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Structure is beauty, but not always truth
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Structural biology, as powerful as it is, can be misleading. We highlight four fundamental challenges: inter-
preting raw experimental data; accounting for motion; addressing themisleading nature of in vitro structures;
and unraveling interactions between drugs and ‘‘anti-targets.’’ Overcoming these challenges will amplify the
impact of structural biology on drug discovery.

ll
Introduction
Amidst themany uncertainties that compli-

cate drug discovery, structural biology an-

chors the process in beautiful and con-

crete images of drugs interacting with

receptors. Structure can enable the tack-

ling of many of the key challenges of

drug design. Atomistic models emerging

from cryo-electron microscopy (cryo-EM),

X-ray crystallography, and nuclear mag-

netic resonance (NMR) provide strong

starting points for thinking broadly and

creatively about how to modulate protein

function by identifying binding pockets

and potential allosteric sites. Ligand-

bound structures greatly focus the search

of chemical space to molecules that main-

tain key interactions with the receptor.

By offering a ‘‘ground truth,’’ structural

biology is clear, quantifiable, and inter-

pretable. In the best cases, the precise

location of every atom is clearly defined.

For example, measuring the distances

between atoms on the ligand and recep-

tor allow us to infer that ‘‘this hydrogen

bond is better than that one.’’ By compar-

ison, the biology of the target is often quite

complex and difficult to model quantita-

tively. Cellular assays and animal models

are approximations that do not fully reca-

pitulate the human disease process or the

potential of small molecules to induce

toxicities. In addition, medicinal chemistry

is full of uncertainty. Even with a structure,

in the course of inhibitor optimization, it is

difficult to know what molecules to make

next or how to synthesize them. Finally,

we struggle to understand why somemol-

ecules are more potent or more bioavail-

able than others, making it next to impos-

sible to optimize the pharmacokinetic and

safety profile of a drug candidate.
However, the ‘‘truth’’ of structural

biology raises a legitimate concern: does

the availability of structural information,

such as a protein crystal structure, irrepa-

rably constrain the creative process? This

is a potential risk for those who fail to

recognize the inherent limitations in the

structures and the new predictions (e.g.,

AlphaFold2)1 trained on the corpus of

the Protein DataBank (PDB). We suggest

it is useful to consider four kinds of limita-

tions and offer ways that the field can

address each of them to optimize the

value we derive from structural biology

and further improve the quality of predic-

tive modeling.
Four harsh truths about structural
biology and drug discovery

(1) A structure is a model, not experi-

mental reality.

(2) Representing wiggling and jiggling

is hard.

(3) In vitro can be deceiving.

(4) Drugs mingle with many different

receptors.

A structure is a model, not

experimental reality

Undoubtedly, AlphaFold21 shook up the

field of structural biology by ‘‘solving’’

the protein structure prediction problem.

‘‘Solving’’ means that the predicted

models are highly similar to ‘‘ground

truth’’ experimentally determined struc-

tures by the metrics used by the CASP

(Critical Assessment of Structure Pre-

diction) competition, a community-wide

experiment to determine and advance

the state of the art in modeling protein

structure from amino acid sequence. It is
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important to note that ground truth struc-

tures contain inaccuracies beyond the

signal-to-noise of the experiments that

generate them. For example, in X-ray

crystallography, the experimental data is

measured very precisely (usually to less

than 5% error), but the structures refined

against that data have large residual

errors compared to the experimental

data (generally >�20%).2 Adding in prior

knowledge, such as geometry restraints,

is especially important as the resolution

of the experimental data gets worse.2

‘‘Truth’’ therefore may not lie only in com-

parison to the atomic coordinates, espe-

cially when the structure is based on

low-resolution data. Rather, comparisons

to density maps (or even raw diffraction

images or micrographs) may reveal a

deeper form of truth (Figure 1).

Recent work has started the important

task of comparing AlphaFold2 models

directly to experimental crystallographic

density maps.3 In many cases, predic-

tions closely matched experimental

maps. Refinement of the AlphaFold2

models against experimental data can

resolve some global scale distortion and

issues of domain orientation. Refinement

also improves local backbone and side-

chain conformations. However, most

very high-confidence predictions differed

from experimental maps to a greater

extent than independently determined

experimental structures.

Beyond suggesting that direct agree-

ment with experimental data, not ‘‘struc-

tures,’’ could be a new benchmark of

‘‘ground truth,’’ these findings prompt

us to ask how we can maximize the utility

of computationally predicted models

in drug discovery. Some differences
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Figure 1. The loss of information along the dataflow of structural biology
While computationally predicted models are currently trained against ‘‘structure’’ from the PDB, there is potential to increase the quality of models by looking at
the agreement between earlier data transformations. In X-ray crystallography, the diffraction from a crystal represents contributions from many molecules that
adopt distinct compositions inside the crystal. The estimated precision of integrated experimental intensities is typicallymuch higher than the agreement between
the density map and themodel, indicating that the ‘‘structure’’ can still be improved. Agreement between AlphaFold2 predictions and the structure are typically in
the range of what would be expected of independently determined low-resolution (4–5 Å) experimental structures. The agreement may be improved in the future
by looking earlier in the dataflow for training the models. Analogies to these rawer forms of truth exist in cryo-EM (e.g., raw micrographs, particle stacks, 3D
volumes) and NMR (e.g., Nuclear Overhauser Effect [NOE], Residual Dipolar Coupling [RDC], chemical shifts).
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between predictedmodels and the exper-

imental structure (and even underlying

data) may reflect a bias toward a less-

explored part of the energy landscape of

conformations populated by the protein.4

Moreover, the value of exposing pre-

dicted models to orthogonal computa-

tional techniques, like long molecular

dynamics simulations, is currently un-

clear. Despite these concerns, Alpha-

Fold2 and related approaches are already

having a huge impact in drug discovery,

ranging from areas often considered

mundane (e.g., DNA construct design) to

those widely considered to be exciting

(e.g., generative artificial intelligence [AI]

modeling of ligands into predicted binding

pockets).

Computationally predicted models

therefore have great potential to reduce

some of the early-stage uncertainty in

drug discovery that occurs prior to

structure enablement. The release of the

AlphaFold code base spurred a Cambrian

explosion of structural bioinformatics and

unanticipated findings (e.g., prediction of

protein complexes using AlphaFold Multi-

mer). Disturbingly, though, the next stage

of development of AlphaFold is clouded

with uncertainty, as the disclosure of

methods has moved from preprints,

GitHub, and journals to a company blog-

post without accompanying methods.5

Without open methods, it is difficult to
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tell whether we are approaching a plateau

in structure prediction accuracy. When

such a plateau is reached, we will need

to know how much of it is due to a faulty

definition of ‘‘ground truth.’’ It is likely

that more direct training against experi-

mental data, not refined structures, will

be required for further improvement in

structure prediction accuracy. Moreover,

the recognition that the structure is a

model of experimental data and that the

experimental data actually represents

the average of many (moving) molecules

may unlock new capabilities.

Representing wiggling and jiggling

is hard

The profound wisdom in Feyman’s state-

ment, ‘‘Everything that living things do

can be understood in terms of the jig-

glings and wigglings of atoms,’’ suggests

the need for a wholesale redefinition of

ground truth. We can account for the

macromolecular movements that are

crucial for drug discovery and reshape

our perspective to account for the dy-

namic nature of biomolecules and the ex-

istence of ensembles.

A few proteins are so simple that they

can largely be considered static for struc-

ture-based drug design. But even in the

paradigmatic example, carbonic anhy-

drase, an active site residue, His 64, can

undergo a side chain c1 rotation and

change the shape of the binding pocket.
Recognizing this rotation was essential to

optimize the properties of the glaucoma

drugdorzolamide.6Even this typeofsimple

side chain motion is currently difficult to

predict, revealing an important reason to

get co-complexes quickly, with any kinds

of ligands, whether considered ‘‘drug-

like’’ or not, in a drug discovery campaign.

Banging on the walls of the protein surface

is also an effective way to find alternate

binding sites and cryptic pockets. Such

strategies could lead a team tomake com-

pounds that simply should not fit in a static

binding pocket, but against all odds do

bind, and thereby reveal the intrinsic dy-

namics of the receptor.

Even with the recognition that a single

structure can be misleading, making cur-

rent AI pipelines aware of the multiple

truths and generating a probabilistic

ensemble remains a frontier challenge.

Current generative models can produce

structures from a latent space that

may be related to the underlying energy

landscape of the system. Much like the

change from classical to quantum me-

chanics a century ago in physics, a more

probabilistic view of protein conforma-

tional landscapes will likely explain prop-

erties that cannot be explained from sin-

gle structures alone.

However, current simulation methods

are hard to apply because the resulting

states are often rare and interconvert



Figure 2. Structural representations of selected proteins associated with the drug meta-

bolism and pharmacokinetics (DMPK)-related ‘‘avoidome’’
Proteins in the extracellular milieu, like human serum albumin (PDB: 6QIP), greatly affect distribution by
binding to drugs (purple arrow). Membrane proteins are involved in transport of drugs into and out of cells
(red arrows), including: P-glycoprotein 1 (PGP, MDR1, ABCB1) (PDB: 6C0V) and the Organic anion trans-
porter 1 (OAT1) (PDB: 8SDZ). Enzymes involved in metabolism alter the chemical structures of drugs (green
arrow), including: Glutathione S-Transferase (PDB: 3GSS), UDP glucuronosyltransferase (PDB: 6IPB), P450
CYP3A4 (PDB: 3NXU), and AldehydeOxidase (PDB: 7ORC). The xenobiotic transcriptional response (yellow
arrow) is mediated by direct binding to transcription factors, including the Pregnane X Receptor (PXR) (PDB:
2O9I). Finally, toxicology can emerge due to promiscuous binding (blue arrow) to anti-targets, including the
human Ether-à-go-go-Related Gene (hERG) potassium channel (PDB: 5VA2). We recognize that occa-
sionally it may be desirable to target certain proteins in the ‘‘avoidome’’12,13; for example, the COVID-19
medicinepaxlovid contains two active ingredients, nirmatrelvir (the actual antiviral agent) and ritonavir, which
blocks cytochrome P450 3A4. Ritonavir reduces the metabolism of nirmatrelvir, increasing its effectiveness.
These special cases notwithstanding, in general, the goal of a drug discovery team is to avoid interacting
with the avoidome class of proteins. These structures exemplify the molecular diversity and the intricate
interplay of protein-ligand interactions within the avoidome.
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slowly. Refining ensembles with greater

agreement to experimental data may

provide the substrates for the next

breakthrough in both single-structure and

ensemble prediction. Analogous to how

structure-based drug design is great for

optimizing ‘‘surface complementarity’’

and electrostatics, future proteinmodeling

approaches will unlock ensemble-based

drug design with an ability to predictably

tune newand important aspects of design,

including entropic contributions7 and resi-

dence times8 of bound ligands.

In vitro can be deceiving

While purifying a protein out of its cellular

context can be enabling for in vitro drug

discovery, it can also provide a false
impression. Recombinant expression

can lead to missing post-translational

modifications (e.g., phosphorylation or

glycosylation) that are critical to under-

standing the function of a protein. One of

the most exciting realizations of Alpha-

Fold2 predictions was that the model

was somehow ‘‘aware’’ of parts of the

native environment that a purely phys-

ics-based prediction would miss. Pre-

dicted structures are so poised to be filled

with prosthetic groups (e.g., heme),

metals, and metabolites that they can be

‘‘transplanted’’ into the models with mini-

mal refinement.9

Isolated structures of proteins become

more and more misleading as the focus
of drug discovery shifts to complex

biological systems that include multi-pro-

tein complexes, protein-RNA interac-

tions, and cellular condensates enriched

with intrinsically disordered proteins.10

Emerging techniques, especially cryo-

electron tomography (cryo-ET), have

great potential to deliver atomistic in-

sights directly from observations in cells.

An early example of cryo-ET has revealed

how ribosomes bound to the antibiotic

chloramphenicol are enriched in elonga-

tion states that lead to collisions.11 These

techniques will eventually answer ques-

tions about the residual structure in

‘‘disordered regions’’ that cannot be ad-

dressed without considering the local

cellular environment. In doing so, the

applicability and relevance of structural

biology to drug discovery will undoubt-

edly increase.

Drugs mingle with many different

receptors

The sad reality that all drug discoverers

must face is that however well designed

we may believe our compounds to be,

they will find ways to interact with many

other proteins or nucleic acids in the

body and interfere with the normal func-

tions of those biomolecules. While occa-

sionally, the ability of a medicine to bind

to multiple biomolecules will increase a

drug’s efficacy, such polypharmacology

is farmore likely to produce undesirable ef-

fects. These undesirable outcomes take

two forms. Obviously, the direct binding

to an anti-target can lead to a bewildering

range of toxicities, many of which render

the drug too hazardous for any use. More

subtly, the binding to anti-targets reduces

the ability of the drug to reach the desired

target. A drug that largely avoids binding

to anti-targetswill partitionmoreeffectively

through the body, enabling it to accumu-

late at high enough concentrations in

the disease-relevant tissue to effectively

modulate the function of the target.

A particular challenge results from the

interaction of drugs with the enzymes,

transporters, channels, and receptors

that are largely responsible for controlling

the metabolism and pharmacokinetic

properties (DMPK) of those drugs—

their absorption, distribution, metabolism,

and elimination. Drugs often bind to

plasma proteins, preventing them from

reaching the intended tissues; they can

block or be substrates for all manner
Cell 187, February 1, 2024 519
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of pumps and transporters, changing

their distribution through the body; they

occasionally interfere with xenobiotic

sensors such as PXR that turn on tran-

scriptional programs recognizing foreign

substances; and they often block en-

zymes like cytochrome P450s, thereby

changing their own metabolism and that

of other medicines. They are themselves

substrates for P450s and other metabo-

lizing enzymes and, once altered, can no

longer carry out their assigned, life-saving

function.

Taken together,we refer to theseDMPK-

related proteins, somewhat tongue-in-

cheek,as the ‘‘avoidome’’ (Figure2).Unfor-

tunately, the structures of the vast majority

of avoidome targets have not yet been

determined. Further, many of these pro-

teins are complex machines that contain

multiple domains and exhibit consider-

able structural dynamism. Their binding

pockets can be quite large and promiscu-

ous, favoring distinct binding modes for

even closely related compounds. As a

consequence, multiple structures span-

ning a range of bound ligands and protein

conformational states will be required

to fully understand how best to prevent

drugs from engaging these problematic

anti-targets.

We believe the structural biology com-

munity should ‘‘embrace the avoidome’’

with the same enthusiasm that structure-

based design has been applied to in-

tended targets. The structures of these

proteins will shed considerable light on

human biology and represent exciting

opportunities to demonstrate the power

of cutting-edge structural techniques.

Crucially, a detailed understanding of the

ways that drugs engage with avoidome

targets would significantly expedite drug

discovery. This information holds the po-

tential to achieve a profound impact

on the discovery of new and enhanced

medicines.

Conclusion
In drug discovery, truth is a molecule that

transforms the practice of medicine. A

drug prevents, ameliorates, or cures a dis-

ease. It is well tolerated and practical to
520 Cell 187, February 1, 2024
use in the real world. Sadly, few important

new medicines are created each year.

Despite the limitations imposed by the

four harsh truthswehave described, struc-

tural information, thoughtfully applied,

has consistently demonstrated its utility

for drug discovery. Indeed, 2024 will

mark the 30th anniversary of the FDA

approval of dorzolamide, the first drug

that benefited from structure-based

design.6 The coming decade will witness

exciting progress at addressing these lim-

itations, unlocking new efficiencies in the

drug discovery process and contributing

to an ever-increasing extent to the discov-

ery of future medicines. We suggest that

focusing machine learning efforts on these

four challenges will complement and

enhance the coming improvements in

experimental disciplines to further accel-

erate our progress.
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