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Virtual ligand libraries for ligand discovery have recently increased
10,000-fold. Whether this has improved hit rates and potencies has not been
directly tested. Meanwhile, typically only dozens of docking hits are assayed,
clouding hit-rateinterpretation. Here we docked a 1.7 billion-molecule
virtual library against 3-lactamase, testing 1,521 new molecules and
comparing the results to a 99 million-molecule screen where 44 molecules
were tested. Inalarger screen, hit rates improved twofold, more scaffolds
were discovered and potency improved. Fifty-fold more inhibitors were
found, supporting theidea that the large libraries harbor many more ligands
than are being tested. In sampling smaller sets from the 1,521, hit rates only
converged when several hundred molecules were tested. Hit rates and
affinities improved steadily with docking score. It may be that as the scale

of docking libraries and their testing grows, both ligands and our ability to
rank them willimprove.

With the advent of ultra-large, make-on-demand (‘tangible’) librar-
ies, available chemical space has increased from about 3.5 million
to over 38 billion (https://enamine.net/compound-collections/real-
compounds). Recent studies suggest that structure-based docking
prioritizes potent ligands from within such libraries, with affinities
often in the mid-nanomolar and sometimes high-picomolar range' ™.
Docking the new libraries seems to improve hit rates, affinities and
chemotype novelty versus smaller libraries'", suggesting that bigger
libraries are better for virtual screening. This is supported by simula-
tions that show that as libraries grow, the best molecules fit ever better
to proteinbindingsites'. Still, exactly how large libraries may improve
docking screens versus smaller libraries, if in fact they do so, remains
to be tested experimentally in side-by-side studies.

Further clouding the issue is the scale of testing of molecules pri-
oritized from the docking campaigns. Irrespective of whether million-
or billion-scale libraries are screened, rarely are more than several
dozen molecules synthesized and tested®*®. From the hit rates of

these screens (number active divided by number tested), it has been
inferred that there are likely hundreds of thousands or even millions
of potential ligands in the libraries that remain untested, but this has
not been probed experimentally’. As important, the few molecules
tested make the results subject to the statistics of small numbers. It is
unclear that we can have full confidence in hit rates, affinities and the
likelihood of discovering new chemotypes—all key outcomes—when
testing only afew dozen compounds.

Here we begintoinvestigate these questions quantitatively. First,
to exploretheimpact oflibrary size on docking outcome, we screened
over 1.7 billion molecules for inhibitors of the model enzyme AmpC
B-lactamase’**° and compared the results to a previous screen on the
same enzyme using essentially the same method where only 99 million
molecules were docked'. These smaller and larger screens were com-
pared by hitrates, affinities and the number of new chemotypes discov-
ered. Second, we synthesized and tested 1,521 compounds for AmpC
inhibition, rather than the 44 tested in the smaller library campaign’,
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Fig.1|Superposition of the crystallographic and docking poses of the new
AmpCinhibitors. Crystal structures (carbonsin cyan) and docked poses
(carbonsin magenta) of the inhibitors. AmpC carbon atoms are in gray, oxygens
inred, nitrogensin blue, sulfursin yellow, chloridesin green and fluoridesin
light green. Hydrogen bonds are shown as black dashed lines.a-c, AmpCin
complex with 26615020275 (a) (1) (r.m.s.d. to crystal structure 0.79 A, 1.3 pM),

[ Crystal pose
B Docked pose

76615017782 (b) (2) (r.m.s.d.=0.97 A,0.95 1M) and Z6615017509

(c) (3) (r.m.s.d.=3.14 A, 0.86 pM). The overlay of the crystal and docked poses
areshown.d, AmpCin complex Z4462773688 (4) (r.m.s.d. = 5.61 A, 323 uM). The
docked poses (left panel), crystal poses (middle panel) and the overlay of the
docked and crystal poses are shown (right panel).

and asked whether the number of inhibitors found scaled with number
of top-ranking molecules investigated, something that has until now
simply been animplication of large library docking. Third, with these
observationsinhand, we examined the sensitivity of docking hit rates
and affinities to the scale of experimental testing by subsampling
smaller sets from the larger one; this has implications for how we should
understand docking hit rates and affinities, and how we should scale
these experiments in the future. Fourth, we investigate how hit rate
is predicted by docking score, and whether we might expect better
molecules to be found as libraries expand into the tens of billions of
molecules and beyond>”. Finally, the scale of the experimental testing
here allows us to investigate potential correlations between docking
rank and affinity category (high, mediocre, poor). We will argue that the
answers emerging from this study support further expansion of dock-
inglibrariesinto the trillions of compounds range, and are-investment
indocking scoring functions to optimize whatis now aloose correlation
between docking rank and affinity category.

Results

Selection, synthesis and testing of 1,521 docking hits

In a previous docking screen of 99 million molecules against AmpC
B-lactamase, 44 high-ranking molecules were prioritized for syn-
thesis and testing. This revealed five new inhibitors with affinities
ranging from 1.3 to 400 pM, a hit rate of 11% using this range of activ-
ity’. Using essentially the same docking method, here we screened
al.7 billion-molecule library against AmpC. In addition to selecting
high-ranking molecules for testing, as in the smaller library screen,
here molecules from across the docking scoringrange were also tested,
allowing us to also investigate how hit rate varied with docking score.
Overall, 838,672,414 molecules ranking from —117.35 kcal mol™ (best
scores) to—28 kcal mol™ (worst scores), were considered as candidates
for testing. These were organized into bins of resolution ranging from

2to 4 kcal mol™among the lower (better) scores to 8 kcal mol ™ among
the higher (worse) scores. Up to 25,000 molecules were selected per
bin, by rank order (for the lower and better energy bins, thisamounted
toallthe moleculesinthebin). Molecules topologically similar to known
inhibitors, with ECFP4-based Tanimoto coefficient (T,) > 0.5, were
excluded, as were those with more than one unsatisfied hydrogen bond
donor and more than six hydrogen bond acceptors: such molecules
exploit known gapsin the DOCK3.8 scoring function?. The remaining
184,317 molecules were clustered by 7. = 0.32 based on the interaction
fingerprinting®, resultingin 80,767 clusters. In previous simulations™
and experiments*we had found molecules with artifactually favorable
scores concentrated among the top-ranking docked molecules. Here
too, we observed molecules that achieved scores much higher than one
would expect from the overall distribution; this problem became more
acuteasthelibrary grew (Extended DataFig.1). We chose toignore these
molecules for experimental testing. The origins of these molecules,
and their experimental confirmation as docking artifacts, is explored
in a separate study**.

Overall, 2,089 cluster heads, all topologically dissimilar to one
another and toknowninhibitors, were chosen for synthesis and testing.
Ofthese, 1,521 were successfully synthesized (a fulfillment rate of 73%).
Manual inspection (‘manual-picked’) from among the better scoring
bins (-95.96 to -60 kcal mol™) accounted for 734 of these, and another
1,336 molecules were chosen based on rank alone (‘auto-picked’): 560
molecules occurred in both sets (Supplementary Table1).

Allmolecules wereinitially tested at 200,100 and 40 pM for AmpC
inhibition'**, Of the 1,447 experimentally well-behaved molecules,
1,296 were among the top scoring 1% of the docked molecules, the
same cutoff used in the 99 million-molecule screen (the rest were
spread outamong lower ranks and were selected to test hit rate versus
score dependence). Of these 1,296 compounds, 168 had an apparent
inhibitory constant (K;) <166 uM, based on the three-pointinhibition
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numbers and assuming competitive inhibition (below), while another
122 had apparent K; values between 166 and 400 pM. Concentra-
tion-response curves were measured for 17 compounds across this
potency range. The half-maximum inhibitory concentration (ICs,)
values from these full curves corresponded well to those predicted
by the three-point inhibition numbers (Extended Data Fig. 2 and Sup-
plementary Table 2). For seven of the new inhibitors, each in a differ-
ent chemotype family, we determined full K; values and mechanisms
by Lineweaver—-Burk analysis (Extended Data Fig. 3). All seven were
competitive inhibitors, consistent with docking to the AmpC active
site, with K; values ranging from 0.7 to 121 uM (Extended Data Fig. 3).
Accordingly, we modeled all the new inhibitors as competitive, consist-
entwith the X-ray crystal structures determined for four of them, which
allboundinthe B-lactamase active site (Fig.1). With this assumption, K;
values ranged from 464 to 0.46 pM (ref. 25) (Fig. 2). All assays included
0.01% Triton X-100, diminishing the likelihood of artifacts from col-
loidal aggregation'®?. For further confidence, 140 of the inhibitors
were checked for particle formation by dynamic light scattering®%;
no signs of colloid-like particle formation were detected at relevant
concentrations (Supplementary Table 3).

Docked versus crystallographic geometries

To investigate how docking poses corresponded to experimentally
determined geometries, the structures of four of the new inhibitors
were determined by X-ray crystallography, with resolutions ranging
from 1.66 t01.88 A (Supplementary Table 4). Unambiguous electron
density allowed us to confidently model the positions of the new inhibi-
torsinthe enzymes’ active site (Extended DataFig.4). For 26615020275
(1) (1.3 pM; Fig. 1a), Z6615017782 (2) (0.95 uM; Fig. 1b) and Z6615017509
(3) (0.86 uM; Fig.1c), the docked and experimental structures superim-
posed witha 0.79,0.97 and 3.14 A root mean square deviation (r.m.s.d.)
respectively, with differences in position stemming from deviations of
nonwarhead groups binding distally in the site. For aweaker inhibitor
74462773688 (4) (323 pM), the crystal structure showed larger devia-
tions from the docking prediction. An unprecedented bicyclo-alkyl
carboxylate bound in a geometry flipped from that anticipated by
docking, leading to an r.m.s.d. of 5.61 A (Fig. 1d). Z4462773688 is an
example of the 44 inhibitors found in this campaign that sample not
only new topologies, but also new warheads for AmpC.

Hit rates are higher from the larger library screen

The overall hit rate (number experimentally active/number tested)
from the 1.7 billion-molecule campaign was 22.4% (290 actives/1,296
high-ranking tested). We defined a hit as having an apparent K;
value <400 pM, based on previous literature. This hit rate is signifi-
cantly higher than that from 99 million-molecule docking screen, which
was 11.4% (P=0.021by Ztest) (Fig. 2a). With amore stringent definition
of hits, the hit rates drop for both screens: to 8.3 and 2.3% (K; <100 puM)
andto2.5and 2.3% (K; <30 pM) for the larger and smaller library cam-
paigns, respectively (Extended Data Fig. 5a,b). Unlike the 44 molecules
from the smaller library that were both high ranking and manually
selected, the 1,296 molecules from the larger library include both
manually selected compounds and those picked by score alone (both
sets also selected for diversity and dissimilarity to knowns). Focusing
only onthe high-ranking, manually selected molecules fromthe larger
screen (662 molecules), the hit rate is significantly higher than from
the smaller library campaign: 21.4 versus 11.4% (P = 0.032, Extended
DataFig.5c). Considering the top 44 manually selected molecules from
the larger screen—that is, the same number picked from the smaller
library campaign—the hit-rate difference is even more pronounced:
47.7 versus11.4% (P=0.00005) (Extended DataFig. 5d,e). This hit-rate
differenceis supported by differences across affinity ranges. Most of the
actives from the 99 million-molecule screen had apparent K; values over
100 pM (Fig. 2b), withone inhibitor foundinthe1to 3.2 puM range and
none foundintheintermediate ranges. Conversely, fromthe 1.7 billion

library each half-log affinity bin is well-populated by new inhibitors.
The higher hit rate from the larger library is consistent with the idea
that as the virtual libraries grow, ever more plausible molecules are
fortuitously sampled and prioritized by molecular docking.

Hit-rate variability and ligand affinity ranges

While hit rateis a fair way to compare the two screens, the raw number
of hits was naturally far greater from the larger library (Fig. 2c), where
29-fold more high-ranking molecules were tested. Qualitatively, this
explains why all half-log affinity bins were well-populated from the
larger library, whereas this was more hit-and-miss when we only tested
44 molecules (Fig. 2b). To quantify how hit rate varies with the num-
ber tested, we pulled sets of 44,139 and 439 molecules randomly 30
times from the 1,296 and asked how hit rate was affected. When only
selecting 44 molecules hit rates varied from 11% for one unlucky draw
to 36% for a lucky one. Pulling sets of 439 molecules 30 times, the hit
rate only varied from 20 to 27%. The standard deviation in hit rates
decreased from 6.1t03.5t01.7%, respectively (Fig. 2d). This variability
was mirrored in ligand affinities; for instance, it was not until set size
rose to 439 molecules tested that the highest affinity molecules were
reliably sampled (Fig. 2e). Re-analyzing previous campaigns against
the 0,and dopamine D4 receptor’*, where around 500 molecules were
experimentally tested, similar variability was seeninboth hit rates and
in sampling of the high-affinity ligands, which for o, were in the low
nanomolar range (Extended Data Fig. 6).

Theseresultsindicate thatboth hit rates and affinitiesin docking
screens may be unreliable when only dozens of molecules are tested,
asis common in the field. To quantify how many molecules should be
tested toreportstable hit rates and affinities, we drew on the observa-
tionthat whenlarge numbers of molecules are tested for the three tar-
gets, thereis an exponential relationship between affinity and hit rate,
something also seen in high-throughput screens®. For the top-ranking
1% of docked molecules from each campaign, we modeled hit rates (y)
and hit affinities (x) with an exponential plateau functiony = b(1 - e™)
for each of target (Fig. 3a). This fit the distribution of affinities for the
1,296 molecules tested for AmpC, 327 for 0, and 371 for D4 (all top 1%
ranking molecules) with R? values of 0.998, 0.999 and 0.985, respec-
tively. As smaller sets are drawn from the full sets, variability rises
(Fig. 2d,e). Beginning with 1,296, sampling was stepwise reduced by
20 molecules in a bootstrapping manner, repeating this 1,000 times
to evaluate divergence (Fig. 3b). By ~495 molecules, the average R? of
D4 curvesfallsto 0.95,apoint onall three curves where we beganto see
the meaningful divergence from the fit to the full range of compounds
plotted. This same R*occurs at 215and 135 molecules for AmpC and o,,
respectively, perhapsreflecting aninverse relationship to hit rates for
each target among the top 1% of docked molecules (22.4% for AmpC,
38.7%for 0,and 20.8% for D4). In these targets, testing fewer than these
several hundred compounds degrades the correlation of affinity with
hitrate. For targets withrelatively high hit rates, this suggests that over
ahundred molecules should be experimentally tested toinfer confident
docking hit rates and affinity ranges. For targets with lower hit rates,
even more compounds would need to be tested for confident results.

Toexplore this further with afocus on hit-rate variability, we simu-
lated random draws using the AmpC, 0, and D4 experimental hit rates
fromtheir high-ranking compounds. One hundred thousand bootstrap
iterations were performed for sample sizes ranging from 10 to 1,250
compounds in increments of 10 and we considered the mean and
lower bound for a single-sided 95% confidence interval at different
numbers of compounds tested (Fig. 3c). The solid curves reflect the
95% likelihood that the hit rate will be at a certain level or higher. While
the average hit rate over all simulations remains unchanged, the vari-
ability increases as the number of molecules tested drops and so does
one’s confidence that the observed hit rate reflects the true hit rate
based on the overall docking rankings. This again suggests more than
100 molecules may be a sensible minimum for experimental testing
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Fig.2|Larger-scale docking and testing increases hit rates and reduces
uncertainty. a, The hit rates (number of actives/total tested) of the 1.7 billion
screen (blue bar; 22.4%) versus the 99 million screen (orange bar; 11.4%).
Atwo-sided Z-test was used to compare the hit rates of the two screens, under the
assumption that the data followed a normal distribution. b, Hit rates by different
affinity binsin the 2022 screen and 2019 screen. ¢, Number of hits (number of
actives) of the 1.7 billion screen (blue bar) versus the 99 million screen (orange
bar).d, Theimpact of randomly purchasing 44,139 and 439 molecules out of

10.0 32.0
Definition of hit (uM)

100.0 320.0

1,296 molecules for testing on hit rates. Each sample size is randomly drawn 30
times and the resulting hit rates were plotted. The error bars represent s.d.s of
the hitrates. The hitrates are 22.42 + 6.08% (n = 44),23.67 +3.54% (n=139) and
22.80 +1.65% (n=439). e, Theimpact of randomly purchasing 44,139 and 439
molecules out 0of 1,296 molecules for testing on hit rates with different affinity
cutoffs. Each sample size is drawn 30 times and the resulting hit rates were
plotted. Data represent mean + s.d.s of the hit rates.

inlarge library virtual screens. While both the affinity ranges and the
hit rates for the screens against AmpC, o, and D4 differ substantially,
the functional form relating hit affinity and hit number was the same
and led to similar predictions for the minimum number of molecules
totest forall three targets. This may help predict how many molecules
would be found in different affinity ranges should one choose to test
more molecules, a point to which we will return.

Multiple new chemotypes discovered

Only molecules topologically dissimilar to known AmpC inhibitors,
and topologically diverse fromeach other, were selected for synthesis
and testing. Since topological diversity can emerge from changes that
leave core pharmacophores intact, we also visually inspected inhibi-
tors for novelty. We prioritized molecules by two criteria: those that
sampled new scaffolds, and those that explored anew anionic warhead
(Extended DataFig. 7). Forinstance, Z6615021877 (5) and 26722203632

(6)introduce tetrazolone and tetrazole anionic warheads, respectively,
both of which were previously unknown for AmpC. 22607647274 (7)
and Z4173922012 (8) use cycloalkyl carboxylate and tricyclo-heptane
carboxylate as their warheads. Meanwhile, 72610488449 (9), which
uses a new urea linker scaffold, achieves a high affinity of 12 uM. The
affinity of this scaffold was readily optimized to 4 uM, markingitamong
the most effective noncovalent AmpCinhibitors that does not rely on
asulfonamide linker.

Docking score predicts hit rate

In earlier studies against the D4 dopamine and o, receptors, we had
found that docking score correlated to experimental hit rate, gener-
ating a well-behaved sigmoidal curve that plateaued at a maximum
hit rate™*. While these curves suggested an unexpected ability to pre-
dict binders, both receptors have well-formed, buried binding sites,
making them unusually suitable for this technique. Meanwhile, the
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Fig. 3| Several hundred compounds should be tested in large library docking.
a, For the top-ranking 1% of the docked molecules, the relationship between hit
affinity and hit rates can be fit with an exponential plateau model y = b(1 — e=%)
where yis hit rate, x is the minimum affinity for a hit (for AmpC the unitisin pM
andfor o,and D4 itis nM) and b is the maximal hit rate. The fit maximal hit rates
are 34.5% for AmpC with an R? of 0.998, 43% for an o, receptor with an R? of 0.999,
and 20.8% for D4 with an R? of 0.985. b, The impact of subsampling on the R2.
From among the top-ranking 1% of the docked molecules, starting from sample
size 1,296 (AmpC, blue; 0,, orange; D4, pink), each subsample size is
bootstrapped 1,000 times and fit with the parameters derived from the entire

dataset. The R?values are plotted with the symbols indicating the average and the
error bars indicating the standard deviations. A dashed line of R*= 0.95 is labeled.
The sample sizes at which the average R*reaches 0.95 are labeled. For o,, that size
is135, for AmpC, itis 215 and for D4, it is 495 molecules. ¢, Mean and 95%
confidence interval for hit rate in relation to sample size for AmpC, 6, and D4. The
dashed lines show the mean hit rate from the compoundsin the top 1% by docking
score, and the solid line shows the boundary of a single-sided 95% confidence
interval from100,000 bootstrap iterations. Hits are defined as 400 puM affinity or
better for AmpC, 678 nM or better for 0, and 10 uM or better for D4.

plateauing of the score versus hit-rate curve suggests a limitation in
even our ability to identify, far less rank ligands. To investigate how
docking might predict binding in a more solvent-exposed, histori-
cally more difficult binding site, we reexplored this relationship for
AmpC.Docked molecules were not only selected from among the best
docking energies (some poses shown in Extended Data Fig. 8), as is
typical in virtual screening, but also from mediocre and unfavorable
scoring ranges. Molecules were picked from among 16 scoring bins,
beginning at the most favorable DOCK3.8 scores (-100.58 kcal mol™ for
AmpC) down to-28 kcal mol™. The top 1% of the docking-ranked library
extends down toscores of —72 kcal mol™, but by —28 kcal mol™49% of the
1.7 billion-moleculelibrary has been sampled. More than 50 molecules
per bin were selected from the -100.58 to the —60 kcal mol™ bin, and
for scoresworse (less negative) than —60 more than 20 molecules were
tested per bin. Molecules were selected strictly by numerical rank at the
beginning of each bin. They were tested for AmpC inhibition as above.

Hit rates fell monotonically as scores worsened (Fig. 4a, blue
curve). This resembles what we had previously observed for the o,
and dopamine D4 receptors™*, except that here we do not observe a hit
rate plateau; hit rates begin at a maximum at the best docking scores
and fall steadily as scores worsen. A difference between the AmpC curve
and the plateaus observed previously is that here from the beginning
we excluded asmallfraction of likely artifacts that concentrate among
the very top scoring molecules™ (Extended Data Fig. 1). The scale of
dockingin this study allows one to recognize these cheating artifacts
by how they diverge from the rest of the library; in another study we
find that they may be also recognized by rescoring with an orthogonal
scoring function®. Both their differential scoring and explicit rescoring
may help recognize these moleculesin future studies.

To investigate how the affinities of the new inhibitors tracked,
we plotted score versus hit rate in the 400, 127, 40 and 13 pM ranges
(Fig.4a,blue, orange, pinkand green curves). Here too, the hit rates in
each affinity-range rose steadily as score improved. The more potent
inhibitors appear atbetter scores thanthe less potent ones, with those
in the 127 uM or better tranche beginning to appear at scores of 64,
those in the 40 uM or better tranche appearing only past =76 and the
most potentinhibitors only appearing at the -85 bin. This hints at dock-
ing score correlating with gross categorical ranking of affinity, some-
thing that was not apparent from smaller studies, nor expected®>".
The trend observed in the auto-picked molecules is conserved when
considering allmolecules (both by rank and manually selected) as well
asthose that were manual-picked. (Extended DataFig. 9). We undertook

the same analysis with the docking campaigns against the o, receptor
and dopamine receptor, where hundreds of molecules were tested
across docking ranks that ranged from high to mediocre to poor, as
in this study. While the o, and D4 receptor docking hits were more
potentthanthe AmpC hits, typicallyin the nM range, the same patterns
emerged; the most potent ligands appear at better (more negative)
docking scores than did the mid-potency ligands, which appear at
better scores than the most potent ones (Fig. 4b,c). Admittedly, the
relationship between docking score and affinity is mostly categorical,
butitappearstorank moleculesbetter thansimple binary classification
asbindersornonbinders, with more potent ligands more concentrated
inbetter scoring regions. As loose as these correlations are, they may
support a predictive relationship between docking score and affinity
category (high, medium orlow), at least when at scale. This would war-
rantarenewed emphasis onimproving the field’s scoring functions and
offer ametric against which they might be tested.

To compare the hit-rate curves for the three targets, we plotted
the negative logarithm of the rank percentage (‘pProp’) for the D4
and o, receptors, and for AmpC (Fig. 4d). A pProp of three denotes a
compound occupyingthetop 0.1% scoring region, a pProp of 4 the top
0.01% and so on; plotting rank avoids scoring offsets among the targets.
The hit-rate curve of the most permissive hit definition for each target
is plotted against the pProp. The D4 and o, curves align well, peaking
around a pProp of 5, with the plateau occupying the region from 4 to
6 (topin10,000totopin1,000,000), while the AmpC curveisslightly
right shifted, peaking above 6 and not suffering from a plateau. These
curves allow one to quantify the parts of the docking scoring range
where most hits are likely to be found. For the D4 and o, receptors, it
alsoalerts one to the danger of over-emphasizing the very best ranked
molecules where those that cheat the scoring function concentrate,
absent controls for them'. As docking and virtual screening libraries
climbinto the tens of billions of molecules®”, this concern willbecome
more pressing®. This may be addressed by recognizing their divergence
from other molecules in the library, and by explicit rescoring with an
orthogonal scoring function.

Discussion

Inthelast 5 years, the number of molecules accessible for ligand discov-
ery hasexpanded10,000-fold. Anecdotally, this has revealed molecules
withimproved activity from library docking. Here we seek to quantify
thisinapples-to-apples comparisons of asmaller versus larger library;
five key observations emerge. First, comparing a docking screen of
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curves of the three targets by the log,, of fractional rank in the library. For each
target, the most permissive hit definition is used.

99 million molecules to one of 1.7 billion molecules against the same
target, hit rates improved with library size, as did the potency of the
inhibitors. Multiple new AmpCinhibitor chemotypes were discovered.
Second, consistent with the idea that there are many more ligands to
be discovered than are being prioritized, the number of new inhibi-
tors scaled almost linearly with the number of top-ranking molecules
tested; testing 29-fold more molecules discovered 58-fold more inhibi-
tors. Third, to determinereliable docking statistics fromalarge library
screen, one must also test at scale. When only a handful of molecules
aretested, asis commonin docking, statistics of hit rates and maximal
affinities suffer from large errors. We find that at least several hundred
molecules should be tested for docking statistics to be trustworthy.
Fourth, in contrast to earlier studies where hit rates plateaued above
acertain docking score™*, here hit rates continued to climb essentially
linearly asscoreimproves. This was also true for the D4 and o, receptors
after removing their high-ranking artifacts. This observation supports
the idea that as libraries grow, hit rates and affinities will improve, as
long as high-ranking docking artifacts can be removed or avoided.
Finally, a loose, categorical correlation between docking score and
ligand affinity was observed for AmpC, and on reanalysis also for the
0, and D4 receptor campaigns"*. While this correlation remains loose
and only by affinity category (for example, strong, mediocre, weak),
itmay suggest that further optimization of docking scoring functions
will allow the field to distinguish not only binders from nonbinders,
butalso categorically rank them by activity, something we and others
have long discounted®*?',

Several caveats should be aired. The monotonic improvement
of hit rate with docking score and its loose correlation with affinity
have only been observed in three systems. This merits investigationin
other targets, ideally using other scoring functions, at scale. Current

community tests of docking methods, such as CACHE*?, may offer a
forum for doing so. Methodologically, we note that for less than 10%
ofthemoleculesreported here were full IC;, curves determined. While
these correlated well with inferred IC;, and K; values based on three
concentration point inhibition, such affinities must be considered
approximate. Animportant aspect of getting well-behaved score ver-
sus hit-rate curves was our ability to recognize and exclude artifactual
molecules that appeared to cheat our scoring function. Suchartifacts,
with different physical and chemical origins, have appeared in previous
large library campaigns against the 6,and D4 receptors"*; recognizing
and removing themwasimportant to revealing the well-behaved score
versus hit-rate curves and affinity categorization that we describe here.
Whether suchartifacts are peculiar to DOCK3.8, the program we use in
this study, or to docking more generally, is presently unknown. Finally,
itisimportant to emphasize that docking results improve both with
scale of testing and size of library. Ina1billion-molecule library, even
testing thousands of molecules will likely leave hundreds of thousands
of potentligands untested. When only dozens are tested, the statistics
of small numbers ensure that not only the best but often the most
representative ligands will be missed.

These caveats should not obscure the major observations of
this study. Against the same target, docking a20-fold larger library
led toimproved hit rates and affinities, consistent with theoretical
simulations™. Similarly, as more high-ranking molecules are tested,
moreligands are found, supporting the idea that most true ligands
inthe new ultra-large libraries remain to be tested (we suffer froman
embarrassment of riches). Once we correct for high-ranking dock-
ing artifacts, hit rate rises monotonically with docking score. More
tentatively, a correlation between affinity and score also appears
atscale.
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While brute force docking, of the sort described here, has been
able to address a1,000-fold increase in library size, to go up another
1,000-fold, into the trillions of molecules, seems beyond it and more
guided sampling of chemical space may be required>****, What this
study suggestsis that efforts to sample from the supra-trillion molecule
space should be worthwhile. To support such efforts, we are making
available the identity, docking score and experimental activities of
each of the 1,521 molecules tested here (Supplementary Table 1), and
extensive docking score and pose information from the full library
screen (https://Isd.docking.org).

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41589-024-01797-w.

References

1. Lyu, J. etal. Ultra-large library docking for discovering new
chemotypes. Nature 566, 224-229 (2019).

2. Gorgulla, C. et al. An open-source drug discovery platform
enables ultra-large virtual screens. Nature 580, 663-668 (2020).

3. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands
to modulate circadian rhythms. Nature 579, 609-614 (2020).

4. Alon, A. et al. Structures of the sigma(2) receptor enable docking
for bioactive ligand discovery. Nature 600, 759-764 (2021).

5. Sadybekov, A. A. et al. Synthon-based ligand discovery in
virtual libraries of over 11 billion compounds. Nature 601,
452-459 (2022).

6. Fink, E. A. et al. Structure-based discovery of nonopioid
analgesics acting through the a,,-adrenergic receptor. Science
377, eabn7065 (2022).

7. Singh, |. et al. Structure-based discovery of conformationally
selective inhibitors of the serotonin transporter. Cell 186,
2160-2175.e17 (2023).

8. Gahbauer, S. et al. Docking for EP4R antagonists active against
inflammatory pain. Nat. Commun. 14, 8067 (2023).

9. Sadybekov, A. V. & Katritch, V. Computational approaches
streamlining drug discovery. Nature 616, 673-685 (2023).

10. Gorgulla, C. et al. A multi-pronged approach targeting
SARS-CoV-2 proteins using ultra-large virtual screening. iScience
24,102021(2021).

1. Klarich, K., Goldman, B., Kramer, T., Riley, P. & Walters, W. P.
Thompson sampling—an efficient method for searching ultralarge
synthesis on demand databases. J. Chem. Inf. Model. 64, 1158-1171
(2024).

12.  Walters, W. P. Virtual chemical libraries. J. Med. Chem. 62,
1116-1124 (2019).

13. Gorgulla, C., Jayaraj, A., Fackeldey, K. & Arthanari, H. Emerging
frontiers in virtual drug discovery: from quantum mechanical
methods to deep learning approaches. Curr. Opin. Chem. Biol.
69, 102156 (2022).

14. Lyu, J., Irwin, J. J. & Shoichet, B. K. Modeling the expansion of
virtual screening libraries. Nat. Chem. Biol. 19, 712-718 (2023).

15. Weston, G. S., Blazquez, J., Baquero, F. & Shoichet, B. K.
Structure-based enhancement of boronic acid-based inhibitors of
AmpC beta-lactamase. J. Med. Chem. 41, 4577-4586 (1998).

16. Powers, R. A., Morandi, F. & Shoichet, B. K. Structure-based
discovery of a novel, noncovalent inhibitor of AmpC
beta-lactamase. Structure 10, 1013-1023 (2002).

17. Feng, B.Y., Shelat, A., Doman, T. N., Guy, R. K. & Shoichet, B. K.
High-throughput assays for promiscuous inhibitors. Nat. Chem.
Biol. 1,146-148 (2005).

18. Feng, B. Y. et al. A high-throughput screen for aggregation-based
inhibition in a large compound library. J. Med. Chem. 50,
2385-2390 (2007).

19. Eidam, O. et al. Design, synthesis, crystal structures, and
antimicrobial activity of sulfonamide boronic acids as
beta-lactamase inhibitors. J. Med. Chem. 53, 7852-7863 (2010).

20. Babaoglu, K. et al. Comprehensive mechanistic analysis
of hits from high-throughput and docking screens against
beta-lactamase. J. Med. Chem. 51, 2502-2511 (2008).

21. Gorgulla, C. et al. VirtualFlow 2.0—the next generation drug
discovery platform enabling adaptive screens of 69 billion
molecules. Preprint at bioRxiv https://doi.org/10.1101/2023.
04.25.537981(2023).

22. Bender, B. J. et al. A practical guide to large-scale docking.

Nat. Protoc. 16, 4799-4832 (2021).

23. Fassio, A. V. et al. Prioritizing virtual screening with interpretable
interaction fingerprints. J. Chem. Inf. Model. 62, 4300-4318 (2022).

24. Wu, Y. et al. Identifying artifacts from large library docking. J. Med.
Chem. 67,16796-16806 (2024).

25. Cheng, Y. & Prusoff, W. H. Relationship between the inhibition
constant (K1) and the concentration of inhibitor which causes
50 per cent inhibition (Is,) of an enzymatic reaction. Biochem.
Pharmacol. 22, 3099-3108 (1973).

26. McGovern, S. L., Helfand, B. T., Feng, B. & Shoichet, B. K. A
specific mechanism of nonspecific inhibition. J. Med. Chem. 46,
4265-4272 (2003).

27. Feng, B.Y. & Shoichet, B. K. A detergent-based assay for the
detection of promiscuous inhibitors. Nat. Protoc. 1, 550-553
(2006).

28. O’Donnell, H. R., Tummino, T. A., Bardine, C., Craik, C. S. &
Shoichet, B. K. Colloidal aggregators in biochemical SARS-CoV-2
repurposing screens. J. Med. Chem. 64, 17530-17539 (2021).

29. Walters, W. P. & Namchuk, M. Designing screens: how to make
your hits a hit. Nat. Rev. Drug Discov. 2, 259-266 (2003).

30. Tirado-Rives, J. & Jorgensen, W. L. Contribution of conformer
focusing to the uncertainty in predicting free energies
for protein-ligand binding. J. Med. Chem. 49, 5880-5884
(2006).

31. Irwin, J. J. & Shoichet, B. K. Docking screens for novel ligands
conferring new biology. J. Med. Chem. 59, 4103-4120 (2016).

32. Ackloo, S. et al. CACHE (Critical Assessment of Computational
Hit-finding Experiments): a public-private partnership
benchmarking initiative to enable the development of
computational methods for hit-finding. Nat. Rev. Chem. 6,
287-295 (2022).

33. Gentile, F. et al. Artificial intelligence-enabled virtual screening of
ultra-large chemical libraries with deep docking. Nat. Protoc. 17,
672-697 (2022).

34. Yang, Y. et al. Efficient exploration of chemical space with
docking and deep learning. J. Chem. Theory Comput. 17,
7106-7119 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving

of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and
applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2025

Nature Chemical Biology


http://www.nature.com/naturechemicalbiology
https://lsd.docking.org
https://doi.org/10.1038/s41589-024-01797-w
https://doi.org/10.1101/2023.04.25.537981
https://doi.org/10.1101/2023.04.25.537981

Article

https://doi.org/10.1038/s41589-024-01797-w

Methods

Large-scale docking

The campaign used the structure in the Protein Data Bank (PDB) 1L.2S
(ref.16). Three Q120 conformations were modeled based on the X-ray
density of PDB3FKW (ref. 35) using qFit-3.0, with an occupancy of 0.49,
0.34 and 0.17 (ref. 36). The occupancy of the alternative conforma-
tions was converted into an additional energy term and incorporated
in the DOCK scoring function as described previously®. The protein
structure was protonated using Reduce®. Energy grids for the differ-
ent energy terms of the scoring function were pregenerated van der
Waals terms based on the AMBER force fields using CHEMGRID*;
Poisson-Boltzmann-based electrostatic potentials using QNIFFT*04;
context-dependent ligand desolvation was calculated using SOLV-
MAP*2, The volume of the low dielectric and the desolvation volume
was extended out 2.0 and 0.25 A. The thiophene carboxylate inhibi-
tor solved in PDB 1L2S was used to generate matching spheres, which
are later used by the docking software to fit pregenerated ligands’
conformations into the small molecule binding sites*. The resulting
docking setups were evaluated for its ability to enrich known AmpC
ligands over property-matched decoys. Decoys are theoretical non-
binders to the receptor as they are topologically dissimilar to known
ligands but retain similar physical properties. We curated 31 AmpC
ligands based on their dissimilarity among themselves. 2,480 decoys
were generated by using the DUDE-Z pipeline**. The docking set-up
can rank ligands over decoys with a logAUC of 28.5 with most of the
ligands recapitulating their experimental poses. For docking against
1.7 billion molecules, each molecule from the ZINC22 database™ was
sampled in about 3,822 orientations and 875 conformations by using
DOCK3.8 (ref. 43). Overall, over 1,841 trillion complexes were sampled
andscored, spending 2,129,230 core hours orabout1 monthona3,000
core cluster, using DOCK3.8 (ref. 43).

Hit-picking strategy

Toincrease novelty, high-ranking molecules with scores down to -79.25
(99,277 molecules), and molecules from different energy bins (-25,000
from -76, -72, -68, -64 and -60 bins and 5,000 from -52, -44, -36
and -28 bins), summed to 244,217 molecules, were filtered to exclude
those similar to 237 previously known ligands. A T, cutoff of 0.5 was
used; no molecule more similar than this value was allowed, removing
9,561 molecules. We also filtered out molecules that buried too many
uncompensated polar groups: while DOCK3.8 penalizes for desolva-
tion, we find that these artifacts can nevertheless occur. Using LUNA
1,024-length binary fingerprints®*, molecules that had more than one
hydrogen bond donor and more than six hydrogen bond acceptors
that were not compensated with polar interactions to the protein
were removed; 50,339 molecules were filtered out at this step. This
left 184,317 for further processing. For autopicking, these molecules
were clustered for self-similarity usingan ECFP4 T.= 0.32, resultingin
80,767 cluster heads.

Most of the molecules tested were auto-picked based on docking
rank. With almost all the high-ranking molecules being negatively
charged, we wanted to ensure that their representation as anions at
pH 7.4 was likely. We used JChem to calculate the distribution of pro-
tonation states of the high-ranking cluster heads and compared this to
the dominant staterepresented in their docked poses (multiple proto-
nation states of amolecule can be docked). Only when the calculated
dominant charge state matched with that of the docked pose, and the
species is calculated to be more than 80% anionic, was the molecule
accepted for autopicking, which left 56,814 molecules. Molecules
were picked based on their docking ranks across different affinity bins,
selecting 1,336 molecules for synthesis and testing.

For manual picking from the different energy bins, all cluster heads
were again filtered for interactions using LUNA, seeking molecules
that formed hydrogen bonds with backbone of A318, that made pi-pi
interactions with Y221, and that made at least two more interactions

with the binding pocket (that is, hydrogen bonds with N152, N346,
G320, S212, R204, Q120, cation-pi with K315, K67 or pi-pi interaction
withY150). The molecules that passed these filters were reclustered ata
T.=0.32; cluster heads were visually inspected and prioritized. The rest
ofthe high-scoring cluster heads were also manually inspected seeking
new interesting chemotypes. A total of 734 were prioritized manually,
slightly less than half of the molecules that were synthesized and tested.

Synthesis of the molecules

Compounds were sourced from the Enamine REAL database (https://
enamine.net/compound-collections/real-compounds). The purities of
activemolecules were atleast 90% and typically above 95%. The detailed
chemical synthesis can be found in the Supplementary Information.

AmpC enzymology
All candidate inhibitors were dissolved in dimethylsulfoxide (DMSO)
at20 mM, and more dilute DMSO stocks were prepared as necessary so
that the concentration of DMSO was held constant at 1% v/vin 50 mM
sodium cacodylate buffer, pH 6.5. AmpC activity and inhibition was
monitored spectrophotometrically using either CENTA or nitrocefinas
substrates. All assaysincluded 0.01% Triton X-100 to reduce compound
aggregation artifacts. Active compounds were further investigated for
aggregation by dynamic light scattering and by detergent-dependent
inhibition of the counter-screening enzyme malate dehydrogenase.
For initial screening, the docking hits were diluted such that final
concentrations inthe reaction buffer was 200,100 and 40 pM.Inthese
assays, two widely studied AmpC substrates were used, depending on
availability, CENTA*¢ and nitrocefin'®. The first was tested at an [S]/(K.,)
ratio of 1.81 (K, CENTA 27.6 uM; [S] = 50 uM, where K, is the Michaelis
constant) and the second was tested at[S]/K,, ratios of 0.556 (K, nitroce-
fin 180 uM; [S] =100 pM) and 0.156 ([S] =28 uM). The colorimetric
assay was converted to a medium throughput manner using a BMG
Labtech CLARIOstar. Substrate (CENTA (ECs, K, = 27.6 M) or nitrocefin
(EC5, =180 pM)) and protein were injected into buffer containing the
putative inhibitor, followed by rate measurement for 50 s in 96-well
format. IC,, values reflect the percentage inhibition fit to a dose-
response equationin GraphPad Prism with a Hill coefficient set to one
(f(x) = max — "‘f: Ii"). The K, was calculated using the Cheng-Prusoff
IC50
1C5o
1+ 8
theinitialthree col(r:centration pointresults, full dose-response curves
were measured and for another eight full K; values were measured and
calculated using Lineweaver-Burk plots. Data were analyzed using
GraphPad Prism software v.9.

equation (K; = ). For 18 of the more potent compounds, based on

AmpC crystallization, data collection and structure
determination

AmpC crystallization was carried out as previously described'. Briefly,
cocrystals of AmpC and inhibitors were grown by vapor diffusion in
hanging drops equilibrated over 1.7 M potassium phosphate buffer
(pH 8.7) using microseeding. The initial concentration of protein in
the drop was 6 mg ml™ and the concentration of the inhibitor was
0.5 mM. The inhibitor was added to the crystallization drop in a 4%
DMSO, 1.7 M potassium phosphate buffer (pH 8.7) solution. Crystals
appeared within 3-5 days after equilibration at 23 °C.

Data were measured from a single crystal per complex on the
Beamline 8.3.1 of the Berkeley Advanced Light Source, with wave-
length 1.11583 A at 100 K. Before data collection, cocrystals of AmpC
were immersed in acryoprotectant solution of20% sucrose and1.7 M
potassium phosphate (pH 8.7) for about 20 s and then flash-cooled
in liquid nitrogen. The structures were solved by molecular replace-
ment with PHENIX*” using PDB 1L2S as the search model. Structure
refinement was carried out with PHENIX and COOT*. MolProbity*’
was used for validation (Extended Data Fig. 3); structural figures were
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prepared using ChimeraX*°. To test model bias, polder omit maps were
calculated after perturbing the model by omitting the selected ligands:
the ligands were first omitted, and the resulting model was subjected
to three cycles of phenix.refine in both real and reciprocal space with
simulated annealing. The ligands were then inserted to calculate the
polder omit maps®.

Hit-rate curves

To obtain hit rate curves, the experimentally tested molecules for
each target (AmpC, the 6, and dopamine D4 receptors) were ordered
by increasing DOCK score. A rolling window was passed over the list,
calculating the hit rate as the percentage of molecules with experimen-
tally determined affinity equal to or better than the hit definition, and
the DOCK score as the average for the window. A window size of 100
was used for AmpC and o,, and a window of 50 for D4 receptor. For all
three targets, molecules were picked from both within and outside
what would typically be considered high-ranking regions. The rolling
window was stopped for those scores outside the high-ranking region
since discrete score bins were used in the hit-picking of these likely
nonbinders. The scores at which the rolling window was stopped are
-78for AmpC, -52.5for 6,and -60 for D4. For the pProp rescaling, the
same strategy was used, but the DOCK scores were transformed to frac-
tionalrank based onthe observed score distribution. The negative base
10logarithm of the fractional rank is then reported, termed ‘pProp’.

Hit-rate modeling

Forsampling hit-rate variability in relation to sample size, we used sam-
ple sizes for 10 to 1,250 in jumps of 10. For each sample size, we picked
100,000 random samples of the uniformdistribution [0, 1]using Python.
Thehitrate of the sample was then defined as the number of observations
withequalto orlower thanthe observed experimental hit rate for that tar-
get. Asingle-sided 95% confidenceintervalis built by taking the boundary
value between the top 95% observed hit rates and the bottom 5%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The compounds docked in this study are freely available from the
ZINC20 and ZINC22 databases, https://zinc20.docking.org and https://
cartblanche22.docking.org. All compounds tested can be purchased
from Enamine. Compoundinformationincluding their ZINCID, catalog
ID, SMILES, DOCK score, ranking and affinity can be found in Sup-
plementary Table 1. The synthetic procedures and purity informa-
tion for the hits can be found in the Supplementary Note. Extensive
docking-related files canbe found at https://Isd.docking.org. DOCK3.8
isfreelyavailable fornoncommercial researchat https://dock.compbio.
ucsf.edu/DOCK3.8/. Aweb-based version is available without restric-
tion at https://blaster.docking.org/. X-ray structures and maps are
available in the PDB under accession numbers 9C81 (Z4462773688),
9C6P (Z6615017509), 9C84 (Z6615020275) and 9DHL (Z6615017782),
respectively. Source data are provided with this paper.
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Extended Data Fig. 1| Molecules with artifactually favorable scores disrupt the distribution of docking scores and concentrate among the top-ranking docked
molecules. a, DOCK scores of molecules against AmpC. b, DOCK scores of molecules against o, receptor®.
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Extended Data Fig. 3 | Lineweaver-Burk plots of seven of the new AmpC inhibitors (a-g). ZINC339304163 is a positive control inhibitor identified in a previous

docking campaign'.
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Extended Data Fig. 4 | Electron density omit maps of the AmpC inhibitors. a-d, Polder omit maps of the inhibitors (30).
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Extended Data Fig. 5| Comparative analysis of hit rates from large-scale and
small-scale AmpCscreens with statistical validation. a, The hit rates (number
of actives/total tested) of the 1.7 Billion screen (blue bar; 8.26%) versus the 99
Million screen (orange bar; 2.27%) with a hit defined as less than100 pM.

b, The hitrates (number of actives/total tested) of the 1.7 Billion screen (blue
bar;2.47%) versus the 99 Million screen (orange bar; 2.27%) with a hit defined as
less than 30 pM. ¢, The hit rates of all manually picked molecules of the 1.7 Billion
screen (blue bar; 21.14%) versus the 99 Million screen (orange bar; 11.4%).d, The
hit rates of the top 44 manually picked molecules of the 1.7 Billion screen (blue
bar;47.7%) versus the 99 Million screen (orange bar; 11.4%). e, Hit rates from the

manually picked, experimentally tested molecules of the 99 Million and 1.7 Billon
screens (44 and 626 molecules, respectively), referred to as the “Small” and “Big”
screens. For each set, 44 or 626 molecules were resampled for 10,000 bootstrap
iterations, and the mean of the resampled hit rates is shown in parenthesis.
P-values for the null hypothesis that the difference between two resampled
distributions is zero are provided. For panels a-d, a two-sided Z-test was used

to compare the hit rates of the two screens, under the assumption that the data
followed anormal distribution. For panel e, P-values were obtained from a one-
tailed non-parametric bootstrap test (10,000 iterations) comparing the means of
the resampled distributions, with no assumption of normality.
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israndomly drawn 30 times and the resulting hit rates were plotted. The error
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Novel plant genotypes
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Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
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