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Large language models generate functional 
protein sequences across diverse families

Ali Madani    1,2  , Ben Krause1,10, Eric R. Greene3,10, Subu Subramanian4,5, 
Benjamin P. Mohr6, James M. Holton    7,8,9, Jose Luis Olmos Jr.3, Caiming Xiong1, 
Zachary Z. Sun6, Richard Socher1, James S. Fraser3 & Nikhil Naik    1 

Deep-learning language models have shown promise in various 
biotechnological applications, including protein design and engineering. 
Here we describe ProGen, a language model that can generate protein 
sequences with a predictable function across large protein families, akin 
to generating grammatically and semantically correct natural language 
sentences on diverse topics. The model was trained on 280 million protein 
sequences from >19,000 families and is augmented with control tags 
specifying protein properties. ProGen can be further fine-tuned to curated 
sequences and tags to improve controllable generation performance 
of proteins from families with sufficient homologous samples. Artificial 
proteins fine-tuned to five distinct lysozyme families showed similar 
catalytic efficiencies as natural lysozymes, with sequence identity to 
natural proteins as low as 31.4%. ProGen is readily adapted to diverse 
protein families, as we demonstrate with chorismate mutase and malate 
dehydrogenase.

Traditional methods for protein engineering perform iterative 
mutagenesis and selection of natural protein sequences to identify 
proteins with desired functional and structural properties. By con-
trast, rational or de novo protein design methods aim to improve the 
efficiency and precision of creating novel proteins with desired prop-
erties. Structure-based de novo design methods1–5 employ simula-
tions grounded in biophysical principles, whereas coevolutionary 
methods6–10 build statistical models from evolutionary sequence data 
to specify novel sequences with desired function or stability. Both 
structural and coevolutionary approaches are not without limitations. 
Structural methods rely on scarce experimental structure data and 
difficult or intractable biophysical simulations3,11. Coevolutionary 
statistical models are tailored to specific protein families, frequently 
rely on multiple sequence alignments, and do not operate well in space 
outside of the defined multiple sequence alignment11. Recently, deep 

neural networks have shown promise as generative and discriminative 
models for protein science and engineering12–20. Their ability to learn 
complex representations could be essential to effectively exploit an 
exponentially growing source of diverse and relatively unannotated 
protein data—public databases containing millions of raw unaligned 
protein sequences21–23.

Inspired by the success of deep-learning-based natural language 
models trained on large text corpora that generate realistic text with 
varied topics and sentiments24–28, we developed ProGen, a protein 
language model trained on millions of raw protein sequences that 
generates artificial proteins across multiple families and functions. 
While prior work has shown that natural-language-inspired statis-
tical representations of proteins are useful for protein informatics 
tasks such as stability prediction, remote homology detection and  
secondary structure prediction11,29–31, we show that the latest advances 
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Results
We experimentally evaluated the ability of ProGen to generate func-
tional artificial amino acid sequences by testing its generations across 
five distinct protein families from the lysozyme clan23,39 (Supplemen-
tary Table 2). The protein families contain substantial sequence diver-
sity (Supplementary Table 3) with average sequence length varying 
between 84–167 across families. The sequences also show large struc-
tural diversity and multiple structural folds (Supplementary Fig. 2). As 
a whole, this represents a challenging design space for a model that is 
not constrained in generation to local sequence neighborhoods near 
known functional wild types and also not provided with structural pri-
ors. We collected a dataset of 55,948 sequences from these five families 
from Pfam and UniprotKB sources for obtaining positive controls and 
for fine tuning32–35 ProGen.

After fine tuning ProGen using the curated lysozyme data-
set, we generated one million artificial sequences using ProGen by 
providing the Pfam ID for each family as a control tag. Our artificial 
lysozymes span the sequence landscape of natural lysozymes (Fig. 2a)  
across five families that contain diverse protein folds, active site 
architectures and enzymatic mechanisms40,41. As our model can 
generate full-length artificial sequences within milliseconds, a large 
database can be created to expand the plausible sequence diversity 
beyond natural libraries (Supplementary Table 3). Although artifi-
cial sequences may diverge from natural sequences purely from a 
sequence identity calculation, (Fig. 2b and Supplementary Fig. 3), 
they demonstrate similar residue position entropies when forming 
separate multiple sequence alignments of natural and artificial proteins 
within each family (Fig. 2c). This indicates that the model has captured 

in deep-learning-based language modeling can be adopted to gener-
ate artificial protein sequences, from scratch, that function as well as 
natural proteins.

ProGen is iteratively optimized by learning to predict the probabil-
ity of the next amino acid given the past amino acids in a raw sequence, 
with no explicit structural information or pairwise coevolutionary 
assumptions. Trained in this unsupervised manner from a large, varied 
protein sequence database (Supplementary Table 1), ProGen learns a 
universal, domain-independent representation of proteins that sub-
sumes local and global structure motifs, analogous to natural language 
models learning semantic and grammatical rules. After training, Pro-
Gen can be prompted to generate full-length protein sequences for 
any protein family from scratch, with a varying degree of similarity to 
natural proteins. In the common case where some sequence data from 
a protein family is available, we can use the technique of fine tuning 
pretrained language models32–35 with family-specific sequences to 
further improve the ability of ProGen to capture the distribution of 
local sequence neighborhoods corresponding to the protein family.

ProGen is a 1.2-billion-parameter neural network trained using 
a publicly available dataset of 280 million protein sequences. A key 
component of ProGen is conditional generation28,36–38, that is, sequence 
generation controlled by property tags (for example, Protein Family: 
Pfam ID PF16754, Pesticin) provided as input to the language model. 
In the case of natural language, these control tags may be style, top-
ics, dates and other entities (Fig. 1a). For proteins, the control tags are 
properties such as protein family, biological process and molecular 
function, which are available for a large fraction of sequences in public 
protein databases (Fig. 1b and Supplementary Fig. 1).
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Fig. 1 | Artificial protein generation with conditional language modeling. 
a, Conditional language models are deep neural networks that can generate 
semantically and grammatically correct, yet novel and diverse natural language 
text, steerable using input control tags that govern style, topic and other entities. 
b,c, Analogous to natural language models, we develop ProGen, a conditional 
protein language model (b) that generates diverse artificial protein sequences 
across protein families based on input control tags (c). d, ProGen is trained using 

a large, universal protein sequence dataset of 280 million naturally evolved 
proteins from thousands of families, of which five diverse lysozyme families are 
experimentally characterized in this study. e, ProGen is a 1.2-billion-parameter 
neural network that is based on the Transformer architecture, which uses a self-
attention mechanism for modeling comprehensive residue–residue interactions. 
ProGen is trained to generate artificial sequences by minimizing the loss over the 
next amino acid prediction problem on the universal protein sequence dataset.
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evolutionary conservation patterns without training on explicit alignment  
information such as with Potts models42, as implemented in direct 
coupling analysis7,43–46.

To experimentally evaluate ProGen performance across a range of 
sequence divergences from natural proteins, we selected one hundred 
sequences filtered on the basis of generation quality and diversity to 
natural sequences, measured as top-hit identities (‘max ID’) to any 
protein in our training dataset containing 280 million proteins, which is 
primarily composed of UniParc21 (Supplementary Fig. 4). Our selected 
proteins included 100 artificial sequences (Supplementary Table 2), 
with a minimum of 8 proteins from each protein family. The average 
sequence length for artificial proteins varies between 93–179 across 
families, comparable to natural lysozymes in our curated dataset from 
Pfam. Artificial proteins included specific amino acids and pairwise 
interactions never before observed in aligned positions in lysozyme 
family-specific alignments (Supplementary Tables 4 and 5). We also 
selected a positive control group from the 55,948 curated lysozyme 
sequences. We clustered the natural sequences with MMseqs247 and 

chose roughly 20 cluster-representative sequences from each of the 
five families.

To evaluate function, full-length genes were synthesized and puri-
fied via cell-free protein synthesis and affinity chromatography. In the 
positive control set of 100 natural proteins, 72% were well expressed 
as measured by chromatography peaks and band visualization. The 
ProGen-generated proteins express equally well (72/100 total) across 
all bins of sequence identity to any known natural protein (max ID 
40–90%; Fig. 2e). In addition, we designed artificial proteins using 
bmDCA7, a statistical model that is based on direct coupling analysis, 
which explicitly approximates first and second-order residue depend-
encies. Starting from their publicly available code, we tried to make the 
bmDCA model converge on the same sequences as ProGen and using 
additional alignment information and searched over a wide range 
of hyperparameters. bmDCA was unable to fit three out of the five 
lysozyme families, and exhibited 60% detectable expression (30/50 
proteins) for the remaining two protein families. These results indicate 
that ProGen can generate artificial proteins that are structurally well 
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Fig. 2 | Generated artificial antibacterial proteins are diverse and express well 
in our experimental system. a, When analyzed using t-distributed stochastic 
neighbor embedding (t-SNE) as a dimensionality reduction technique for 
visualization purposes, artificial sequences from our model are shown to span the 
landscape of natural proteins from five lysozyme families. Each point represents 
a natural or generated sequence embedded in a two-dimensional t-SNE space. 
b, With sufficient sampling, ProGen can generate sequences that are highly 
dissimilar from natural proteins. Max ID measures the maximum identity of an 

artificial protein with any publicly available natural protein. c, Artificial proteins 
maintain similar evolutionary conservation patterns as natural proteins across 
families. Plots demonstrate the variability at each aligned position for a library of 
proteins. Conserved positions are represented as curve dips. seq., sequence.  
d, From our generated proteins, we select one hundred proteins for synthesis and 
characterization in our experimental setup. e, Artificial proteins express well even 
with increasing dissimilarity from nature (40–50% max ID) and yield comparable 
expression quality to one hundred representative natural proteins.
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folded for proper expression as compared to a batch of natural pro-
teins, even when sequence alignment size and quality limit the success 
of alternative approaches.

Next we examined activity on the basis of quench release of 
fluorescein-labeled Micrococcus lysodeikticus cell wall (Molecular 
Probes EnzChek Lysozyme kit) using 90 randomly chosen proteins out 
of each expressed set of 100. Proteins were prepared in 96-well plate 
format to extract fluorescence curves over time (Fig. 3a). Hen egg white 
lysozyme (HEWL), a naturally evolved exemplar protein, was meas-
ured as positive control, in addition to ubiquitin as negative control. 
Proteins that generated fluorescence one standard deviation above 
the maximum fluorescence of any negative control were considered 
functional. Among our artificial proteins, 73% (66/90) were functional 
and exhibited high levels of functionality across families (Fig. 3c). The 
representative natural proteins exhibited similar levels of functionality 
with 59% (53/90) of total proteins considered functional. None of the 
bmDCA artificial proteins exhibited a detectable level of functionality 
(Supplementary Fig. 5), which may be due to convergence, sampling, 
or other specific model run issues further highlighting the versatility of 
ProGen providing a potentially more robust alternative. These results 
indicate that ProGen generates protein sequences that not only can 
express well but also maintain enzymatic function for diverse sequence 
landscapes across protein families.

In addition to a binary value for functionality, we calculated a 
relative activity score with respect to HEWL for the in vitro assay. Our 
artificial proteins match activity levels of natural proteins even at lower 
levels of sequence identity to any known natural protein, (Fig. 3b and 
Supplementary Fig. 6). Notably a small number of proteins, both within 
the natural and artificial proteins, were within an order of magnitude of 
HEWL, which was substantially more active than all negative controls. 
These highly active outliers demonstrate the potential for our model 
to generate sequences that may rival natural proteins that have been 
highly optimized through evolutionary pressures.

From the 100 artificial proteins, we selected five proteins that 
spanned a wide range of max IDs (48–89%) to recombinantly express 
in Escherichia coli. Of these, only one, L008, generated no detectable 
expression (Supplementary Fig. 7). Two (L013 and L038) expressed 
robustly to inclusion bodies and were not pursued further. Two pro-
teins, L056 (max ID 69.6%) and L070 (max ID 89.2%) expressed well 
and incurred bactericidal activities towards the E. coli BL21(DE3) 
strain used during overnight induction at 16 °C. Spent medium har-
bored enzymatic activity, therefore, enzymes were purified from  
this material.

While both enzymes purified as monomers at the expected size 
by size-exclusion chromatography, we also observed a defined later 
eluting (apparent lower molecular weight, likely owing to binding to 
the dextran component of the column) species for each enzyme that 
corresponded to full-length enzyme by SDS-PAGE (Supplementary 
Fig. 7). The KM values of both monomers were too weak to be meas-
ured using a heterogeneous, fluorescein-labeled M. lysodeikticus cell 
wall substrate (Molecular Probes EnzChek Lysozyme kit); however, 
both monomers were active using a pseudo-first-order kinetic assay 
(Supplementary Fig. 8). By contrast, we could readily measure the 
KM values for the purified apparent lower molecular weight species, 
where both L056 and L070 were highly active and had comparable 
Michaelis–Menten parameters to HEWL (Fig. 3d). Taken together, L056 
and L070 harbor potent catalytic activity and bactericidal capabilities 
that are comparable to HEWL, while diverging from their nearest known 
natural sequence by 53 and 18 amino acids, respectively. We also found 
that there is no bias to location or structural element to the mutations 
that diverge L056 and L070 from their respective nearest sequence 
homolog in nature. Differing residues are instead uniformly distrib-
uted. Some mutations are even found within the active site cleft and 
within regions that influence conformational state (for L056). Despite 
having comparable enzymatic activities, L070 and L056 only share 

17.9% sequence ID. In sum, these results demonstrate that ProGen can 
generate artificial proteins with near native activity.

Next, we examined the structural divergence of the artificial pro-
teins. We determined a 2.5-Å resolution crystal of L056 (Fig. 3e and 
Supplementary Table 6). The global fold was similar to predictions, with 
a Cα root mean squared deviation (RMSD) of 2.9 Å from the backbone 
structure predicted by trRosetta and 2.3 Å RMSD from a wild-type T4 
lysozyme structure48,49. The largest structural divergence occurs in the 
beta hairpin formed by residues 18–31. This region forms the bottom of 
the substrate-binding cleft50 and is part of a hinge binding motion that 
is important for substrate binding51. The structure of the M6I mutant 
of T4 lysozyme (Protein Data Bank (PDB) accession 150L) is used as a 
model of the ‘open’ state of this hinge and more closely resembles the 
structure of L056 (1.0 Å Cα RMSD). Alignment with a structure featur-
ing a covalently trapped substrate (PDB accession 148L) reveals that 
the active site cleft is well formed with the key catalytic residue Glu15 
(Glu 11 in T4L) and key substrate-binding residue Thr30 (Thr26 in T4L) 
correctly positioned. In addition, the hydrophobic core of L056 is well 
packed, with only two small packing voids of less than 5 Å3 in volume, 
which is typical for structures of this size52.

To examine whether ProGen could generate functional proteins 
in the ‘twilight zone’ sequence identity53 where two proteins are not 
assumed to share functional similarity54, we generated 95 new artifi-
cial sequences with maximum sequence identities lower than 40% to 
any known natural protein for two lysozyme families (PF00959 and 
PF05838). Of the selected sequences, 78 out of the 89 (88%) expressed 
well and 24 out of the 78 (31%) were soluble (Supplementary Fig. 9). 
We purified six highly expressed proteins and found that they were all 
active, but with lower Michaelis–Menten activities than HEWL or the 
previously generated artificial proteins L056 and L070 (Fig. 3f, Sup-
plementary Fig. 10, and Supplementary Table 7). The protein with the 
lowest sequence identity to a natural protein, D4 (31.4% ID to a protein 
from an Arcobacter nitrofigilis organism), had a kcat/KM of 20.2 M−1s−1, 
approximately 200-fold below HEWL. While the activity is substan-
tially lower for these distant proteins, directed evolution could be 
employed to improve activity. Collectively, these results demonstrate 
a procedure for generating soluble, active proteins that are distant 
enough in sequence space that they might not be considered traditional 
sequence homologs.

To additionally compare across structural representations, we 
used AlphaFold2 (ref. 14) to predict the structure of functional artificial 
sequences. As in the crystal structure of L056, the predicted artificial 
structures roughly match known structures found in nature (Supple-
mentary Fig. 11) including for low identity (<40%) artificial sequences.

Trained on a universal protein sequence dataset spanning many 
families, ProGen designs proteins from any family when provided 
with the corresponding control tag as input. To explore this capability 
beyond the lysozyme clan, we evaluated the performance of ProGen 
in generating and predicting functional full-length sequences from 
families where other methods have previously been applied: choris-
mate mutase (CM)7 and malate dehydrogenase (MDH). Generated 
proteins exhibit similar conservation patterns to natural sequence 
libraries (Fig. 4a,d). After aligning the generations to a sequence with 
known structure (Fig. 4b,e), we observed that the conserved positions 
in generated sequences correlate with ligand-binding and buried resi-
dues. Using previously published sequences and their experimentally 
measured assay data for CM7 and MDH55 proteins, we also evaluated 
the concordance of the ProGen model likelihood for these sequences 
to their relative activity and compared it with the generative methods 
used in the original studies—bmDCA7 and proteinGAN55. Specifically, we 
measured per-token log-likelihoods for artificial sequences using Pro-
Gen and used them to predict if artificial sequences should function. On 
CM function data, ProGen log-likelihoods had an area under the curve 
(AUC) of 0.85, significantly better (P < 0.0001, two-tailed test, n = 1617) 
than bmDCA, which had an AUC of 0.78 (Fig. 4c). On MDH function 
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data, ProGen log-likelihoods had an AUC of 0.94 (Fig. 4f), which was 
better than ProteinGAN discriminator scores, with an AUC of 0.87 
(P < 0.1, two-tailed test, n = 56). In sum, the model likelihoods of ProGen 

are better aligned with experimentally measured assay data on two 
diverse protein datasets—CM and MDH—than the sequence-generation 
methods from original studies specifically tailored for these families.
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Fig. 3 | Artificial protein sequences are functional while reaching as low as 
31% identity to any known protein, exhibit comparable catalytic efficiencies 
to a highly-evolved natural protein, and demonstrate similar structures 
to known natural folds. a, Artificial proteins bind well to substrates and 
exhibit high fluorescence responses over time (n = 90). For HEWL and negative 
(ubiquitin) controls, the minimum and maximum fluorescence range of n = 3 
replicates are shown as bars. b, Artificial proteins remain active even while being 
dissimilar (40–50% max ID that is, top hit-identity) from known natural proteins. 
Outliers indicate high activity samples where relative activity is computed with 
respect to HEWL. Box plots are derived from n = 90, 23, 28, 22, 8, 9 samples for 
each category from top to bottom, respectively. Boxes display the median, first 
quartile and third quartile with whiskers which extend to 1.5× the inter-quartile 
range. c, Artificial proteins are functional across protein families. Functional is 
defined as a fluorescence one standard deviation above the maximum value of 
all negative controls. d, Michaelis–Menten kinetics of HEWL natural lysozyme 
(red) and two generated lysozymes (blue; L056 and L070) against cell wall 

substrate show comparable performance (n = 3 technical replicates where error 
bars represent standard deviation). e, We determined a 2.5-Å resolution crystal 
of L056 artificial lysozyme. A global overlay of L056 crystal structure with two 
representative T4 lysozyme conformations is shown with L056 presented in sky 
blue, ‘open’ conformation of M6I T4 lysozyme (PDB accession 150L) in dark red, 
‘closed’ conformation of wild-type T4 lysozyme (PDB accession 3FA0) in orange, 
and substrate (PDB accession 148L) colored by element. Catalytic threonine 
(T30 in L056 and T26 in T4 lysozyme) and first catalytic glutamate (E15 in L056 
and E11 in T4 lysozyme) are represented as sticks. f, Bars represent Michaelis–
Menten kcat/KM constants derived for lysozyme variants demonstrating a range 
of catalytic activities across variants of varied maximal sequence IDs to known 
natural protein. Error bars represent propagated standard deviations derived 
from fitting procedure (n = 3 for A5, L056 and L070 technical replicates; n = 4 for 
C9 and E11 technical replicates; two biological replicates of each n = 4 technical 
replicates for D4). Asterisk denotes kcat/KM derived from initial rate analysis and 
unit converted (Supplementary Table 7).
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To understand the relative impact of the universal sequence data-
set and of sequences from the protein family of interest on the genera-
tion ability of ProGen, we perform two ablation studies using the CM 
and MDH experimentally measured assay data. First, we evaluated 
the performance of ProGen trained only with the universal sequence 
dataset. We measured per-token log-likelihoods for artificial sequences 
for this version of ProGen using control tags for CM and MDH. These 
likelihoods showed a significant drop in AUC of 0.18 for CM (P < 0.0001, 
two-tailed test, n = 1,617) and 0.08 for MDH (P < 0.1, two-tailed test, 
n = 56), as compared to fine-tuned ProGen when predicting if an arti-
ficial sequence should function. Conversely, the ProGen architecture 
trained on CM and MDH protein sequences alone without the benefit 
of initial training on the universal sequence dataset also showed a sig-
nificant drop in performance as compared to fine-tuned ProGen—the 
AUC reduced by 0.11 (P < 0.0001, two-tailed test, n = 1,617) and 0.04 
(P < 0.05, two-tailed test, n = 56) on the CM and MDH data, respectively.

These results indicate that both components of our training strat-
egy—initial training on the universal sequence dataset and fine tun-
ing on the protein family of interest—contribute significantly to final 
model performance. Training with the universal sequence dataset 
containing many protein families enables ProGen to learn a generic and 
transferable sequence representation that encodes intrinsic biologi-
cal properties. Fine tuning on the protein family of interest steers this 
representation to improve generation quality in the local sequence 
neighborhood. Similar to the adaptability shown by neural networks 
trained on large datasets using transfer learning and fine tuning in 
natural language processing25,34,56 and computer vision57,58, protein 
language models have the potential to be a versatile tool for generating 
tailored proteins with desired properties. In Supplementary Fig. 12, 

the distribution of available sequences for different protein families 
indicates there is a large portion of the protein universe where our 
current technique would be useful. We extrapolate that it may be pos-
sible to successfully generate artificial proteins with functional activity 
without fine tuning, especially for larger protein families; however, it 
would likely do so at a small success rate. We did not attempt to experi-
mentally test generated sequences without additional fine tuning in  
our study.

Discussion
In conclusion, our study shows that a state-of-the-art transformer-based 
conditional language model trained only with evolutionary sequence 
data generates functional artificial proteins across protein families. 
Additional analyses suggest that our model has learned a flexible pro-
tein sequence representation that can be applied to diverse families 
such as lysozymes, CM, and MDH. While we do not expect our language 
model to generate proteins that belong to a completely different dis-
tribution or domain (for example, creating a new fold that catalyzes 
an unnatural reaction), it can substantially expand the space of protein 
sequences from those sampled by evolution. Combining biophysi-
cal modeling with generative models could further help us explore 
data distributions that are completely distinct from those sampled 
by evolution17,59,60. Applications of our model could include generating 
synthetic libraries of highly likely functional proteins for discovery or 
iterative optimization. In combination with ever-increasing sources 
of sequence data and more expressive control tags, our work points 
to the potential for the use of deep-learning-based language models 
for precise de novo design of proteins to solve problems in biology, 
medicine, and the environment.
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Fig. 4 | Applicability of conditional language modeling to other protein 
systems. a,b, Using the appropriate control tag, our language model, ProGen, 
can generate sequences for distinct protein families. Here we show that ProGen 
can generate CM enzymes that exhibit a similar residue distribution to nature 
(a) and the conserved residues among generated sequences correlate to 
ligand-binding sites (b). c, The model likelihoods of ProGen can also accurately 
predict the functionality of CM variants from published data, slightly better 

than the coevolutionary bmDCA7 algorithm from the original study. d, ProGen 
can also generate MDH proteins that exhibit a similar residue distribution 
to nature. e, The conserved residues among generated sequences correlate 
to buried residues. f, The model likelihoods of ProGen are also accurate in 
predicting functionality of published variants of MDH, similar to the generative 
proteinGAN55 model used in the original study.
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Methods
Training data curation
To train ProGen, we collected a universal protein sequence dataset con-
taining 281 million non-redundant protein sequences (from >19,000 
Pfam23 families) and associated metadata (as control tags) from Uni-
Parc21, UniprotKB22, Pfam23 and NCBI taxonomic information61 (Fig. 1d 
and Supplementary Table 1). The amino acid vocabulary consisted of 
the standard 25 amino acids designations in IUPAC62. The control tags 
were divided into two categories: (1) keyword tags and (2) taxonomic 
tags. Following the definitions laid out in the UniprotKB controlled, 
hierarchical vocabulary of keywords (many of which are derived from 
Gene Ontology (GO) terms63), the control keyword tags included 1,100 
terms ranging from cellular component, biological process, and molec-
ular function terms. The taxonomic tags include 100,000 terms from 
the NCBI taxonomy across the eight standard taxonomic ranks. The 
aggregated dataset was split into a training set of size 280 million and 
two test sets, an out-of-distribution test set (OOD-test) of size 100,000 
from 20 protein families and a randomly sampled in-domain test set 
(ID-test) of size 1 million, that were held out for training and used for 
evaluation. After model training on the training database, the model 
was further trained, that is fine tuned, to the following datasets for 
generation and classification tasks.

For fine tuning on lysozyme proteins, five protein families from 
the Pfam database were selected, phage lysozyme (PF00959), pesticin 
(PF16754), glucosaminidase (PF01832), glycoside hydrolase family 
108 (PF05838) and transglycosylase (PF06737), yielding a total of 
55,948 sequences. Proteins were provided to the model during fine 
tuning as unaligned protein sequences with one control tag prepended 
for the protein family designation. For fine tuning on CM proteins, a 
search with HHBlits and blastp was performed with residues 1–95 of 
EcCM (the CM domain of the E. coli CM-prephenate dehydratase, the 
P-protein) yielding 20,214 sequences. For fine tuning on MDH proteins, 
the l-lactate/MDH protein family from Interpro IPR001557 was selected 
with 17,094 sequences.

Conditional language modeling
Let a = (a1, ...,ana) be a sequence of amino acids that specifies a protein 
of length na − 1 appended with an ‘end of sequence’ token. Let 
c = (c1, ..., cnc) be an associated set of descriptors such as protein family 
or source organism, that is, ‘control tags’, through which we would like 
to control generation of amino acid sequences. Let x = [c;a] be the 
sequence formed by prepending a control tag sequence to an amino 
acid sequence. The probability over such a combined sequence of 
length n = na + nc is then P(x). Language modeling decomposes the 
problem of generating x into a next-token prediction problem64, where 
a token can either be an amino acid or a control tag. We train a neural 
network with parameters θ to minimize the negative log-likelihood 
over a dataset D = {x1,… , x|D|}

L (D) = − 1
|D|

|D|
∑
k=1

1
nk

nk

∑
i=1

logpθ (xki |x
k
<i) (1)

A new protein a of length ma with desired properties encoded by a 
control tag sequence c of length mc can then be generated by sequentially 
sampling its constituent tokens: pθ(a1|c), pθ(a2|a1, c),…,pθ(aj|a<j, c)  
(ref. 65). Generation continues until the model generates an ‘end of 
sequence’ token.

We use a transformer-based24 neural network architecture for 
constructing ProGen. The transformer learns long-range context 
within sequences using a series of stacked layers, each containing a 
self-attention mechanism (Fig. 1e). The self-attention mechanism in 
each layer infers pairwise interaction relationships between all posi-
tions in its input sequence. Stacking multiple self-attention layers allows 
us to learn multiple-residue interactions66. The transformer-based 
approach has been shown to be related to coevolutionary methods 

for sequence design such as MRFs67, Potts models68 and Hopfield net-
works69. In contrast to transformer-based language models that encode 
amino acid sequences for discriminative protein prediction tasks30,70,71, 
ProGen is a decoder transformer tailored for autoregressive genera-
tion: it generates a sequence in a left-to-right manner, token-by-token, 
where the next token is conditioned on all previously generated tokens.

The transformer architecture of ProGen has 36 layers, and 8 
self-attention heads per layer and a total of 1.2 billion trainable neu-
ral network parameters. We trained ProGen to minimize the nega-
tive log-likelihood defined in Eq. 1 using this dataset with a batch size 
of 2,048 for 1 million iterations. Training was performed across 256 
Google Cloud TPU v3 cores for 2 weeks. Once trained, ProGen could 
be used to generate protein sequences from scratch by specifying a 
control tag (for example, protein family identifier from Pfam; Fig. 1c).

ProGen training
For training, we included each sequence and its reverse. We prepended 
each sequence with a corresponding subset of control tags. For a given 
sequence, there can be multiple versions across databases, each with 
their own associated control tags. We randomly sampled which set 
of control tags to use, but biased sampling toward SwissProt tags as 
they are manually verified. Additionally, we always included a sample 
with the sequence alone without control tags so that ProGen could be 
used to complete proteins using sequence data alone. We truncated all 
sequences to a maximum length of 512. Sequences of length less than 
512 were padded, and padded tokens were excluded from the cost func-
tion used for training. The average token length of control tags during 
pretraining was eight. Our model was implemented in TensorFlow and 
trained with a global batch size of 2048 distributed across 256 cores of 
a Cloud TPU v3 Pod for a fixed number of 1 million iterations, with no 
specific stopping criterion. The perplexity on a held-out test set was 
monitored and did not exceed training set perplexity throughout model 
training. Training took approximately 2 weeks using Adagrad with linear 
warmup from 0 to 1 x 10−2 over the initial 40,000 steps with a linear decay 
for the remainder of training. The model was initialized with pretrained 
weights of CTRL28, which was trained on an English language corpus.

Lysozyme generation
Fine tuning involves making limited, computationally inexpensive, 
gradient updates to the parameters of the trained model. We fine tuned 
ProGen to the 55,948-sequence fine tuning dataset using the conditional 
language modeling loss function introduced in Eq. 1, using a separate 
control tag for each of the five lysozyme families. The fine tuning dataset 
was clustered at 80% sequence identity and 10% of the clusters were 
held-out as a validation set for hyperparameter optimization and stop-
ping criteria. The model was fit for 4 epochs using the Adam optimizer72 
with a learning rate of 0.0001, batch size of 2, gradient norm clipping73 
threshold of 0.25, and a dropout74 rate of 0.1. We then applied sampling 
using the final checkpoint of the fine-tuned model. We generated 1 mil-
lion artificial sequences from the learned conditional probability dis-
tribution pθ (ai|a<i, c) using each of the five lysozyme families as a control 
tag c, and applying top-p sampling75, which zeros out the probability of 
the tail of the distribution during sampling, and uses a hyperparameter 
p to determine what fraction of the original distribution to keep. Lower 
p values result in sequences with a higher likelihood under the model, 
but lower diversity. We generated a batch of 1 million synthetic 
sequences (Supplementary Fig. 3) using p values that varied in 
[0.25,0.50,0.75], and applied the sequence selection criteria in the next 
section to determine which sequences to synthesize.

Lysozyme sequence selection
We selected sequences for synthesis by ranking them using the com-
bination of an adversarial discriminator27,76 and generative model 
log-likelihood scoring77. First, we trained an adversarial discrimina-
tor to distinguish between natural lysozymes and ProGen-generated 
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lysozymes. A higher discriminator score indicates a protein sequence 
that is ‘semantically’ and ‘grammatically’ closer to natural sequences, 
but not necessarily one of high sequence identity to natural proteins. To 
train the discriminator, we generated a batch of samples from fine-tuned 
ProGen (with nucleus sampling turned off, or p = 1) that was the same 
size and distribution of families as our dataset of natural lysozymes. The 
discriminator architecture was a fine-tuned TAPE-BERT71. For robust-
ness, we trained three discriminators using different random seeds. 
We assigned each sequence a discriminator score as the geometric 
mean of the probability of the sample being a natural sequence as pre-
dicted by the three discriminators. We also assigned each sequence a 
log-likelihood score as the average per-token log-likelihood for each 
sample computed using the fine-tuned ProGen model and conditioned 
on the control tag used to generate the sequence, given by

Score (a) = 1
na

na

∑
i=1

logpθ (ai|a<i, c) (2)

A higher log-likelihood score indicates a sequence close to 
the probability distribution of sequences seen in training. Model 
log-likelihoods are directly correlated with perplexity as a language 
modeling evaluation metric. We selected artificial sequences using 
separate rankings based on the discriminator and log-likelihood scores. 
We separately ranked candidate sequences in maximum sequence 
identity ranges of 40–50%, 50–60%, 60–70%, 70–80% and 80–90%. 
For each range, we added the top discriminator-ranked sequences, 
skipping any sequences that were >80% identical to any previously 
selected sequence, for a total of 90 sequences. Ten more sequences 
were added on the basis of ranking by generative model log-likelihood 
scores in each range, again skipping any sequences with >80% identity 
to any previously selected sequence.

Evaluating ProGen on other protein systems
We also evaluated ProGen on generation of CM and MDH proteins. We 
separately fine tuned ProGen on datasets of CM and MDH proteins 
using the Adam optimizer, a learning rate of 1 x 10−4, a gradient norm 
clipping threshold of 0.25, and a dropout rate of 0.1. We also prepended 
the CM and MDH data with control tags that corresponded to CM 
and MDH families in original training of ProGen. After fine tuning, we 
generated a set of 64,000 sequences using top-p sampling (p = 0.75) 
from the CM and MDH fine-tuned models, respectively. We measured 
concordance of the log-likelihoods of our model with protein func-
tion data on CM and MDH sequences, and compared with bmDCA7 
and ProteinGAN55 baselines, respectively. We computed the AUC in 
receiver operating characteristic (ROC) curves for predicting binary 
function labels from model scores. We computed model scores for 
each sequence in both CM and MDH by using the per-token model 
log-likelihood in Eq. 2. We used model scores for bmDCA given by 
negative energy of each CM sequence provided by the authors of the 
study7. We also applied thresholding at 0.42 norm relative enrichment 
to obtain binary labels for CM function, which roughly corresponds to 
the cutoff point between two modes that exist in CM function data, to 
be used for ROC curves, following the original study7.

Since model likelihoods for GANs are intractable, we used discrimi-
nator scores corresponding to the probability at which the ProteinGAN 
discriminator predicted each sample was real as a ProteinGAN model 
score for each MDH sequence. The MDH functional labels are binary, so 
no thresholding was needed to compute AUCs. For an ablation study on 
ProGen, we also evaluate: i) a randomly initialized LM that has the same 
architecture as ProGen and is fine tuned to the same task-specific data 
as ProGen (CM or MDH), but is not pretrained on a larger dataset; and 
ii) ProGen without task-specific fine tuning, conditioning on control 
tags for CM or MDH from the original ProGen pretraining data. After 
measuring the AUC of each model for each dataset, we used bootstrap-
ping to compute the statistical significance of the difference in AUC of 

fine-tuned ProGen versus the reference method (bmDCA and ProGen 
ablations for CM, ProteinGAN and ProGen ablations for MDH). At each 
bootstrapping iteration, we resampled a new dataset of fitness and 
model score pairs the same size as the original dataset by randomly 
selecting data points from the original dataset with replacement. For 
each sample dataset, we compute the difference in AUC score between 
fine-tuned ProGen and the reference method. We drew a total of 10,000 
bootstrapping samples, and the P value is given by the percentage of 
the samples where the baseline achieves an AUC greater than or equal 
to fine-tuned ProGen, multiplied by two to give two-tailed.

Materials
All reagents were purchased from Thermo Fisher Scientific unless oth-
erwise noted. DNAs used for in vitro translation were purchased from 
Twist Bioscience and DNAs used for E. coli expression and purification 
were purchased from VectorBuilder.

High-throughput cell-free expression of lysozymes
Lysozymes were expressed using the Tierra Bioscience cell-free expres-
sion platform. Cell-free extracts for protein expression were prepared 
according to the methods of Sun et al.78 with the following modifications: 
Terrific Broth was used in lieu of 2xYT, cells were lysed in a single pass by 
French press at 10, 000 p.s.i, dithiothreitol was omitted from wash buff-
ers, and run-off and dialysis steps were removed to streamline extract 
processing. Expression reactions were composed of cell-free extract, an 
energy buffer and a linear DNA template containing a promoter sequence, 
the protein sequence of interest, the sequence of a strep purification 
tag and a terminator sequence; reactions were carried out at 29 °C for 
6 hours. Expression reactions for screening optimal affinity purification 
tag terminus were performed in 10 µL volumes; selected reactions with 
good expression were then scaled to 200 µL. Lysozymes were purified 
from expression reactions by affinity chromatography with elution by 
enzymatic cleavage with 3 C protease leaving a small sequence scar.

High-throughput screening of lysozyme activity
Purified cell-free synthesized lysozymes were assayed with the EnzChek 
Lysozyme Assay Kit (Thermo Fisher Scientific). The assay was per-
formed according to protocol with minimal modifications. HEWL 
standards and purified proteins in buffer (100 mM Tris pH 7.4, 150 mM 
NaCl, 2 mM TCEP, 20% glycerol) were brought to 50 µl with reaction 
buffer (100 mM sodium phosphate pH 7.5, 100 mM NaCl, 2 mM NaN3) in 
a 96-well plate. Fifty microliters of DQ lysozyme substrate, fluorescein 
conjugate (1 mg ml−1) was added to each well and fluorescence (excita-
tion 485/20; emission 528/20) was collected every 5 min with a Synergy 
2 multi-mode microplate reader (BioTek) for 6 h at 37 °C.

For each 96-well plate, three random wells were dedicated for 
HEWL controls and three wells were dedicated for a negative control 
of ubiquitin expressed and purified on the Tierra Biosciences cell-free 
expression platform. A purified protein was considered functional if 
it exhibited a higher fluorescence than one standard deviation above 
the maximum fluorescence value of all negative controls. The relative 
activity for each protein was calculated by the following equation:

Relative activity =
rprotein − rnegative
rHEWL − rnegative

× mHEWL
mprotein

(3)

Where r is the linear rate of fluorescence increase in the initial 20 min 
of the fluorogenic assay and m is the mass of protein as determined by 
Bradford assay concentration and measured volumes.

E. coli expression of lysozyme variants
We chose five generated lysozyme variants (L008, L013, L038, L056, 
L070) for expression in E. coli on the basis of strength of signal in 
the in vitro assay, expression level in the cell-free system and max 
ID to natural proteins. Generated lysozyme variants, were codon 
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optimized for E. coli (Integrated DNA Technologies) with an HRV3C 
protease site N-terminal of the open reading frame. DNA was syn-
thesized and cloned in-frame with a 5′ His6-tag in a pET vector and 
transformed into BL21(DE3) (Vectorbuilder). One liter of Terrific Broth 
(Fisher) was prewarmed to 37 °C before being inoculated with 10 ml 
overnight starter culture. Cultures were grown to 0.6 < OD600 < 1.0 
before temperature was dropped to 16 °C for expression. Cultures 
were induced with 0.5 mM isopropyl β-d-1-thiogalactopyranoside 
(source) and protein expression was allowed to continue overnight. 
For induced cultures of L056 and L070, turbidity was observed in the 
spent medium after cells were pelleted at 3,500 r.c.f. for 30 min at 
4 °C. Spent medium also harbored lysozyme activity as ascertained 
through fluorescence increase over time of the fluorescein-labeled M. 
Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher). Spent 
medium was saved for protein purification (outlined below) and cell 
pellet frozen and stored at −20 °C. Variant L008 did not express under 
multiple different conditions. L013 and L038 expressed highly to  
inclusion bodies.

Purification of L056 and L070 from spent medium
Medium was split into two 0.5 l pools each. The first pools were loaded 
onto a 5 ml HisTrap FF NiNTA column (GE) using a peristaltic pump at 
room temperature. Columns were washed with 200 ml 30 mM HEPES 
pH 7.6, 150 mM NaCl, 25 mM imidazole, 0.5 mM TCEP. Columns were 
eluted with 25 ml 30 mM HEPES pH 7.6, 150 mM NaCl, 250 mM imida-
zole, 0.5 mM TCEP. Eluates were concentrated to 8–10 ml and dialyzed 
against 30 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM TCEP with HRV3C 
protease added overnight at 4 °C. Dialyzed protein was put through an 
ortho 5 ml HisTrap FF NiNTA column (GE) to remove HRV3C protease 
and uncleaved lysozyme. Though highly pure by SDS-PAGE analysis, 
protein was further purified by size-exclusion chromatography and 
loaded on an S75 10/300 gl column pre-equilibrated with 30 mM HEPES 
pH 7.6, 150 mM NaCl, 0.5 mM TCEP. Two peaks were resolved for each 
variant that harbored lysozyme activity against the fluorescein-labeled 
M. Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher). Indi-
vidual peaks were pooled and protein concentration determined either 
by Bradford assay (Biorad) or by SDS-PAGE using colloidal coomassie 
(Thermo Fisher) and HEWL in-gel standards.

The second spent medium pools were batch bound to 5 ml HisPur 
NiNTA resin (Thermo Fisher) at 4 °C for 1 h before protein-bound resin 
was pelleted through centrifugation at 3,000 r.c.f. for 5 min at 4 °C. 
Protein-bound resin was resuspended with 25 ml 30 mM HEPES pH 7.6, 
150 mM NaCl, 25 mM imidazole, 0.5 mM TCEP and applied to a gravity 
flow column (BioRad) at room temperature. Columns were washed with 
200 ml 30 mM HEPES pH 7.6, 150 mM NaCl, 25 mM imidazole, 0.5 mM 
TCEP. Columns were eluted with 25 ml 30 mM HEPES pH 7.6, 150 mM 
NaCl, 250 mM imidazole, 0.5 mM TCEP. Eluates were concentrated 
to 8–10 ml and dialyzed against 30 mM HEPES pH 7.6, 150 mM NaCl, 
0.5 mM TCEP with HRV3C protease added overnight at 4 °C. Lysozyme 
was separated from HRV3C protease by size-exclusion chromatography 
on an S75 10/300 gl column pre-equilibrated with 30 mM HEPES pH 7.6, 
150 mM NaCl, 0.5 mM TCEP. Two peaks were resolved for each variant 
that harbored lysozyme activity against the fluorescein-labeled M. 
Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher) that cor-
responded to peaks observed in the first pool purification. Individual 
peaks were pooled and protein concentration determined either by 
Bradford assay (Biorad) or by SDS-PAGE using colloidal coomassie 
(Thermo Fisher) and HEWL in-gel standards.

Michaelis–Menten kinetics of lysozyme variants using 
fluorescein-labeled M. lysodeikticus cell wall
Fluorescein-labeled M. Lysodeikticus cell wall substrate (EnzChek kit; 
Thermo Fisher) was reconstituted in 30 mM HEPES pH 7.6, 150 mM 
NaCl to 1 mg ml−1, aliquoted and stored at −20 °C until use. A serial two-
fold dilution series of substrate was prepared in 30 mM HEPES pH 7.6, 

150 mM NaCl and treated as a 2× solution for enzymatic assays. Enzyme 
concentration was calculated either through Bradford assay (Bio-Rad) 
or by SDS-PAGE, in-gel using Novex or Abcam Colloidal Coomassie stain 
against a HEWL standard (Alfa Aesar). Enzymes were diluted to between 
10 and 100 nM in 30 mM HEPES pH 7.6, 150 mM NaCl (HEWL) or 30 mM 
HEPES pH 7.6, 150 mM NaCl, 0.5 mM TCEP (L056 and L070) and these 
stocks treated as a 2× solution for enzymatic assays. Kinetic assays were 
performed in a Tecan Spark 10 M plate reader using monochrometers 
with a fixed 20 nm bandpass filter in a 384-well black-bottom plate 
(Corning) at 10 μl final volume. Reactions were initiated by pipetting 
5 μl of substrate into appropriate wells followed immediately by 5 μl of 
enzyme, mixed by pipetting before starting data acquisition. The dead 
time from reaction initiation to acquisition of first read was measured 
to be 24 s. For reactions carried out above ambient temperature (25 °C), 
the plate was preincubated at temperature for at least 5 min before 
reaction initiation. Initial velocities were calculated through linearly 
fitting fluorescence intensity (a.u.) versus time for the first 2 min of 
each reaction. Finally, velocities were converted from a.u. to fluorescein 
liberated through application of a fluorescein (Sigma) standard curve 
(Supplementary Fig. 7) and normalized to enzyme concentration. 
Averaged data (n = 3 technical replicates) were non-linearly fit to the 
Michaelis–Menten model (Eq. 4) in IgorPro 7 to report kcat in units of 
fluorescein liberated enzyme−1 min−1 and KM in units of g l−1 (the average 
molecular weight of the fluorescein-labeled M. Lysodeikticus cell wall 
substrate was unknown and likely heterogeneous).

vo =
kcat ∗ [substrate]
KM + [substrate]

(4)

For low ID lysozyme A5, the above protocol was altered slightly to 
accommodate lower catalytic activity of these variants: reaction 
volumes were increased to 20 μl, the plate was covered with an opti-
cally transparent seal (Microseal ‘B’ seal; BioRad) to mitigate sample 
evaporation, fluorescence reads were taken every 5 min for 16 h with 
5 s of linear plate shaking before each measurement to minimize pho-
tobleaching of substrate and ensure substrate maintained homo-
geneous dispersion during longer reactions. The rate of substrate 
photobleaching was measured using a buffer-only control and used as 
a background rate subtraction for initial rate determination.

Lysozyme kcat/KM extrapolation from pseudo-first-order 
kinetic data
For the higher molecular weight L056 and L070 species whose KM val-
ues were beyond the concentration regime of the fluorescein-labeled 
M. Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher), the 
ratio kcat/KM was measured through pseudo-first-order kinetics where 
when [Enyzme] » Substrate the Michaelis–Menten model simplifies 
to Eq. 5. Fluorescein-labeled M. Lysodeikticus cell wall substrate was 
diluted to 0.01 g l−1 and this stock was treated as 2× for kinetic assays. 
Kinetic assays were performed in a Tecan Spark 10M plate reader using 
monochrometers with a fixed 20-nm bandpass filter in a 384-well 
black-bottom plate (Corning) at 10 μl final volume. The dead time 
from reaction initiation to acquisition of first read was measured at 
24 s and the 0 s fluorescence intensity was measured through dilution 
of substrate with buffer. Reactions were initiated by pipetting 5 μl 2× 
enzyme into 5 μl 2× substrate in a prewarmed 384-well black assay 
plate (Corning). Five technical replicates were performed across four 
enzyme concentrations. The resultant data were not described by a 
single exponential model but were described by a double exponen-
tial model (Eq. 6), likely owing to the heterogeneity of the substrate, 
and all data were fit in IgorPro 7. The reciprocal of the weighted sum 
of each tau component was taken to estimate a single kobs value for 
subsequent analysis (Eq. 7). To estimate kcat/KM, kobs values were plot-
ted against enzyme concentration where the slope of a linear fitting 
is equal to kcat/KM.
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kobs =
kcat
KM

× [Enzyme] (5)

y = yo + Amplitude1 × e(−
x

tau1
) + Amplitude2 × e

(− x

tau2
) (6)

k−1obs = tau1 ×
Amplitude1
Amplitude2

+ tau2 ×
Amplitude2
Amplitude1

(7)

For lowID lysozyme variants the above protocol was altered slightly 
to accommodate lower catalytic activity of these variants: reaction 
volumes were increased to 20 μl where 2 μl 0.05 mg ml−1 (0.005 mg ml−1 
final) of fluorescein-labeled M. lysodeikticus cell wall substrate was 
diluted with 18 μl lysozyme variant to initiate reactions, plate was 
covered with an optically transparent seal (Microseal ‘B’ seal; BioRad) 
to mitigate sample evaporation, fluorescence reads were taken every 
5 min for 16 h with 5 s of linear plate shaking before each measure-
ment to minimize photobleaching of substrate and ensure substrate 
maintained homogeneous dispersion during longer reactions. At least 
four enzyme concentrations were tested. Initial rates from these data 
(first 2 h of reaction) were also collected to determine enzyme relative 
activity according to Eq. 3 (Supplementary Fig. 10).

Crystallization and structure determination of L056
Purified L056 was concentrated to 18.6 mg ml−1 in 30 mM HEPES pH 7.6, 
150 mM NaCl, 0.5 mM TCEP. Crystals were identified from sitting drop 
vapor diffusion experiments set at 20 °C with a 1:1 ratio of 200 nl pro-
tein and 200 nl well solution (0.1 M CHES 9.5 pH, 30 %w/v PEG 3000). 
Diffraction data were collected from a single crystal at Beamline 8.3.1. 
at the Advanced Light Source. Data were processed using XDS79 and a 
molecular replacement solution was identified using phaser80 with a 
trRosetta model of L056 as a search model. Significant translational 
non-crystallographic symmetry and differences with the search model 
resulted in maps that were initially hard to interpret. The initial model 
was improved using Refmac jelly body refinement81 using rebuilding 
using phenix.autobuild82 and the CCP4 buccaneer_pipeline83. The 
model was finalized and iteratively improved with multiple rounds of 
manual modification in Coot84 and refinement using phenix.refine85. 
The model is deposited as PDB accession 7RGR.

Low max ID lysozyme sequence selection, expression and 
assay
To evaluate whether ProGen can generate low max ID sequences, we 
generated an additional batch of sequences selected to have maximum 
sequence identities under 40% with respect to any natural protein. 
Since we could only test a limited number of proteins in vitro for this 
experiment, we modified our earlier generation procedure to bias the 
distribution of generations towards lysozyme families with higher 
measured functionality in previous experiments. We fine tuned an 
ensemble of four ProGen models only to lysozymes in PF00959 and 
PF05838 families. During generation, we used control tags for the two 
families, as well as control tags to indicate proteins with at least a 30% 
sequence similarity to L056 and L070, two proteins that we were able 
to successfully measure catalytic efficiency for in the previous batch. 
We then used a geometric ensemble of these four models to generate 
1 million samples across these control tag settings with varying top-p 
values. We only kept generations with maximum sequence identities 
between 20–40%, and ranked these generations using discriminator 
scores using the same methodology as before, except with a larger 5B 
parameter discriminator that was pretrained as the T586 model, instead 
of TAPE-BERT. Our final batch included 12 sequences with the PF00959 
control tag, 13 with the PF05838 control tag, 20 with the ‘L056 similar’ 
control tag, 20 with the ‘L070 similar’ control tag, 13 across control 
tags with under 30% maximum sequence identity and 20 sequences 

from the 1 million generated for the original batch (with 10 at least 
30% similar to L056 or L070, and 10 not similar), ranked by both the 
TAPE-BERT and T5 discriminators.

High-throughput expression testing of low max ID lysozyme 
variants
Variant sequences were appended with an N-terminal His6 and HRV3C 
tagged on their N-termini, codon optimized (VectorBuilder), cloned 
into a pET vector (VectorBuilder), transformed into BL21(DE3) and 
shipped from VectorBuilder as a glycerol stock in 96-well block. Vari-
ants were inoculated into 1 ml ZYM-5052 autoinduction medium87 
supplemented with 100 μg ml−1 carbenicillin in a 96-well deep block, 
covered with a gas-permeable seal and allowed to grow and expressed 
by shaking at 37 °C overnight (16 h). High-density expressed cultures 
were lysed by addition of detergent (Promega Fast Break Cell Lysis 
Reagent) supplemented with lysis buffer (30 mM HEPES pH 7.6, 150 mM 
NaCl, 0.5 mM TCEP, cOmplete mini EDTA free protease inhibitor cock-
tail (Roche), benzonase nuclease) with incubation under gentle shak-
ing for at least 15 min at room temperature before whole expression 
SDS-PAGE gel samples were taken. Individual wells from 96-well block 
were transferred to microcentrifuge tubes, centrifuged at 21,000g for 
5 min at room temperature, and the soluble fraction was transferred to 
a new 96-well block for soluble protein SDS-PAGE sample collection.

Expression and purification of lowID lysozyme variants
Variants A5, B6, C9, D4, D10 and E11 were chosen for follow up biochemi-
cal characterization on the basis of their high expression and solubility 
(Supplementary Fig. 10). Variants were inoculated into 50–200 ml 
ZYM-5052 autoinduction medium87 supplemented with 100 μg ml−1 
carbenicillin and allowed to grow and express constructs overnight 
(16 h) at 37 °C. High-density cell culture was pelleted by centrifugation 
at 4,000g for 20 min at 4 °C and resuspended to half the total culture 
volume in 30 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM TCEP, cOm-
plete mini EDTA free protease inhibitor cocktail (Roche), benzonase 
nuclease. Resuspended cells were being lysed by addition of detergent 
(Promega Fast Break Cell Lysis Reagent) by rotating end-over-end at 
4 °C for at least 15 min. Lysate was clarified by centrifugation at 4,000g 
for 20 min at 4 °C. Clarified lysate was batch bound to 0.5–1 ml dry 
volume of HisPur NiNTA resin (Thermo Fisher) for 45 min at 4 °C by 
rotating end-over-end. NiNTA bound variants were purified by either 
gravity or vacuum flow by washing resin with 75–125 ml 30 mM HEPES 
pH 7.6, 150 mM NaCl, 0.1 mM TCEP, 25 mM imidazole before eluting 
with 4 ml 30 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM TCEP, 250 mM 
imidazole. His6 tags were removed through addition of HRV3C protease 
and cleavage was allow to proceed either at room temperature for 2 h 
followed by buffer exchange using EconoPac 10 DG desalting columns 
(BioRad) equilibrated with 30 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM 
TCEP or dialyzed overnight at 4 °C against 30 mM HEPES pH 7.6, 150 mM 
NaCl, 0.5 mM TCEP. If total protein concentration was low, protein 
was concentrated in 3 kDa molecular weight cutoff Amico centrifugal 
filters. In-gel Coomassie quantification against HEWL standard curve 
was performed for all preparations and used for variant enzymology.

Structure prediction methods
To predict structure for the functional artificial sequences, we used Alpha-
Fold214 in single-sequence mode (without multiple sequence alignment 
(MSA) information), with PDB templates, and 12 recycles. We performed 
structure prediction without an MSA as input so as to not heavily bias the 
structure prediction toward a known natural mode. The highest ranked 
predicted structure among five models was used. We attempted structure 
prediction without templates under varying settings (1–48 recycles) using 
three different implementations (AlphaFold2 run locally, ColabFold88 
run on Google Colab and ColabFold run locally), however all predictions 
for our functional artificial sequences yielded unreliable results with 
predicted local distance difference test (pLDDT) scores below 60.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All sequence databases used in this study are publicly available and 
include UniprotKB, UniParc, NCBI Taxonomy, Pfam, Uniref30, NCBI nr 
database and Interpro. Please refer to Supplementary Table 1 for more 
details. Sequences and activity data for natural and artificial lysozymes 
tested are in the Supplementary Material. Evaluation data for the CM 
experiments can be found in Russ et al.6. Evaluation data for the MDH 
experiments can be found in Repecka et al.52. The crystal structure 
datasets generated during the current study are available under PDB 
accession 7RGR. Source data are provided with this paper.

Code availability
Our code and checkpoints are publicly available on Zenodo and can 
be reproduced using the details provided in the Methods section on 
data preparation, model architecture and training protocol. Major 
components of our model architecture and training protocol can be 
reproduced using CTRL (https://github.com/salesforce/ctrl). The most 
updated and supported codebase can be found at https://github.com/
salesforce/progen.
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