologically-relevant conditions.
Because conformational ensembles reveal probabilities of states and therefore
their underlying energetics, they provide the possibility to relate structural
features to thermodynamic quantities for molecular processes. This is a goal
unattainable using single conformer structural models and an essential step
towards a quantitative and predictive understanding of protein functions.

The need for conformational ensembles to decipher protein functions
has long been recognized, yet experimental approaches to obtain ensemble
information are limited by their resolution or by technological challenges.
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For example, nuclear magnetic resonance (NMR) methods allow us to deter-
mine the degree of motion of protein groups and the rate of interconversions
between sub-states but do not reveal atomic-level details of these sub-states
(Ishima & Torchia, 2000; Kempf & Loria, 2003; Kleckner & Foster, 2011;
Kovermann, Rogne, &Wolf-Watz, 2016; Mittermaier & Kay, 2006). Similarly,
Förster resonance energy transfer (FRET) experiments are used to study protein
conformational dynamics, but only reveal large conformational changes reported
by the distance between two groups (the donor and the acceptor) (Mazal &
Haran, 2019; Okamoto & Sako, 2017; Schuler & Eaton, 2008).

In contrast, X-ray crystallography provides atomic-level information
about protein three-dimensional structures. The ability to model individual
atom positions from diffraction data has allowed us to relate the shape of a
protein to its function (Indiani & O’Donnell, 2006; Kato, Miyakawa, &
Tanokura, 2018), identify specific residues involved in biological processes,
and propose models for how they function (Robertus, Kraut, Alden, &
Birktoft, 1972; Tsukada & Blow, 1985). In principle, X-ray diffraction data
represent an ensemble average from multiple conformational states
(DePristo, de Bakker, & Blundell, 2004; Rejto & Freer, 1996; Smith,
Hendrickson, Honzatko, & Sheriff, 1986), but obtaining and modeling
ensembles from X-ray data have been challenging for two practical reasons.
First, the majority of structures deposited in the Protein Data Bank (PDB)
are obtained under cryogenic conditions (∼100 K) (Garman, 2003). While
useful in reducing radiation damage, cryo-cooling alters the conformational
landscape of a protein because the low temperature strongly favors low
enthalpy states and quenches many degrees of freedom (Frauenfelder,
Petsko, & Tsernoglou, 1979; Weik & Colletier, 2010). As shown in
multiple studies, protein dynamics typically undergo a significant change
(termed “glass transition”) at ∼180–200 K, suggesting that structural fea-
tures from models obtained under this temperature range may reflect cryo-
artifacts instead of physiologically-relevant protein features (Fraser et al.,
2011; Halle, 2004; Keedy et al., 2014; Rasmussen, Stock, Ringe, & Petsko,
1992; Tilton, Dewan, & Petsko, 1992). Indeed, crystallographic data
obtained at ambient temperatures reveal conformational states that are
hidden or different from cryo structures (Fraser et al. 2009, 2011; Keedy,
Kenner et al., 2015; Yabukarski et al., 2022).

Second, most of the structures deposited in the PDB are modeled as
single conformers, which in many cases do not explain the full density data
(Furnham, Blundell, DePristo, & Terwilliger, 2006; Gutermuth, Sieg,
Stohn, & Rarey, 2023; Smith et al., 1986). Single conformer models
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typically use isotropic or anisotropic B-factors to represent variability of
atomic positions, but these parameters can only account for harmonic
deviations from the average positions, with the assumption that atoms
fluctuate within a single local minimum (Kuzmanic, Pannu, & Zagrovic,
2014). Nevertheless, a large fraction of residues may be able to occupy
multiple local minima of similar energies, resulting in anharmonic electron
density distributions (Kuriyan, Petsko, Levy, & Karplus, 1986). More
recently, modeling techniques have emerged to model anharmonic dis-
placements from the underlying diffraction data to reveal the alternative
conformations that the protein can adopt (Burnley & Gros, 2013; Burnley,
Afonine, Adams, & Gros, 2012; Forneris, Burnley, & Gros, 2014; Fraser
et al., 2011; Ginn, 2021; Keedy, Fraser, & van den Bedem, 2015; Riley
et al., 2021; van Zundert et al., 2018). However, unlike methods to obtain
single conformer models which have become standardized and widely
applied, methods to efficiently search for and model alternative con-
formations require specialized software and techniques that are only used
by a relatively small community.

To address these challenges in obtaining ensemble models via X-ray
crystallography, we recently described an improved data-collection pipe-
line to minimize radiation damage at ambient temperatures (up to 363 K)
that can be broadly implemented for different proteins and at other
beamlines (Doukov, Herschlag, & Yabukarski, 2020). Here, we focus on
the refinement of X-ray diffraction data obtained at ambient temperatures
to generate multiconformer ensemble models of high quality and inter-
pretability. Using diffraction datasets of Proteinase K collected at a series of
temperatures above the glass-transition range (313–363 K), we provide a
practical roadmap to guide multiconformer model refinement and discuss
refinement choices and their advantages and limitations. In addition, in
these datasets across temperature, we observed changes in the binding
positions of a Ca2+ ion that are required for catalysis, and we describe the
modeling and refinement of alternative Ca2+ binding configurations and
coupled conformational preferences of Ca2+-coordinating residues. Finally,
we show the profound impact of temperature on the Proteinase K con-
formational ensemble revealed by our models, including changes in con-
formational heterogeneity (such as altered rotamer distributions) and
compositional heterogeneity (such as increased peptide-bound states at
higher temperatures), emphasizing the need for ambient- and multi-tem-
perature X-ray crystallography to probe protein conformational landscapes
and reveal hidden conformational features.
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2. Collection of multi-temperature X-ray diffraction
data

We followed the approaches described in Doukov et al. (2020) to
collect diffraction datasets at and above room temperature.

2.1 Obtaining crystals for X-ray diffraction
Tritirachium album proteinase K (Sigma, catalog # P2308) was dissolved at
30 mg/mL in a 50 mM TRIS pH 7.5 (Sigma, T1699) buffer. The protein
was crystallized using a hanging drop setup on a 24 well VDX plate with
sealant (Hampton Research, HR3-171) and 22 mm thick siliconized circle
cover slides (Hampton Research, HR3-247) by mixing 2 µL of protein
solution with 2 µL 1.2 M ammonium sulfate (AS; Sigma, A4915) on the
coverslip, which was placed over 1 mL 1.2 M AS in the VDX plate well.
Prior to data collection, the aqueous layer around the crystals was
exchanged to an inert Paratone-N oil (Hampton Research; # HR2-643).
Paratone-N oil layer significantly reduces evaporation (Hope, 1990;
Pflugrath, 2015; Weik et al., 2005). Oil-exchanged crystals were mounted
on Dual-Thickness MicroLoops LD™ (Mitegen, SKU:M2-L18SP-200)
and MicroGrippers™ loops (Mitegen, SKU:M7-L18SP-300). Excess oil
was removed, and pins were manually mounted on the BL14-1 goni-
ometer at Stanford Synchrotron Radiation Lightsource (SSRL) for data
collection (Doukov et al., 2020). Additional information on the crystal-
lization protocol can be found at https://www.moleculardimensions.com/
products/ready-to-grow-crystallization-kit.

2.2 Achieving high-temperature capabilities and temperature
control

An Oxford Cryosystems Cryostream 800 model N2 cooler/heater (https://
www.oxcryo.com/single-crystal-diffraction/cryostream-800) with a tem-
perature range of 80–400 K was installed to collect high temperature data at
the SSRL beamline 14-1. Because the physical properties of protein crystals
deteriorate over time when exposed to high temperatures, we adapted the
standard nozzle-closing crystal annealer operation to control the crystal
exposure to the heated N2 stream and minimize time at high temperature as
follows. First, the outer layer of the crystal’s aqueous mother liquor was
exchanged with an inert oil (paratone-N) to eliminate the risk of potential
irreproducible crystal dehydration by exposing the crystal to air (Doukov
et al., 2020). After the N2 gas is heated to the desired (high) temperature, the
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annealer paddle is placed in the “closed” position to prevent the gas flow
from reaching the sample and heating it during the experimental setup [i.e.,
crystal mounting and centering, closing the experimental hutch, entering the
experimental parameters into the Blu-Ice control software (McPhillips et al.,
2002)]. Control kinetic measurements showed that a J thermocouple placed
from room temperature (∼293 K) to a 363 K N2 stream (the highest tem-
perature used in this work) was within 0.5% of the desired temperature in
≤10 s (not shown) and we used this equilibration time prior to data collection
(see below). For data collection, the annealer paddle is moved to the “open”
position via the beamline control software Blu-Ice and data collection is
initiated after a ≤10 s temperature equilibration delay (Doukov et al., 2020).

2.3 Diffraction data collection
Proteinase K crystals with dimensions 0.3–0.4 mm on each side were used
for data collection. To approach resolutions similar to cryogenic tem-
peratures, larger crystals are required for the collection of X-ray diffraction
data at and above room temperature, because higher temperature can lead
to more radiation damage (Garman & Owen, 2006; Garman & Weik,
2017; Nave & Garman, 2005; Roedig et al., 2016; Southworth-Davies,
Medina, Carmichael, & Garman, 2007; Warkentin & Thorne, 2010;
Warkentin, Badeau, Hopkins, & Thorne, 2011). To maximize diffraction
intensity while minimizing the number of absorbed photons per unit cell,
the beam and crystal size are matched as closely as possible. We routinely
used the highest beam size of 250 µm (horizontal) by 80 µm (vertical). At
least 100 degrees of rotation data were collected as quickly as possible for
each crystal to avoid dehydration and any macroscale defects in the crystal
that can happen alongside microscopic radiation damage. Usually, each
degree frame was collected for 0.04–0.2 s with the detector distance and
energy adjusted to achieve highest resolution and high quality dataset
(see Table 1, Table S1 from Doukov et al., 2020).

2.4 Data processing
Diffraction data recorded on Eiger 16M PAD detector (Casanas et al.,
2016) was processed with the XDS package (Kabsch, 2010) and the pro-
grams Pointless (Evans, 2006) and Aimless (Evans & Murshudov, 2013), as
implemented in the autoxds in-house processing script at SSRL (https://
smb.slac.stanford.edu/facilities/software/xds/). Absorbed doses were cal-
culated using RADDOSE-3D (Bury, Brooks-Bartlett, Walsh, & Garman,
2018; Zeldin, Gerstel, & Garman, 2013).

6 Siyuan Du et al.

https://smb.slac.stanford.edu/facilities/software/xds/
https://smb.slac.stanford.edu/facilities/software/xds/


Ta
bl
e
1
D
at
a
co
lle
ct
io
n
an
d
re
fin
em

en
t
st
at
is
tic
s.
St
at
is
tic
s
fo
r
th
e
hi
gh
es
t-
re
so
lu
tio
n
sh
el
la
re

sh
ow

n
in
pa
re
nt
he
se
s.

31
3
K

33
3
K

34
3
K

35
3
K

36
3
K

PD
B
id

8S
O
G

8S
Q
V

8S
PL

8S
O
V

8S
O
U

W
av
el
en
gt
h

0.
95
36
9

1.
03
31
6

1.
03
31
6

1.
03
31
6

1.
12
70
9

R
es
ol
ut
io
n
ra
ng
e

35
.3
7–
1.
13

(1
.1
7–
1.
13
)

35
.2
1–
1.
22

(1
.2
64
–1
.2
2)

35
.4
3–
1.
21

(1
.2
54
–1
.2
1)

32
.4
7–
1.
29
1

(1
.3
37
–1
.2
91
)

34
.2
3–
1.
54
2

(1
.5
97
–1
.5
42
)

Sp
ac
e
gr
ou
p

P
43

21
2

P
43

21
2

P
43

21
2

P
43

21
2

P
43

21
2

U
ni
t
ce
ll

68
.4
0
68
.4
0
10
3.
7

90
.0
0
90
.0
0
90
.0
0

68
.0
7
68
.0
7
10
3.
3

90
.0
0
90
.0
0
90
.0
0

68
.4
0
68
.4
0
10
4.
1

90
.0
0
90
.0
0
90
.0
0

68
.3
6
68
.3
6
10
4.
0

90
.0
0
90
.0
0
90
.0
0

68
.4
6
68
.4
6
10
5.
0

90
.0
0
90
.0
0
90
.0
0

T
ot
al
re
fle
cti
on
s

78
3,
04
3
(7
3,
91
8)

51
2,
06
4
(4
7,
88
1)

50
0,
06
1
(4
4,
54
9)

44
1,
43
0
(3
8,
29
3)

74
,6
11

(7
36
2)

U
ni
qu
e
re
fle
cti
on
s

92
,1
90

(8
31
8)

72
,3
88

(5
44
4)

74
,3
45

(7
07
2)

62
,4
42

(5
56
4)

37
,3
57

(3
00
0)

M
ul
tip
lic
ity

8.
5
(8
.1
)

7.
1
(6
.7
)

6.
7
(6
.0
)

7.
1
(6
.3
)

2.
0
(2
.0
)

C
om
pl
et
en
es
s
(%
)

93
.8
4
(9
1.
27
)

94
.2
1
(7
6.
10
)

97
.4
3
(9
4.
91
)

98
.8
5
(9
0.
59
)

96
.5
1
(8
1.
34
)

M
ea
n
I/
sig
m
a(
I)

11
.1
7
(1
.1
3)

11
.2
9
(0
.7
6)

12
.7
2
(0
.6
5)

13
.9
8
(0
.8
7)

6.
54

(0
.7
9)

W
ils
on
B
-fa
cto
r

11
.2
2

12
.0
4

11
.7
6

12
.8
9

17
.9
5

R
m
er
ge

0.
09
6
(1
.4
)

0.
09
2
(2
.3
)

0.
07
9
(2
.5
)

0.
07
8
(2
.1
)

0.
04
7
(1
.1
)

R
m
ea
s

0.
10
27

(1
.5
03
)

0.
09
99
1
(2
.4
89
)

0.
08
59

(2
.6
94
)

0.
08
43
7
(2
.2
89
)

0.
06
70
5
(1
.5
22
)

R
pi
m

0.
03
46
1
(0
.5
23
8)

0.
03
70
5
(0
.9
60
5)

0.
03
18
2
(1
.0
71
)

0.
03
11
7
(0
.8
96
3)

0.
04
74
1
(1
.0
76
)

(c
on
tin
ue
d)



Ta
bl

e
1
D
at
a
co
lle
ct
io
n
an
d
re
fin
em

en
t
st
at
is
tic
s.
St
at
is
tic
s
fo
r
th
e
hi
gh
es
t-
re
so
lu
tio
n
sh
el
la
re

sh
ow

n
in
pa
re
nt
he
se
s.
(c
on

t'd
)

31
3
K

33
3
K

34
3
K

35
3
K

36
3
K

C
C
1
/2

0.
99
9
(0
.5
19
)

0.
99
9
(0
.3
05
)

1
(0
.3
39
)

0.
99
9
(0
.3
33
)

0.
99
9
(0
.3
83
)

C
C

⁎
1
(0
.8
27
)

1
(0
.6
83
)

1
(0
.7
11
)

1
(0
.7
07
)

1
(0
.7
44
)

R
ef
le
cti
on
s
us
ed
in
re
fin
em
en
t

86
,7
66

(8
31
8)

68
,4
44

(5
44
3)

73
,8
22

(7
07
2)

61
,8
57

(5
56
3)

36
,2
37

(3
00
0)

R
ef
le
cti
on
s
us
ed
fo
r
R
-fr
ee

20
00

(1
91
)

20
00

(1
59
)

19
98

(1
91
)

19
99

(1
80
)

19
99

(1
65
)

R
w
or
k

0.
11
94

(0
.2
49
4)

0.
13
15

(0
.2
53
1)

0.
17
42

(0
.3
79
7)

0.
13
06

(0
.3
12
2)

0.
17
21

(0
.3
36
9)

R
fre
e

0.
15
15

(0
.2
87
7)

0.
16
88

(0
.3
03
0)

0.
20
91

(0
.4
30
8)

0.
16
51

(0
.3
54
0)

0.
22
26

(0
.4
12
8)

C
C
w
or
k

0.
98
6
(0
.7
68
)

0.
98
2
(0
.7
80
)

0.
97
9
(0
.6
08
)

0.
98
2
(0
.6
71
)

0.
97
7
(0
.6
75
)

C
C
fre
e

0.
98
5
(0
.7
52
)

0.
97
2
(0
.7
22
)

0.
97
3
(0
.5
27
)

0.
97
7
(0
.6
53
)

0.
97
3
(0
.5
63
)

T
ot
al
nu
m
be
r
(N
)
of
no
n-

hy
dr
og
en
at
om
s

81
90

79
26

76
49

64
41

53
26

N
,
m
ac
ro
m
ol
ec
ul
es

79
19

77
25

74
86

62
50

52
04

N
,
lig
an
ds

21
26

21
21

23

N
,
so
lv
en
t

25
0

17
5

14
2

17
0

99

Pr
ot
ei
n
re
sid
ue
s

27
9

27
9

28
5

28
5

28
5

R
M
S
(b
on
ds
)
(Å
)

0.
00
7

0.
00
7

0.
00
4

0.
00
4

0.
00
2



R
M
S
(a
ng
le
s)
(°
)

0.
98

1.
04

0.
66

0.
70

0.
51

R
am
ac
ha
nd
ra
n
fa
vo
re
d
(%
)

96
.5
7

95
.9
8

95
.3
3

96
.9
2

97
.2
6

R
am
ac
ha
nd
ra
n
al
lo
w
ed
(%
)

3.
43

4.
02

4.
67

3.
08

2.
05

R
am
ac
ha
nd
ra
n
ou
tli
er
s
(%
)

0.
00

0.
00

0.
00

0.
00

0.
68

R
ot
am
er
ou
tli
er
s
(%
)

1.
42

1.
33

1.
26

0.
60

0.
73

C
la
sh
sc
or
e

2.
90

3.
57

2.
99

2.
61

1.
37

A
ve
ra
ge
B
-fa
cto
r
(Å
2
)

12
.7

14
.1

13
.7

15
.1

21
.5

A
ve
ra
ge
B
-fa
cto
r,

m
ac
ro
m
ol
ec
ul
es
(Å
2
)

11
.8

13
.5

13
.2

14
.3

20
.9

A
ve
ra
ge
B
-fa
cto
r,
lig
an
ds
(Å
2 )

65
.1

65
.2

70
.6

82
.6

82
.7

A
ve
ra
ge
B
-fa
cto
r,
so
lv
en
t(
Å
2 )

38
.2

35
.2

33
.0

38
.1

40
.2



3. Single conformer model refinement

Fig. 1 summarizes all refinement steps from the processed reflection
data obtained above to the final multiconformer model. The first part of
this process involves obtaining single conformer models via standard
molecular replacement methods and iterative improvement of the model,
which we briefly describe here.

3.1 Molecular replacement
Multiconformer modeling requires high quality data that is free of
pathologies. These can be assessed using tools such as phenix.xtriage that can
reveal the presence of twinning and translational noncrystallographic
symmetry (tNCS). There are no pathologies in these high resolution
Proteinase K datasets. Noting this, we proceeded to molecular replacement
to obtain the initial phases (PDB: 3q5g; 100% sequence identity to wild
type Proteinase K from Parengyodontium album). This search model was

Fig. 1 Flowchart for the refinement of a multiconformer model from diffraction data.
Orange boxes indicate steps that are automated by refinement softwares such as
refmac or phenix, or by qFit features; Blue boxes indicate steps that need manual
interventions (e.g. in Coot). Abbreviations: ADP (atomic displacement parameter), alt.
conf. (alternative conformations), q (occupancy).
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chosen because its crystallization was done in the same solvent as in our
experiment. Molecular replacement (MR) was performed using the pro-
gram Phaser after adding Rfree labels to the reflection data.

3.2 Initial model building
We used the program Coot to examine the MR-generated model (.pdb)
along with the density maps (.mtz), and manually complete an initial
model. First, the C-terminal carboxylate group was added to the model
(using the Add OXT at C terminus tool) and the N- and C-terminus were
refined (using Real Space Refine Zone and Regularize Zone). Next, we
checked for the presence of any cis peptide bonds, as they are highly
unfavorable (unless involving a proline residue) and may indicate model
errors. One proline cis peptide bond was found for Proteinase K (as was
present in the molecular replacement model) and was determined to be real
as the model agrees with the 2Fo − Fc density map. Prior to refinement
and after MR, we deleted all alternative conformers to obtain a single
conformer model that is needed for later steps. We then cleaned up
inorganic molecules (SO4, glycerol) from the search model that were not
present in our datasets. Next, we added water molecules with using the
Find Waters tool, which identifies cluster of unmodeled density with more
than 1.4 angstroms (Å) from any other heavy atom in the model and a
volume of under 4.2 Å3.

Before the refinement cycles, several simple validation metrics available
in Coot were examined, including (1) Ramachandran plot, (2) geometry
analysis, and (3) rotamer analysis. Any outliers where atoms do not fit the
densities well were refined using Real Space Refine Zone and Regularize
Zone. Water molecules were examined using Check/Delete Waters where
problematic water models were identified. In many cases, water molecules
were too close to each other (<2.4 Å), suggesting partial occupancies.
These water pairs were edited so that they are alternative conformations of
the same water molecule, and their occupancies were adjusted so that their
combined occupancies do not exceed 1. Lastly, inorganic and water
molecules were renumbered such that residue numbers are continuous
within each chain.

3.3 Iterative model refinement
To improve the model and phases calculated from the model, it is necessary
to perform multiple rounds of automatic refinement followed by manual
adjustments until the convergence of a final single conformer model.
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In each initial round of automatic refinement (using the programs refmac
and phenix.refine), 5–30 cycles of maximum likelihood refinement were
performed for atomic coordinates, isotropic B-factorsa and occupancies; for
final rounds of initial refinement, given the high resolution of the data,
anisotropic B-factors were refined instead of isotropic. After each round of
automatic refinement was completed, we manually inspected the Fo − Fc
and 2Fo − Fc maps and the model in Coot. Difference (Fo − Fc) map peaks
above 5σ were examined in addition to the validation metrics mentioned
above; any regions where the1 model did not match the 2Fo − Fc map
were adjusted. Some of these peaks appeared to result from unmodeled
alternative conformations, as indicated by Fo − Fc peaks resembling the
shape of the sidechain, and were expected to resolve after multiconformer
modeling.

For the Proteinase K datasets, 5–6 iterations were performed until
“convergence”. Here, we note that “convergence” is assessed remem-
bering the adage that “refinement is never finished, but can be abandoned”.
While one can continue the iterative refinement cycles infinitely, further
improvements of model quality and agreement with experimental data will
become lower in magnitude. Practically, we need to navigate these
diminishing returns to determine whether we have arrived at a “final”
model. We considered three aspects: (1) whether the models gave rea-
sonable chemical representations of molecules, judged by the presence of
outliers in torsion angles and geometry; (2) qualitatively, whether the
model explains the density map well, judged mainly by the presence of
interpretable Fo − Fc map peaks (above 4–5σ) and how well the 2Fo − Fc
map contours around the model; and (3) quantitatively, whether the
measured structure-factor amplitudes |Fobs| match the calculated ampli-
tudes |Fcalc| from the current model, judged by Rwork and Rfree values
(Brünger, 1992; Rupp, 2009). In these final single conformer models, a few
outliers in backbone and sidechain torsion angles persisted, but they are
likely real protein features as the model matches the 2Fo − Fc map shape.
For example, D39, a member of the catalytic triad of Proteinase K,
appeared to have unfavorable backbone torsions, and this outlier is
observed not only in our datasets, but also in previously published PDB
models. These regions where intrinsic conformational preferences are
potentially perturbed by surrounding forces may be of interest for further

a B-factors are also named thermal factors, temperature factors or atomic displacement parameters
(ADP) and used interchangeably.
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investigation when modeling is complete—as they may arise from struc-
tural constraints or represent features that are evolutionarily-selected and
provide functional benefits. All final single conformer models have
Rwork < 0.2, indicating a reasonably high model quality (Fig. 4B).
R values appear to be larger for higher temperature datasets, which is
expected due to increased thermal motions that cannot be accounted for by
single conformer models.

3.4 Modeling an unknown ligand appearing at high temperatures
Intriguingly, at the Proteinase K active site, some unexplained electron
densities gradually appeared for datasets obtained at higher temperatures.
Because Proteinase K binds peptide substrates, and the shape of these
densities resembles a peptide chain, we reasoned that a short peptide may
be able to bind better at higher temperatures, and the apparent increase in
the peptide density may reflect a shifted equilibrium favoring the bound
state (Fig. 2A). While all the datasets were derived from crystals with the
same content, the compositions of bound and unbound species in ordered
parts of the crystals were different, and generated different diffraction data
and density maps, reflecting altered compositional heterogeneity across
temperature. It is also possible that proteolysis occurred only when the
crystals were exposed to higher temperatures, but less likely due to the
short time period the crystal was placed at elevated temperature for data
collection. It is impossible to distinguish whether shifted equilibrium or
increased proteolysis is responsible for the peptide density, which we
modeled by refining occupancies, as we described below.

To determine the sequence and the conformation of the unknown
peptide, we used the 363 K dataset which contains the most complete
densities for this peptide as a guide. A poly-alanine chain (chain B) was
built based on the overall 2Fo − Fc density shape (using the Add Terminal
Residue tool in Coot), followed by an automatic refinement round (using
phenix.refine). Next, sidechain identities were estimated based on the shape
of the 2Fo − Fc densities that were not explained by the poly-alanine
model; the Fo − Fc map further informs sidechain choices (e.g. an unmo-
deled valine sidechain would give a signature shape of two adjacent
negative density blobs). In Coot, non-alanine residues were mutated (using
Mutate & Auto Fit), with the final sequence determined to be AAASVK. In
the 343 and 353 K datasets, we modeled the same peptide sequence with
roughly the same conformation as modeled in the 363 K dataset while
fitting to local densities which are less complete than those in the 363 K
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dataset. Since the densities observed for this peptide are not complete, we set
occupancies of chain B residues for all three datasets to a number below 1,
which allowed the following automatic refinement step (using phenix.refine)
to refine their partial occupancies (Fig. 2B).

Overall, the occupancies of the peptide residues continue to increase
from 343 to 363 K, indicating higher bound species at higher temperatures.
To compare the variability of these modeled positions across datasets, we
calculated normalized B-factors by dividing the B-factors by the average
B-factor of all atoms in each dataset. As expected, the peptide residues
have higher-than-average B-factors due to incomplete densities (Fig. 2B).
The normalized B-factors are lower for the 363 K dataset, consistent with
higher ordering of the bound species (Fig. 2B). In practice, there is some

Fig. 2 An unknown peptide is bound at the Proteinase K active site at high tem-
peratures. (A) 2Fo − Fc map and modeled residues for the binding site for datasets
showed electron densities increasing for the bound peptide at higher temperatures.
S224 from the Proteinase K (chain A) is the catalytic serine, while S224′s backbone
amide as well as the Q161 sidechain form the “oxyanion hole” hydrogen bond donors
that interact with the carbonyl of the peptide ligand. The unknown peptides (chain B)
were modeled for the 343, 353 and 363 K datasets. (B) Occupancies and normalized
B-factors for Cα atoms of the unknown peptide residues.
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degeneracy between occupancy and B-factor refinement, but the refined
results here, obtained from high resolution data, are consistent with greater
occupancy and higher order (decreased B-factors) as temperature increases.

4. Multiconformer model refinement

Conformational heterogeneity from diffraction data can be repre-
sented by different metrics and data formats, each with its own limitations.
In single-conformer models, B-factors are typically used as a proxy for the
degree of flexibility of a group, but they cannot be directly related to
interpretable molecular geometries (e.g. atomic distances, bond angles and
rotameric states) and involve contribution from other factors (e.g. crys-
tallographic disorder) (Kuzmanic et al., 2014; Sun, Liu, Qu, Feng, &
Reetz, 2019). Ensemble models generated using X-ray restrained mole-
cular dynamics (MD) simulations provide 10–100 s of separate single
conformer models, where the relative population of different conformers
reflect their occupancies (Burnley & Gros, 2013; Burnley et al., 2012;
Forneris et al., 2014; Pearce & Gros, 2021; Ploscariu, Burnley, Gros, &
Pearce, 2021). However, because of the high parameter-to-observation
ratio, discrete conformers modeled for areas with ambiguous electron
densities can be a result of overfitting instead of real conformational het-
erogeneity (Burling & Brünger, 1994; Wankowicz & Fraser, 2020).

Recent attempts to represent heterogeneity also include the use of
bond-based parameters (bond lengths, angles and torsion angles) instead of
Cartesian coordinates; in this scheme, B-factors can be replaced by para-
meters describing the variation in torsion angles, which capture the physical
nature of molecular motions more parsimoniously (Ginn, 2021). While
promising in reducing the number of model parameters (and therefore
reducing overfitting) and in improving the physical interpretability of
X-ray models, a refinement method based on this scheme (Vagabond) is still
under development and has not achieved the accuracies of traditional
Cartesian-based models by conventional Rfree metrics (Ginn, 2021). In
addition, both MD-based ensemble models and bond-based models are
incompatible with current software for further manual or automatic
refinement. They therefore do not allow the fine-tuning of regions and
structural features of interest, especially those detailing compositional
heterogeneity that require more sophisticated refinement methods, which
we describe below (Section 4.4).
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To improve interpretability, accuracy, and compatibility while
minimizing model complexity, we chose to refine each Proteinase K
dataset into a multiconformer model, using the program qFit initially to
sample and select alternative conformations (Keedy, Fraser et al., 2015;
Riley et al., 2021; van den Bedem, Dhanik, Latombe, & Deacon, 2009;
van Zundert et al., 2018). In these multiconformer models, each protein
residue has one to five alternative conformers, as needed to explain local
densities. Each conformer for a residue is assigned an “altloc” label (A, B,
etc.), and each atom for that conformer has its coordinates, occupancies,
and B-factors recorded in a separate line in the model file. Unlike
MD-based ensemble refinement, the approach we took only introduces
additional parameters as needed to explain the experimental data; these
models would be less likely to overfit. Practically, multiconformer models
describe ensemble information in a single model following the conven-
tional PDB (or mmCIF) format; thus, they are compatible with all
common structural biology tools for further structural refinement and
manual adjustment (e.g. in Coot) (Fig. 1).

Both multiconformer models and MD-based ensemble models present
visualization challenges. For example, in PyMol or Chimera, a multi-
conformer model is viewed in a single “state”, and the alternative con-
formations are all visible. For visualization, coloring by altLoc label is
helpful in interpreting coupled conformations while viewing all modeled
conformations. In contrast, ensemble models contain multiple “states” with
whole copies of the entire system. Scrolling through the states is helpful for
visualization since viewing all models contained in the ensemble is often
visually overwhelming. Further improvements in macromolecular visua-
lization software for analyzing these complex model types will help further
enable their use.

4.1 Automatic refinement using qFit
qFit is a Python-based software developed to automatically model and
refine alternative conformers for protein residues and ligand molecules
(Keedy, Fraser et al., 2015; Riley et al., 2021; van den Bedem et al., 2009;
van Zundert et al., 2018). Here, we used qFit 3.0 to obtain initial multi-
conformer models for the Proteinase K datasets. To sample residue con-
formations, qFit first performs backbone sampling based on the anisotropic
B-factors of the Cβ atom (or O atom for Gly) which define the direc-
tionality of its potential motions, moving the atom around the ellipsoid
defined by the anisotropic B-factors while adjusting adjacent atoms (within
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a 5-residue segment) such that the backbone linkages are closed (van den
Bedem, Lotan, & Latombe, 2005). To sample sidechain conformations,
qFit starts from the backbone conformations identified in the previous step
and samples either around the Cα–Cβ–Cγ bond for planar, aromatic side-
chains or around the χ angles for other sidechains. At each χ angle and again
once the entire sidechain is built, qFit evaluates the quality of sampled
conformations and removes unnecessary and low occupancy (<0.09)
conformers, keeping 1–5 optimal conformers for each residue whose
positions, occupancies and B-factors best fit local densities.

After the optimal fitting of each individual residue, qFit reconnects the
entire structural model taking account of conformer interconnections.
Neighboring backbones residues with alternative conformations are split
into segments, with each segment delimited by a residue with single-
conformer backbone atoms. For each segment, qFit brings all residues to
the same number of alternative conformations to avoid any “floating”
conformers caused by missing backbones, and consistently assigns backbone
occupancies and altLoc labels (qFit-segment). Next, qFit determines the
coupling of alternative conformers within each segment using a simulated
annealing algorithm, relabeling all alternative conformers so that the cou-
pled conformers do not clash (qFit-relabel). Details of the qFit algorithm
have been described previously (Keedy, Fraser et al., 2015; Riley et al.,
2021; van den Bedem et al., 2009; van Zundert et al., 2018) and the open-
source software is available at https://github.com/ExcitedStates/qfit-3.0.

To obtain a multiconformer model from qFit, we need a single con-
former model (.pdb) of reasonably high quality and a composite omit map
(.mtz) (Terwilliger et al., 2008). A composite omit map provides the
advantage of reducing model bias. To build such a map, the asymmetric
unit is segmented into contiguous regions, and for the iterative refinement
of each map region, model atoms located within that region are given an
occupancy of 0 so they do not bias structure factor calculations; the final
“composite” map then combines all refined segments (Terwilliger et al.,
2008). A composite omit map was obtained from the single conformer
model and map refined in Section 3 using phenix.composite_omit_map with
the omit-type=refine flag.

To sample conformers, we used the qfit_protein function with -rmsd 0.1
setting, which removes redundant conformers when they have an all-atom
root-mean-square deviation (RMSD) below 0.1 Å. This RMSD setting
was determined by testing qfit_protein with the default setting (RMSD
threshold = 0.01 Å) and increased thresholds of 0.1 Å and 0.2 Å.

Refinement of multiconformer ensemble models 17

https://github.com/ExcitedStates/qfit-3.0


Qualitatively, the 0.01 Å threshold produced the greatest number of
redundant conformers; the 0.1 and 0.2 Å threshold produced similar
models with less conformers but overall appropriate fits to the density maps.
Therefore, we proceeded with the model generated from the 0.1 Å
threshold. Setting an appropriate RMSD threshold that balances con-
formational fit and parsimony at this step reduces model parameters and
helps minimize manual efforts to prune conformers in later steps.
qfit_protein produced a multiconformer model (multiconformer_

model2.pdb) that was then refined using the qfit_final_refine_xray.sh script.
To ensure a parsimonious model, this refinement protocol involves itera-
tive refinement (using phenix.refine functionalities) of atomic positions,
occupancies, and B-factors and removal of low occupancy (<0.09) con-
formers until no such conformers emerge. This step produces a refined
multiconformer model and map (with suffixes _qFit.pdb and _qFit.mtz).

4.2 Manual pruning and refinement
Manual inspection and refinement of the model and map from Section 4.1
are required for two reasons: (1) qFit may produce spurious conformers
fitted to densities from noise or the bulk solvent and (2) additional back-
bone conformations may need to be added, since the backbone sampling of
qFit 3.0 depends on the anisotropy of Cβ, which encodes backrub
(Davis, Arendall, Richardson, & Richardson, 2006), crankshaft (Fadel, Jin,
Montelione, & Levy, 1995; Fenwick, Orellana, Esteban-Martín, Orozco,
& Salvatella, 2014), and shear (Hallen, Keedy, & Donald, 2013; Smith &
Kortemme, 2008) motions, but does not report on large backbone rear-
rangements such as the 180° peptide flips (Keedy, Fraser et al., 2015).

In Coot, we inspected each residue to prune any spurious or unnecessary
conformers, including those that do not fit to local densities, those that
would cause strain or clashes with neighboring residues, and those that are
too similar. While the criteria for similarity may be qualitative and ad hoc,
we note that both sidechain and backbone atoms need to be compared to
decide if a conformer needs to be pruned. For example, two conformers
may have the same sidechain conformation but obviously different back-
bone positions. In this case, both sidechain conformers need to be kept in
the model, because the current PDB format will not allow two sets of
backbone atom positions linked to only one sidechain conformer (even
though a single backbone conformation can spawn two sidechain con-
formations). The sidechains in solvent-exposed areas are more likely to
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show spurious conformers. In some cases, there were no 2Fo − Fc contours
even at <0.5σ around the spurious conformers and also no positive
Fo − Fc peaks, suggesting that these conformers may have been incor-
rectly fitted to densities resulting from noise or bulk solvent contributions.
Only the conformers supported by the 2Fo − Fc map were kept in the
model. In the meantime, we checked for any backbone conformations that
needed to be rebuilt or sidechains that could be refined to fit the 2Fo − Fc
map better, manually adjusting their positions as needed.

4.3 Automatic relabeling of structural segments
Manual pruning and refinement are essential to correct and improve the
model, but may also introduce model inconsistencies that need to be
resolved. First, because some conformers were deleted, the combined
occupancies of the remaining conformers of a residue did not sum to one.
Second, deletion of conformers resulted in breaks in peptide linkages. To
redistribute occupancies and reconnect the peptide, we re-ran qfit_protein
with the flag –only-segment. With this option, qFit does not re-sample and
score residue conformers, but re-distributes the occupancies of the
remaining conformations and performs the segmentation and labeling step
as described in 4.1 (qFit-segment and qFit-relabel). This step is followed by
another automatic refinement cycle using qFit_segment_refine.

This procedure generates connected backbones with consistent occu-
pancies for coupled neighboring conformers, but at the cost of increased
number of parameters, since it requires bringing in duplicate conformers.
For example, if residue N has four alternative backbone conformations
(A, B, C, D) and residue N + 1 has two alternative conformations (A, B),
this procedure will create C and D conformers for residue N+ 1 by
duplicating its A and B conformers. This duplication may continue until
we reach the end of a segment, so that all backbones have the same number
of alternative conformations (A, B, C, D) and are therefore properly con-
nected. The alternative to the duplication of conformers is to have “floating”
backbone atoms, e.g. with residue N conformers C and D having no con-
nection from the backbone carbonyl to the next alpha carbon. Ideally, we
would like to have a nested model format where the C and D conformations
can be “children” of the A and B conformations, but currently, neither the
PDB nor CIF format allow for that representation (Hancock et al., 2022;
Pearce, Krojer, & von Delft, 2017; Vallat et al., 2023).
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4.4 Modeling coupled conformational preferences
To fine-tune the model for regions of interest where conformational
preferences of multiple groups may be coupled to one another, we used a
constrained group occupancy refinement approach, which we illustrate
below using the example of the Proteinase K Ca2+ binding site. This
binding site was identified in previous structural studies (Betzel, Pal, &
Saenger, 1988), where a Ca2+ ion is coordinated by the sidechain of D200,
the backbone O atoms of V177 and P175, and surrounding water mole-
cules (Fig. 3A). Nevertheless, our diffraction data revealed a more complex
picture for Ca2+ interactions in this binding site. The 2Fo − Fc map does
not clearly indicate one unique position for the Ca2+. Instead, for datasets
obtained at 313–353 K, there are four spherical densities within this
binding site. Two of these spheres are very close together, with their
merged densities forming a dumbbell shape (Fig. 3C). Our density map and
initial multiconformer model suggested that the Ca2+ can occupy these
alternative positions in the binding site, for three reasons. First, the com-
monly modeled position where Ca2+ forms a bivalent interaction with the
D200 sidechain lies within the overlapping dumbbell-shaped density. This
overlapping density suggests alternative conformations of the same mole-
cule instead of an additional coordinating water, as the interaction distance
would be too close (<2 Å) and highly unfavorable (Fig. 3C). Second, the
alternative conformers modeled for nearby residues such as D200 and V177
include those that orient towards positions other than the commonly
modeled one, suggesting that these residues can stabilize Ca2+ when it
occupies these other positions (Fig. 3C). Lastly, in the 363 K dataset,
densities for the commonly modeled position disappeared and the dumb-
bell-shaped density shrunk to an elliptical shape, suggesting that alternative
conformations are favored at high temperatures (Fig. 3C, D). To unam-
biguously determine possible positions of Ca2+, future experiments can
collect diffraction data at longer wavelengths to detect Ca2+ anomalous
signals; here, we considered all possible alternative configurations as sug-
gested by the electron density maps.

To model alternative positions of Ca2+ and to see how the interacting
residues move accordingly, we manually set up alternative conformers of
Ca2+ and its surrounding protein residues and water molecules as “groups”
in Coot by creating multiple copies of the same atoms and assigning the
same altLoc label to the atoms in the same configuration (Fig. 3B). Then,
we used phenix.refine to perform automatic refinement with group
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Fig. 3 Modeling and refinement of the Proteinase K Ca2+ binding site. (A) Four pos-
sible positions for Ca2+ as suggested by the 2Fo − Fc maps; each position appears to be
stabilized by 5–7metal-coordinating interactions with surrounding water molecules
or protein residues. Position 1 corresponds to the Ca2+ position that is typically
modeled. Protein residues that showed alternative conformers orienting towards
different Ca2+ positions are indicated by gray boxes; these residues were included in

(Continued)
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occupancy constraints that will produce consistent occupancies for che-
mical entities within a group.

To enumerate all possible Ca2+ and binding site residue configurations,
we considered each of the four spherical densities as potential alternative
positions for Ca2+, and in each case assigned the other density blobs as
water molecules (Fig. 3B). Because only one atom can occupy the dumb-
bell region at a time, we modeled one Ca2+ and two water molecules for
each alternative conformation. In total, there are 6 different configurations
for the Ca2+ and the two coordinating waters as a group, as illustrated in
Fig. 3B; we therefore created alternative conformations A through F for
these molecules accordingly. Next, we identified protein residues that
showed correlated conformational preferences with these different Ca2+

positions, which include D200, V177, and V198 (Fig. 3A, B). We also
modeled 6 alternative conformers (A through F) for each of these residues,
and their alternative conformer labels were reassigned so that each con-
former was in the correct group. For example, the conformer of D200 that
is the closest to the A conformer of Ca2+ was labeled “A”, et cetera. For the
363 K dataset, the dumbbell-shaped density observed for other datasets
diminished into an ellipse with no clear indication for two separate con-
figurations (Fig. 3C); therefore, duplicate configurations (A, B and E) were
removed.

To model the positions, B-factors, and occupancies of these chemical
entities as a group, we included group occupancy refinement strategies in our
next cycle of phenix.refine, assigning each alternative configuration as a con-
strained group (e.g. group A was the A conformers of Ca2+, waters, D200,
V177, and V198) (see Complex occupancy refinement strategy in the phenix doc-
umentation: https://phenix-online.org/documentation/reference/refinement.
html). Using this approach, all atoms in a group are refined to the same
occupancy and each chemical entity will have a total occupancy of 1 summed
over all its alternative conformers. The positions and B-factors were also
allowed to further refine.

Nevertheless, occupancy refinement would be performed for the entire
model, and some alternative conformers of protein residues outside the

Fig. 3—Cont'd the group occupancy refinement. (B) All possible configurations
(conformers A through F) for the Ca2+ and water molecules. (C) 2Fo − Fc map and
models for the Ca2+ binding site, including all alternative conformations for each
model. Water molecules are shown as blue spheres, and Ca2+ as red spheres. (D)
Changes in the refined occupancies of each alternative conformation across tem-
perature.
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Ca2+ binding site may drop below 0.09 again. Therefore, we created
chimeric models that merged the pre-grouped model (from Section 4.3)
with the updated positions, B-factors, and occupancies for grouped atoms
in the grouped and refined model obtained here. Additional refinement
runs for this chimeric model were then performed with fixed occupancies,
allowing only the atomic positions and B-factors to fluctuate.

Increasing temperatures favor alternative Ca2+ binding configurations, as
suggested by the refined group occupancies: at lower temperatures, Ca2+

mainly occupies the dumbbell region (configurations A and C); as tem-
perature increases, the occupancy for Ca2+ at the more distal position (con-
figurations B and D) increases (Fig. 3D). In addition, the elliptical instead of
dumbbell shape for the center density at 363 K suggests less distinction and
therefore higher mobility for occupying the A and C sites (Fig. 3C).

Overall, the final multiconformer models showed decreased R factors
across all datasets (Fig. 4), indicating improved fit of the models to the
underlying data after multiconformer refinement; in particular, the decrease
in the cross-validation term Rfree suggests that the improved accuracy does
not arise from overfitting (Fig. 4A).

5. Identifying temperature-dependent conformational
changes

Multiconformer models provide rich information for protein con-
formational ensembles, but it can be difficult to extract conformational
changes that are significant, and relevant to functional aspects of interest.
This difficulty arises from the fact that each residue may have a different
number of alternative conformers modeled for different datasets, and each

Fig. 4 Rfree (A) and Rwork (B) for the final single conformer versus multiconformer
models indicate improved model accuracy after multiconformer refinement.
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alternative conformer has its own modeled position, occupancy, and
B-factors, preventing a matched statistical comparison across datasets. Here,
we used the program Ringer (Lang et al., 2010) to guide our search for
interesting conformational changes, and identified widespread changes of
the proteinase K ensemble in response to temperature. The approach that
we describe here can also be extended to study other structural perturba-
tions, such as ligand binding and mutations.

5.1 Ringer analysis
The Ringer program systematically samples electron densities around side-
chain rotamers, allowing for the detection of low-occupancy sidechain
conformational states and the comparison of sidechain states across datasets
at different temperatures. Ringer analysis complements multiconformer
models, as it provides torsional electron density profiles for all sidechains at
5 or 10° intervals that can be systematically compared across datasets.
Nevertheless, Ringer can only sample electron densities around sidechains
based on backbone positions from a single conformer model; thus, the
resulting profile reflects a mixture of sidechain and backbone motions. For
example, a broad Ringer peak may result from a highly flexible sidechain
attached to constrained backbone atoms, or the opposite, or a moderate
level of flexibility from both. Therefore, to distinguish between these
possibilities, one must return to the multiconformer model and electron
density maps.
Ringer can be accessed via phenix using the mmtbx.ringer command with

a model and a single conformer model supplied (mmtbx.ringer model.pdb
map.mtz). We used the single conformer model from Section 3.4 and the
final map after multiconformer refinement from Section 4.4, since the final
map provides more accurate electron densities. This command produces a
table of electron densities for each residue-rotamer in the model from 0° to
359° at specified intervals (default 5°).

The raw Ringer profiles are helpful for the interpretation of weak
densities and further refinement of the multiconformer model. Crudely,
any rotamer angles at ≥0.3σ are likely to be conformational features rather
than noise from hydrogens (Lang et al., 2010). One may return to the
multiconformer model to refine particular areas as informed by Ringer.

For the systematic comparison of rotamers dynamics across datasets, we
need to normalize σ values (Eq. (1)), as the scale of electron density values
can vary across datasets and obscure changes of σ.
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=Normalized ( – )/( – )min max min (1)

The normalized Ringer profiles revealed diverse patterns of sidechain
conformational changes across temperatures. In the simplest scenario, we
would expect high temperatures to favor higher-entropy states, and
the distributions of sidechain rotamer angles are expected to broaden. One
example of this pattern is the χ1 of Glu43, as indicated by the broader
shoulders of the 363 K Ringer profile and its more dispersed 2Fo − Fc
densities around the sidechain (Fig. 5A). In the second case, we observed
the emergence of an alternative sidechain rotamer at higher temperatures,
such as for the χ1 of the catalytic residue Ser224 (Fig. 5A). Unexpectedly,
we also observed the disappearance of rotamer states at high temperatures,
such as for the χ1 of Ser63, emphasizing the idiosyncrasy of temperature
effects on individual rotamers, residues and regions, rather than a uni-
versally higher flexibility (Fig. 5A). Lastly, there are also highly positioned
residues such as Asn163 whose χ1 profiles do not change across tempera-
ture (Fig. 5A).

To further quantify the similarities and differences between Ringer
profiles, we calculated Pearson correlation coefficients (PCC, or Pearson’s r)
for the Ringer profiles of each rotamer obtained from different datasets,
using the scipy.stats.pearsonr function of the SciPy package (Virtanen et al.,
2020). PCC values lie between −1 and 1, and a higher positive PCC value
indicates a stronger positive correlation between the two Ringer profiles,
and therefore more similar rotameric distributions. Across sidechain rota-
mers of the entire Proteinase K structure, PCC values decrease when
comparing the 313 K model to higher temperature models, and are espe-
cially low for the 363 K dataset (Fig. 5B). For the comparison of 313 K
versus 363 K dataset, we identified 83 rotamers with PCC ≤ 0.9 among a
total of 410 rotamers, suggesting widespread conformational changes in
response to higher temperatures (Fig. 5C). As all datasets here were col-
lected above the glass transition, these changes are mostly subtle, and we
would expect more significant changes for comparisons of datasets below
and above glass transition (Fraser et al., 2011; Halle, 2004; Keedy et al.,
2014; Rasmussen et al., 1992; Tilton et al., 1992).

6. Summary and conclusions

Conformational ensembles, rather than static structures, are needed
to deepen our understanding of protein functions and ultimately reach to
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the ability to derive quantitative, predictive models for protein functions
(Austin et al., 1975; Benkovic & Hammes-Schiffer, 2003; Benkovic et al.,
2008; Frauenfelder et al. 1988, 1991; Hammes et al., 2011; Mokhtari,
Appel, Fordyce, & Herschlag, 2021). Nevertheless, X-ray derived
ensemble data is limited due to experimental challenges (which we

Fig. 5 Temperature-dependent rotamer changes in Proteinase K. (A) Examples for
how rotamers change across temperatures and their Ringer profiles. 2Fo − Fc maps
are contoured at 1σ. (B) Distributions of PCC for comparisons of all rotamers across
datasets. (C) Comparison of the 313 K v. 363 K Ringer profiles showed low PCC values
for sidechain rotamers throughout the Proteinase K structure. Only rotamers with
PCC < 0.9 shown.
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addressed in Doukov et al., 2020) and the requirement for specialized
refinement approaches, which are not easily accessible. Here, we used a
series of Proteinase K datasets collected at increasing temperatures to
provide a practical and detailed tutorial for the refinement of multi-
conformer models and correlated conformational preferences within these
models, and we discussed the rationale behind our refinement choices and
their advantages and limitations.

We note that many of our refinement choices are limited by the PDB
format and interpretations by refinement softwares. In particular, multi-
conformer models need to account for alternative conformations for each
individual residue as well as the connections between conformers across
the protein backbone, and this multidimensional information cannot be
cleanly represented by the “flat” PDB format without duplicated model
parameters. The mmCIF format could potentially represent multi-
conformer connectivities and interrelationships because of its more
flexible formatting. Such future efforts will need to evolve with projects
that have high compositional [e.g. fragment screening (Krojer, Fraser, &
von Delft, 2020; Weiss et al., 2022)] and conformational [e.g. time-
resolved serial femtosecond crystallography (Oda et al., 2021; Schmidt,
2021)] heterogeneity. Meeting these challenges will also help build
molecular models compatible with increasingly complex 3D classification
and heterogeneous map reconstruction methods in cryo-EM (Zhong,
Bepler, Berger, & Davis, 2021).

In addition, we encountered issues during refinement and PDB deposition
because many widely-used tools (e.g.MolProbity and Reduce) are not optimized
for multiconformer models. We suggest that future efforts in improving
the PDB/mmCIF format and structural biology tools to accommodate
ensemble features will simplify the process of obtaining ensemble models and
allow the database of conformational ensembles to grow.

Proteinase K appears to undergo widespread conformational changes
across temperature. These observed changes are potentially linked to its
stability, binding, and catalysis, such as the increased occupancies of the
bound peptide ligand, changes in Ca2+ binding configurations, and altered
distributions of rotameric angles for catalytic residues. While qFit automates
the sampling of alternative conformations and provides a preliminary
model, we emphasize that additional fine-tuning is needed to improve the
accuracy of the model and to extract interesting local changes. For
example, we showed that the Ca2+ binding site can be modeled by 6
different alternative configurations, and determined how the occupancies
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of each change across temperatures. This strategy may be extended to
model other coupled conformations of interest, e.g. to determine if the
motions of the active site groups are constrained or facilitated by sur-
rounding residues, or if the binding of an allosteric ligand shifts the equi-
librium of conformational states of a network of residues that move
together. We expect that these modeled changes will lead to hypotheses
that can be tested by additional experiments—for example, by introducing
structural perturbations that change the magnitude or direction of these
motions or disrupt their couplings.
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