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The impact of library size and scale of testing 
on virtual screening
 

Fangyu Liu1, Olivier Mailhot    1, Isabella S. Glenn1, Seth F. Vigneron1, 
Violla Bassim2, Xinyu Xu1, Karla Fonseca-Valencia    1, Matthew S. Smith1, 
Dmytro S. Radchenko    3, James S. Fraser    2, Yurii S. Moroz    3,4,5 , 
John J. Irwin    1  & Brian K. Shoichet    1 

Virtual ligand libraries for ligand discovery have recently increased 
10,000-fold. Whether this has improved hit rates and potencies has not been 
directly tested. Meanwhile, typically only dozens of docking hits are assayed, 
clouding hit-rate interpretation. Here we docked a 1.7 billion-molecule 
virtual library against β-lactamase, testing 1,521 new molecules and 
comparing the results to a 99 million-molecule screen where 44 molecules 
were tested. In a larger screen, hit rates improved twofold, more scaffolds 
were discovered and potency improved. Fifty-fold more inhibitors were 
found, supporting the idea that the large libraries harbor many more ligands 
than are being tested. In sampling smaller sets from the 1,521, hit rates only 
converged when several hundred molecules were tested. Hit rates and 
affinities improved steadily with docking score. It may be that as the scale  
of docking libraries and their testing grows, both ligands and our ability to 
rank them will improve.

With the advent of ultra-large, make-on-demand (‘tangible’) librar-
ies, available chemical space has increased from about 3.5 million 
to over 38 billion (https://enamine.net/compound-collections/real-
compounds). Recent studies suggest that structure-based docking 
prioritizes potent ligands from within such libraries, with affinities 
often in the mid-nanomolar and sometimes high-picomolar range1–11. 
Docking the new libraries seems to improve hit rates, affinities and 
chemotype novelty versus smaller libraries12,13, suggesting that bigger 
libraries are better for virtual screening. This is supported by simula-
tions that show that as libraries grow, the best molecules fit ever better 
to protein binding sites14. Still, exactly how large libraries may improve 
docking screens versus smaller libraries, if in fact they do so, remains 
to be tested experimentally in side-by-side studies.

Further clouding the issue is the scale of testing of molecules pri-
oritized from the docking campaigns. Irrespective of whether million- 
or billion-scale libraries are screened, rarely are more than several 
dozen molecules synthesized and tested3,6–8. From the hit rates of 

these screens (number active divided by number tested), it has been 
inferred that there are likely hundreds of thousands or even millions 
of potential ligands in the libraries that remain untested, but this has 
not been probed experimentally1. As important, the few molecules 
tested make the results subject to the statistics of small numbers. It is 
unclear that we can have full confidence in hit rates, affinities and the 
likelihood of discovering new chemotypes—all key outcomes—when 
testing only a few dozen compounds.

Here we begin to investigate these questions quantitatively. First, 
to explore the impact of library size on docking outcome, we screened 
over 1.7 billion molecules for inhibitors of the model enzyme AmpC 
β-lactamase1,15–20 and compared the results to a previous screen on the 
same enzyme using essentially the same method where only 99 million 
molecules were docked1. These smaller and larger screens were com-
pared by hit rates, affinities and the number of new chemotypes discov-
ered. Second, we synthesized and tested 1,521 compounds for AmpC 
inhibition, rather than the 44 tested in the smaller library campaign1, 
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2 to 4 kcal mol−1 among the lower (better) scores to 8 kcal mol−1 among 
the higher (worse) scores. Up to 25,000 molecules were selected per 
bin, by rank order (for the lower and better energy bins, this amounted 
to all the molecules in the bin). Molecules topologically similar to known 
inhibitors, with ECFP4-based Tanimoto coefficient (Tc) > 0.5, were 
excluded, as were those with more than one unsatisfied hydrogen bond 
donor and more than six hydrogen bond acceptors: such molecules 
exploit known gaps in the DOCK3.8 scoring function22. The remaining 
184,317 molecules were clustered by Tc = 0.32 based on the interaction 
fingerprinting23, resulting in 80,767 clusters. In previous simulations14 
and experiments4 we had found molecules with artifactually favorable 
scores concentrated among the top-ranking docked molecules. Here 
too, we observed molecules that achieved scores much higher than one 
would expect from the overall distribution; this problem became more 
acute as the library grew (Extended Data Fig. 1). We chose to ignore these 
molecules for experimental testing. The origins of these molecules, 
and their experimental confirmation as docking artifacts, is explored 
in a separate study24.

Overall, 2,089 cluster heads, all topologically dissimilar to one 
another and to known inhibitors, were chosen for synthesis and testing. 
Of these, 1,521 were successfully synthesized (a fulfillment rate of 73%). 
Manual inspection (‘manual-picked’) from among the better scoring 
bins (−95.96 to −60 kcal mol−1) accounted for 734 of these, and another 
1,336 molecules were chosen based on rank alone (‘auto-picked’): 560 
molecules occurred in both sets (Supplementary Table 1).

All molecules were initially tested at 200, 100 and 40 µM for AmpC 
inhibition1,16,20. Of the 1,447 experimentally well-behaved molecules, 
1,296 were among the top scoring 1% of the docked molecules, the 
same cutoff used in the 99 million-molecule screen (the rest were 
spread out among lower ranks and were selected to test hit rate versus 
score dependence). Of these 1,296 compounds, 168 had an apparent 
inhibitory constant (Ki) < 166 µM, based on the three-point inhibition 

and asked whether the number of inhibitors found scaled with number 
of top-ranking molecules investigated, something that has until now 
simply been an implication of large library docking. Third, with these 
observations in hand, we examined the sensitivity of docking hit rates 
and affinities to the scale of experimental testing by subsampling 
smaller sets from the larger one; this has implications for how we should 
understand docking hit rates and affinities, and how we should scale 
these experiments in the future. Fourth, we investigate how hit rate 
is predicted by docking score, and whether we might expect better 
molecules to be found as libraries expand into the tens of billions of 
molecules and beyond5,21. Finally, the scale of the experimental testing 
here allows us to investigate potential correlations between docking 
rank and affinity category (high, mediocre, poor). We will argue that the 
answers emerging from this study support further expansion of dock-
ing libraries into the trillions of compounds range, and a re-investment 
in docking scoring functions to optimize what is now a loose correlation 
between docking rank and affinity category.

Results
Selection, synthesis and testing of 1,521 docking hits
In a previous docking screen of 99 million molecules against AmpC 
β-lactamase, 44 high-ranking molecules were prioritized for syn-
thesis and testing. This revealed five new inhibitors with affinities 
ranging from 1.3 to 400 µM, a hit rate of 11% using this range of activ-
ity1. Using essentially the same docking method, here we screened 
a 1.7 billion-molecule library against AmpC. In addition to selecting 
high-ranking molecules for testing, as in the smaller library screen, 
here molecules from across the docking scoring range were also tested, 
allowing us to also investigate how hit rate varied with docking score. 
Overall, 838,672,414 molecules ranking from −117.35 kcal mol−1 (best 
scores) to −28 kcal mol−1 (worst scores), were considered as candidates 
for testing. These were organized into bins of resolution ranging from  

A318 G317
T319

S212

Q120

N152

Y221

K67

Y150

S64

N152

A318
T319

S64

A318 G317
T319

K67

S64

Y150

S212

Q120

N152

Y221

A318 G317
T319

K67

S212

Y150
Q120

N152

Y221

a b c

d

Crystal pose
Docked pose

Q120 N152
Y150

Y221

S212

A318 G317
T319

K67

S64

Q120 N152

S212

T319
A318

Z6615020275

Z4462773688

Z6615017782 Z6615017509

S64

Q120

S212

Y150 Y150

K67K67

G317 G317

Y221Y221

S64

Fig. 1 | Superposition of the crystallographic and docking poses of the new 
AmpC inhibitors. Crystal structures (carbons in cyan) and docked poses 
(carbons in magenta) of the inhibitors. AmpC carbon atoms are in gray, oxygens 
in red, nitrogens in blue, sulfurs in yellow, chlorides in green and fluorides in 
light green. Hydrogen bonds are shown as black dashed lines. a–c, AmpC in 
complex with Z6615020275 (a) (1) (r.m.s.d. to crystal structure 0.79 Å, 1.3 µM), 

Z6615017782 (b) (2) (r.m.s.d. = 0.97 Å, 0.95 µM) and Z6615017509  
(c) (3) (r.m.s.d. = 3.14 Å, 0.86 µM). The overlay of the crystal and docked poses 
are shown. d, AmpC in complex Z4462773688 (4) (r.m.s.d. = 5.61 Å, 323 µM). The 
docked poses (left panel), crystal poses (middle panel) and the overlay of the 
docked and crystal poses are shown (right panel).
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numbers and assuming competitive inhibition (below), while another 
122 had apparent Ki values between 166 and 400 µM. Concentra-
tion–response curves were measured for 17 compounds across this 
potency range. The half-maximum inhibitory concentration (IC50) 
values from these full curves corresponded well to those predicted 
by the three-point inhibition numbers (Extended Data Fig. 2 and Sup-
plementary Table 2). For seven of the new inhibitors, each in a differ-
ent chemotype family, we determined full Ki values and mechanisms 
by Lineweaver–Burk analysis (Extended Data Fig. 3). All seven were 
competitive inhibitors, consistent with docking to the AmpC active 
site, with Ki values ranging from 0.7 to 121 µM (Extended Data Fig. 3). 
Accordingly, we modeled all the new inhibitors as competitive, consist-
ent with the X-ray crystal structures determined for four of them, which 
all bound in the β-lactamase active site (Fig. 1). With this assumption, Ki 
values ranged from 464 to 0.46 µM (ref. 25) (Fig. 2). All assays included 
0.01% Triton X-100, diminishing the likelihood of artifacts from col-
loidal aggregation18,26. For further confidence, 140 of the inhibitors 
were checked for particle formation by dynamic light scattering26–28; 
no signs of colloid-like particle formation were detected at relevant 
concentrations (Supplementary Table 3).

Docked versus crystallographic geometries
To investigate how docking poses corresponded to experimentally 
determined geometries, the structures of four of the new inhibitors 
were determined by X-ray crystallography, with resolutions ranging 
from 1.66 to 1.88 Å (Supplementary Table 4). Unambiguous electron 
density allowed us to confidently model the positions of the new inhibi-
tors in the enzymes’ active site (Extended Data Fig. 4). For Z6615020275 
(1) (1.3 µM; Fig. 1a), Z6615017782 (2) (0.95 µM; Fig. 1b) and Z6615017509 
(3) (0.86 µM; Fig. 1c), the docked and experimental structures superim-
posed with a 0.79, 0.97 and 3.14 Å root mean square deviation (r.m.s.d.) 
respectively, with differences in position stemming from deviations of 
nonwarhead groups binding distally in the site. For a weaker inhibitor 
Z4462773688 (4) (323 µM), the crystal structure showed larger devia-
tions from the docking prediction. An unprecedented bicyclo-alkyl 
carboxylate bound in a geometry flipped from that anticipated by 
docking, leading to an r.m.s.d. of 5.61 Å (Fig. 1d). Z4462773688 is an 
example of the 44 inhibitors found in this campaign that sample not 
only new topologies, but also new warheads for AmpC.

Hit rates are higher from the larger library screen
The overall hit rate (number experimentally active/number tested) 
from the 1.7 billion-molecule campaign was 22.4% (290 actives/1,296 
high-ranking tested). We defined a hit as having an apparent Ki 
value < 400 µM, based on previous literature. This hit rate is signifi-
cantly higher than that from 99 million-molecule docking screen, which 
was 11.4% (P = 0.021 by Z test) (Fig. 2a). With a more stringent definition 
of hits, the hit rates drop for both screens: to 8.3 and 2.3% (Ki < 100 µM) 
and to 2.5 and 2.3% (Ki < 30 µM) for the larger and smaller library cam-
paigns, respectively (Extended Data Fig. 5a,b). Unlike the 44 molecules 
from the smaller library that were both high ranking and manually 
selected, the 1,296 molecules from the larger library include both 
manually selected compounds and those picked by score alone (both 
sets also selected for diversity and dissimilarity to knowns). Focusing 
only on the high-ranking, manually selected molecules from the larger 
screen (662 molecules), the hit rate is significantly higher than from 
the smaller library campaign: 21.4 versus 11.4% (P = 0.032, Extended 
Data Fig. 5c). Considering the top 44 manually selected molecules from 
the larger screen—that is, the same number picked from the smaller 
library campaign—the hit-rate difference is even more pronounced: 
47.7 versus 11.4% (P = 0.00005) (Extended Data Fig. 5d,e). This hit-rate 
difference is supported by differences across affinity ranges. Most of the 
actives from the 99 million-molecule screen had apparent Ki values over 
100 µM (Fig. 2b), with one inhibitor found in the 1 to 3.2 µM range and 
none found in the intermediate ranges. Conversely, from the 1.7 billion 

library each half-log affinity bin is well-populated by new inhibitors. 
The higher hit rate from the larger library is consistent with the idea 
that as the virtual libraries grow, ever more plausible molecules are 
fortuitously sampled and prioritized by molecular docking.

Hit-rate variability and ligand affinity ranges
While hit rate is a fair way to compare the two screens, the raw number 
of hits was naturally far greater from the larger library (Fig. 2c), where 
29-fold more high-ranking molecules were tested. Qualitatively, this 
explains why all half-log affinity bins were well-populated from the 
larger library, whereas this was more hit-and-miss when we only tested 
44 molecules (Fig. 2b). To quantify how hit rate varies with the num-
ber tested, we pulled sets of 44, 139 and 439 molecules randomly 30 
times from the 1,296 and asked how hit rate was affected. When only 
selecting 44 molecules hit rates varied from 11% for one unlucky draw 
to 36% for a lucky one. Pulling sets of 439 molecules 30 times, the hit 
rate only varied from 20 to 27%. The standard deviation in hit rates 
decreased from 6.1 to 3.5 to 1.7%, respectively (Fig. 2d). This variability 
was mirrored in ligand affinities; for instance, it was not until set size 
rose to 439 molecules tested that the highest affinity molecules were 
reliably sampled (Fig. 2e). Re-analyzing previous campaigns against 
the σ2 and dopamine D4 receptor1,4, where around 500 molecules were 
experimentally tested, similar variability was seen in both hit rates and 
in sampling of the high-affinity ligands, which for σ2 were in the low 
nanomolar range (Extended Data Fig. 6).

These results indicate that both hit rates and affinities in docking 
screens may be unreliable when only dozens of molecules are tested, 
as is common in the field. To quantify how many molecules should be 
tested to report stable hit rates and affinities, we drew on the observa-
tion that when large numbers of molecules are tested for the three tar-
gets, there is an exponential relationship between affinity and hit rate, 
something also seen in high-throughput screens29. For the top-ranking 
1% of docked molecules from each campaign, we modeled hit rates (y) 
and hit affinities (x) with an exponential plateau function y = b(1 − e−cx) 
for each of target (Fig. 3a). This fit the distribution of affinities for the 
1,296 molecules tested for AmpC, 327 for σ2 and 371 for D4 (all top 1% 
ranking molecules) with R2 values of 0.998, 0.999 and 0.985, respec-
tively. As smaller sets are drawn from the full sets, variability rises 
(Fig. 2d,e). Beginning with 1,296, sampling was stepwise reduced by 
20 molecules in a bootstrapping manner, repeating this 1,000 times 
to evaluate divergence (Fig. 3b). By ~495 molecules, the average R2 of 
D4 curves falls to 0.95, a point on all three curves where we began to see 
the meaningful divergence from the fit to the full range of compounds 
plotted. This same R2 occurs at 215 and 135 molecules for AmpC and σ2, 
respectively, perhaps reflecting an inverse relationship to hit rates for 
each target among the top 1% of docked molecules (22.4% for AmpC, 
38.7% for σ2 and 20.8% for D4). In these targets, testing fewer than these 
several hundred compounds degrades the correlation of affinity with 
hit rate. For targets with relatively high hit rates, this suggests that over 
a hundred molecules should be experimentally tested to infer confident 
docking hit rates and affinity ranges. For targets with lower hit rates, 
even more compounds would need to be tested for confident results.

To explore this further with a focus on hit-rate variability, we simu-
lated random draws using the AmpC, σ2 and D4 experimental hit rates 
from their high-ranking compounds. One hundred thousand bootstrap 
iterations were performed for sample sizes ranging from 10 to 1,250 
compounds in increments of 10 and we considered the mean and 
lower bound for a single-sided 95% confidence interval at different 
numbers of compounds tested (Fig. 3c). The solid curves reflect the 
95% likelihood that the hit rate will be at a certain level or higher. While 
the average hit rate over all simulations remains unchanged, the vari-
ability increases as the number of molecules tested drops and so does 
one’s confidence that the observed hit rate reflects the true hit rate 
based on the overall docking rankings. This again suggests more than 
100 molecules may be a sensible minimum for experimental testing 
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in large library virtual screens. While both the affinity ranges and the 
hit rates for the screens against AmpC, σ2 and D4 differ substantially, 
the functional form relating hit affinity and hit number was the same 
and led to similar predictions for the minimum number of molecules 
to test for all three targets. This may help predict how many molecules 
would be found in different affinity ranges should one choose to test 
more molecules, a point to which we will return.

Multiple new chemotypes discovered
Only molecules topologically dissimilar to known AmpC inhibitors, 
and topologically diverse from each other, were selected for synthesis 
and testing. Since topological diversity can emerge from changes that 
leave core pharmacophores intact, we also visually inspected inhibi-
tors for novelty. We prioritized molecules by two criteria: those that 
sampled new scaffolds, and those that explored a new anionic warhead 
(Extended Data Fig. 7). For instance, Z6615021877 (5) and Z6722203632 

(6) introduce tetrazolone and tetrazole anionic warheads, respectively, 
both of which were previously unknown for AmpC. Z2607647274 (7) 
and Z4173922012 (8) use cycloalkyl carboxylate and tricyclo-heptane 
carboxylate as their warheads. Meanwhile, Z2610488449 (9), which 
uses a new urea linker scaffold, achieves a high affinity of 12 µM. The 
affinity of this scaffold was readily optimized to 4 µM, marking it among 
the most effective noncovalent AmpC inhibitors that does not rely on 
a sulfonamide linker.

Docking score predicts hit rate
In earlier studies against the D4 dopamine and σ2 receptors, we had 
found that docking score correlated to experimental hit rate, gener-
ating a well-behaved sigmoidal curve that plateaued at a maximum 
hit rate1,4. While these curves suggested an unexpected ability to pre-
dict binders, both receptors have well-formed, buried binding sites, 
making them unusually suitable for this technique. Meanwhile, the 
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Fig. 2 | Larger-scale docking and testing increases hit rates and reduces 
uncertainty. a, The hit rates (number of actives/total tested) of the 1.7 billion 
screen (blue bar; 22.4%) versus the 99 million screen (orange bar; 11.4%).  
A two-sided Z-test was used to compare the hit rates of the two screens, under the 
assumption that the data followed a normal distribution. b, Hit rates by different 
affinity bins in the 2022 screen and 2019 screen. c, Number of hits (number of 
actives) of the 1.7 billion screen (blue bar) versus the 99 million screen (orange 
bar). d, The impact of randomly purchasing 44, 139 and 439 molecules out of 

1,296 molecules for testing on hit rates. Each sample size is randomly drawn 30 
times and the resulting hit rates were plotted. The error bars represent s.d.s of 
the hit rates. The hit rates are 22.42 ± 6.08% (n = 44), 23.67 ± 3.54% (n = 139) and 
22.80 ± 1.65% (n = 439). e, The impact of randomly purchasing 44, 139 and 439 
molecules out of 1,296 molecules for testing on hit rates with different affinity 
cutoffs. Each sample size is drawn 30 times and the resulting hit rates were 
plotted. Data represent mean ± s.d.s of the hit rates.
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plateauing of the score versus hit-rate curve suggests a limitation in 
even our ability to identify, far less rank ligands. To investigate how 
docking might predict binding in a more solvent-exposed, histori-
cally more difficult binding site, we reexplored this relationship for 
AmpC. Docked molecules were not only selected from among the best 
docking energies (some poses shown in Extended Data Fig. 8), as is 
typical in virtual screening, but also from mediocre and unfavorable 
scoring ranges. Molecules were picked from among 16 scoring bins, 
beginning at the most favorable DOCK3.8 scores (−100.58 kcal mol−1 for 
AmpC) down to −28 kcal mol−1. The top 1% of the docking-ranked library 
extends down to scores of −72 kcal mol−1, but by −28 kcal mol−1 49% of the 
1.7 billion-molecule library has been sampled. More than 50 molecules 
per bin were selected from the −100.58 to the −60 kcal mol−1 bin, and 
for scores worse (less negative) than −60 more than 20 molecules were 
tested per bin. Molecules were selected strictly by numerical rank at the 
beginning of each bin. They were tested for AmpC inhibition as above.

Hit rates fell monotonically as scores worsened (Fig. 4a, blue 
curve). This resembles what we had previously observed for the σ2 
and dopamine D4 receptors1,4, except that here we do not observe a hit 
rate plateau; hit rates begin at a maximum at the best docking scores 
and fall steadily as scores worsen. A difference between the AmpC curve 
and the plateaus observed previously is that here from the beginning 
we excluded a small fraction of likely artifacts that concentrate among 
the very top scoring molecules14 (Extended Data Fig. 1). The scale of 
docking in this study allows one to recognize these cheating artifacts 
by how they diverge from the rest of the library; in another study we 
find that they may be also recognized by rescoring with an orthogonal 
scoring function24. Both their differential scoring and explicit rescoring 
may help recognize these molecules in future studies.

To investigate how the affinities of the new inhibitors tracked, 
we plotted score versus hit rate in the 400, 127, 40 and 13 µM ranges 
(Fig. 4a, blue, orange, pink and green curves). Here too, the hit rates in 
each affinity-range rose steadily as score improved. The more potent 
inhibitors appear at better scores than the less potent ones, with those 
in the 127 µM or better tranche beginning to appear at scores of −64, 
those in the 40 µM or better tranche appearing only past −76 and the 
most potent inhibitors only appearing at the −85 bin. This hints at dock-
ing score correlating with gross categorical ranking of affinity, some-
thing that was not apparent from smaller studies, nor expected30,31. 
The trend observed in the auto-picked molecules is conserved when 
considering all molecules (both by rank and manually selected) as well 
as those that were manual-picked. (Extended Data Fig. 9). We undertook 

the same analysis with the docking campaigns against the σ2 receptor 
and dopamine receptor, where hundreds of molecules were tested 
across docking ranks that ranged from high to mediocre to poor, as 
in this study. While the σ2 and D4 receptor docking hits were more 
potent than the AmpC hits, typically in the nM range, the same patterns 
emerged; the most potent ligands appear at better (more negative) 
docking scores than did the mid-potency ligands, which appear at 
better scores than the most potent ones (Fig. 4b,c). Admittedly, the 
relationship between docking score and affinity is mostly categorical, 
but it appears to rank molecules better than simple binary classification 
as binders or nonbinders, with more potent ligands more concentrated 
in better scoring regions. As loose as these correlations are, they may 
support a predictive relationship between docking score and affinity 
category (high, medium or low), at least when at scale. This would war-
rant a renewed emphasis on improving the field’s scoring functions and 
offer a metric against which they might be tested.

To compare the hit-rate curves for the three targets, we plotted 
the negative logarithm of the rank percentage (‘pProp’) for the D4 
and σ2 receptors, and for AmpC (Fig. 4d). A pProp of three denotes a 
compound occupying the top 0.1% scoring region, a pProp of 4 the top 
0.01% and so on; plotting rank avoids scoring offsets among the targets. 
The hit-rate curve of the most permissive hit definition for each target 
is plotted against the pProp. The D4 and σ2 curves align well, peaking 
around a pProp of 5, with the plateau occupying the region from 4 to 
6 (top in 10,000 to top in 1,000,000), while the AmpC curve is slightly 
right shifted, peaking above 6 and not suffering from a plateau. These 
curves allow one to quantify the parts of the docking scoring range 
where most hits are likely to be found. For the D4 and σ2 receptors, it 
also alerts one to the danger of over-emphasizing the very best ranked 
molecules where those that cheat the scoring function concentrate, 
absent controls for them14. As docking and virtual screening libraries 
climb into the tens of billions of molecules5,21, this concern will become 
more pressing24. This may be addressed by recognizing their divergence 
from other molecules in the library, and by explicit rescoring with an 
orthogonal scoring function.

Discussion
In the last 5 years, the number of molecules accessible for ligand discov-
ery has expanded 10,000-fold. Anecdotally, this has revealed molecules 
with improved activity from library docking. Here we seek to quantify 
this in apples-to-apples comparisons of a smaller versus larger library; 
five key observations emerge. First, comparing a docking screen of 
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better for AmpC, 678 nM or better for σ2 and 10 µM or better for D4.
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99 million molecules to one of 1.7 billion molecules against the same 
target, hit rates improved with library size, as did the potency of the 
inhibitors. Multiple new AmpC inhibitor chemotypes were discovered. 
Second, consistent with the idea that there are many more ligands to 
be discovered than are being prioritized, the number of new inhibi-
tors scaled almost linearly with the number of top-ranking molecules 
tested; testing 29-fold more molecules discovered 58-fold more inhibi-
tors. Third, to determine reliable docking statistics from a large library 
screen, one must also test at scale. When only a handful of molecules 
are tested, as is common in docking, statistics of hit rates and maximal 
affinities suffer from large errors. We find that at least several hundred 
molecules should be tested for docking statistics to be trustworthy. 
Fourth, in contrast to earlier studies where hit rates plateaued above 
a certain docking score1,4, here hit rates continued to climb essentially 
linearly as score improves. This was also true for the D4 and σ2 receptors 
after removing their high-ranking artifacts. This observation supports 
the idea that as libraries grow, hit rates and affinities will improve, as 
long as high-ranking docking artifacts can be removed or avoided. 
Finally, a loose, categorical correlation between docking score and 
ligand affinity was observed for AmpC, and on reanalysis also for the 
σ2 and D4 receptor campaigns1,4. While this correlation remains loose 
and only by affinity category (for example, strong, mediocre, weak), 
it may suggest that further optimization of docking scoring functions 
will allow the field to distinguish not only binders from nonbinders, 
but also categorically rank them by activity, something we and others 
have long discounted30,31.

Several caveats should be aired. The monotonic improvement 
of hit rate with docking score and its loose correlation with affinity 
have only been observed in three systems. This merits investigation in 
other targets, ideally using other scoring functions, at scale. Current 

community tests of docking methods, such as CACHE32, may offer a 
forum for doing so. Methodologically, we note that for less than 10% 
of the molecules reported here were full IC50 curves determined. While 
these correlated well with inferred IC50 and Ki values based on three 
concentration point inhibition, such affinities must be considered 
approximate. An important aspect of getting well-behaved score ver-
sus hit-rate curves was our ability to recognize and exclude artifactual 
molecules that appeared to cheat our scoring function. Such artifacts, 
with different physical and chemical origins, have appeared in previous 
large library campaigns against the σ2 and D4 receptors1,4; recognizing 
and removing them was important to revealing the well-behaved score 
versus hit-rate curves and affinity categorization that we describe here. 
Whether such artifacts are peculiar to DOCK3.8, the program we use in 
this study, or to docking more generally, is presently unknown. Finally, 
it is important to emphasize that docking results improve both with 
scale of testing and size of library. In a 1 billion-molecule library, even 
testing thousands of molecules will likely leave hundreds of thousands 
of potent ligands untested. When only dozens are tested, the statistics 
of small numbers ensure that not only the best but often the most 
representative ligands will be missed.

These caveats should not obscure the major observations of 
this study. Against the same target, docking a 20-fold larger library 
led to improved hit rates and affinities, consistent with theoretical 
simulations14. Similarly, as more high-ranking molecules are tested, 
more ligands are found, supporting the idea that most true ligands 
in the new ultra-large libraries remain to be tested (we suffer from an 
embarrassment of riches). Once we correct for high-ranking dock-
ing artifacts, hit rate rises monotonically with docking score. More 
tentatively, a correlation between affinity and score also appears 
at scale.

0 2 4 6 8
0

20

40

60

80

pProp (–log(fractional rank))

H
it 

ra
te

 (%
)

–60 –50 –40 –30
0

10

20

30

40

50

60

70

Dock energy (kcal mol–1)

H
it 

ra
te

 (%
)

–90 –80 –70 –60 –50 –40 –30
0

10

20

30

40

50

Dock energy (kcal mol–1)

H
it 

ra
te

 (%
) <400 µM

<127 µM

<40 µM

<13 µM

–28.0
–64.0

–76.0

–84.4

First energy bin 
where hit rate >0Hit definition

<677.5 nM

<214.2 nM

<67.8 nM

First energy bin 
where hit rate >0Hit definition

–32.0

–45.0

–48.0

a b

–80 –70 –60 –50 –40 –30

0

10

20

30

40

Dock energy (kcal mol–1)

H
it 

ra
te

 (%
)

<10 µM

<1 µM

First energy bin 
where hit rate >0Hit definition

–46.0

–52.0

c d
AmpC β-lactamase

D4 dopamine receptor

Target

σ2 receptor

Fig. 4 | Hit rate of tested compounds plotted against DOCK scores with 
different affinity cutoffs. a, The AmpC hit rates of 1,293 well-behaved auto-
picked compounds using four different affinity cutoffs, <400, 127, 40 and 13 µM, 
are plotted against DOCK scores. b, σ2 receptor hit rates of 484 compounds 
plotted against DOCK scores with three different affinity cutoffs: <677.5, 241.2 

and 67.8 nM. c, Dopamine D4 hit rates of 549 compounds plotted against DOCK 
scores with two different affinity cutoffs: <10 and <1 µM. d, Rescaling the hit-rate 
curves of the three targets by the log10 of fractional rank in the library. For each 
target, the most permissive hit definition is used.

http://www.nature.com/naturechemicalbiology


Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01797-w

While brute force docking, of the sort described here, has been 
able to address a 1,000-fold increase in library size, to go up another 
1,000-fold, into the trillions of molecules, seems beyond it and more 
guided sampling of chemical space may be required5,11,33,34. What this 
study suggests is that efforts to sample from the supra-trillion molecule 
space should be worthwhile. To support such efforts, we are making 
available the identity, docking score and experimental activities of 
each of the 1,521 molecules tested here (Supplementary Table 1), and 
extensive docking score and pose information from the full library 
screen (https://lsd.docking.org).

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Large-scale docking
The campaign used the structure in the Protein Data Bank (PDB) 1L2S 
(ref. 16). Three Q120 conformations were modeled based on the X-ray 
density of PDB 3FKW (ref. 35) using qFit-3.0, with an occupancy of 0.49, 
0.34 and 0.17 (ref. 36). The occupancy of the alternative conforma-
tions was converted into an additional energy term and incorporated 
in the DOCK scoring function as described previously37. The protein 
structure was protonated using Reduce38. Energy grids for the differ-
ent energy terms of the scoring function were pregenerated van der 
Waals terms based on the AMBER force fields using CHEMGRID39; 
Poisson–Boltzmann-based electrostatic potentials using QNIFFT40,41; 
context-dependent ligand desolvation was calculated using SOLV-
MAP42. The volume of the low dielectric and the desolvation volume 
was extended out 2.0 and 0.25 Å. The thiophene carboxylate inhibi-
tor solved in PDB 1L2S was used to generate matching spheres, which 
are later used by the docking software to fit pregenerated ligands’ 
conformations into the small molecule binding sites43. The resulting 
docking setups were evaluated for its ability to enrich known AmpC 
ligands over property-matched decoys. Decoys are theoretical non-
binders to the receptor as they are topologically dissimilar to known 
ligands but retain similar physical properties. We curated 31 AmpC 
ligands based on their dissimilarity among themselves. 2,480 decoys 
were generated by using the DUDE-Z pipeline44. The docking set-up 
can rank ligands over decoys with a logAUC of 28.5 with most of the 
ligands recapitulating their experimental poses. For docking against 
1.7 billion molecules, each molecule from the ZINC22 database45 was 
sampled in about 3,822 orientations and 875 conformations by using 
DOCK3.8 (ref. 43). Overall, over 1,841 trillion complexes were sampled 
and scored, spending 2,129,230 core hours or about 1 month on a 3,000 
core cluster, using DOCK3.8 (ref. 43).

Hit-picking strategy
To increase novelty, high-ranking molecules with scores down to −79.25 
(99,277 molecules), and molecules from different energy bins (~25,000 
from −76, −72, −68, −64 and −60 bins and 5,000 from −52, −44, −36 
and −28 bins), summed to 244,217 molecules, were filtered to exclude 
those similar to 237 previously known ligands. A Tc cutoff of 0.5 was 
used; no molecule more similar than this value was allowed, removing 
9,561 molecules. We also filtered out molecules that buried too many 
uncompensated polar groups: while DOCK3.8 penalizes for desolva-
tion, we find that these artifacts can nevertheless occur. Using LUNA 
1,024-length binary fingerprints23, molecules that had more than one 
hydrogen bond donor and more than six hydrogen bond acceptors 
that were not compensated with polar interactions to the protein 
were removed; 50,339 molecules were filtered out at this step. This 
left 184,317 for further processing. For autopicking, these molecules 
were clustered for self-similarity using an ECFP4 Tc = 0.32, resulting in 
80,767 cluster heads.

Most of the molecules tested were auto-picked based on docking 
rank. With almost all the high-ranking molecules being negatively 
charged, we wanted to ensure that their representation as anions at 
pH 7.4 was likely. We used JChem to calculate the distribution of pro-
tonation states of the high-ranking cluster heads and compared this to 
the dominant state represented in their docked poses (multiple proto-
nation states of a molecule can be docked). Only when the calculated 
dominant charge state matched with that of the docked pose, and the 
species is calculated to be more than 80% anionic, was the molecule 
accepted for autopicking, which left 56,814 molecules. Molecules 
were picked based on their docking ranks across different affinity bins, 
selecting 1,336 molecules for synthesis and testing.

For manual picking from the different energy bins, all cluster heads 
were again filtered for interactions using LUNA, seeking molecules 
that formed hydrogen bonds with backbone of A318, that made pi–pi 
interactions with Y221, and that made at least two more interactions 

with the binding pocket (that is, hydrogen bonds with N152, N346, 
G320, S212, R204, Q120, cation-pi with K315, K67 or pi–pi interaction 
with Y150). The molecules that passed these filters were reclustered at a 
Tc = 0.32; cluster heads were visually inspected and prioritized. The rest 
of the high-scoring cluster heads were also manually inspected seeking 
new interesting chemotypes. A total of 734 were prioritized manually, 
slightly less than half of the molecules that were synthesized and tested.

Synthesis of the molecules
Compounds were sourced from the Enamine REAL database (https://
enamine.net/compound-collections/real-compounds). The purities of 
active molecules were at least 90% and typically above 95%. The detailed 
chemical synthesis can be found in the Supplementary Information.

AmpC enzymology
All candidate inhibitors were dissolved in dimethylsulfoxide (DMSO) 
at 20 mM, and more dilute DMSO stocks were prepared as necessary so 
that the concentration of DMSO was held constant at 1% v/v in 50 mM 
sodium cacodylate buffer, pH 6.5. AmpC activity and inhibition was 
monitored spectrophotometrically using either CENTA or nitrocefin as 
substrates. All assays included 0.01% Triton X-100 to reduce compound 
aggregation artifacts. Active compounds were further investigated for 
aggregation by dynamic light scattering and by detergent-dependent 
inhibition of the counter-screening enzyme malate dehydrogenase.

For initial screening, the docking hits were diluted such that final 
concentrations in the reaction buffer was 200, 100 and 40 µM. In these 
assays, two widely studied AmpC substrates were used, depending on 
availability, CENTA46 and nitrocefin16. The first was tested at an [S]/(Km) 
ratio of 1.81 (Km CENTA 27.6 µM; [S] = 50 µM, where Km is the Michaelis 
constant) and the second was tested at [S]/Km ratios of 0.556 (Km nitroce-
fin 180 µM; [S] = 100 µM) and 0.156 ([S] = 28 µM). The colorimetric 
assay was converted to a medium throughput manner using a BMG 
Labtech CLARIOstar. Substrate (CENTA (EC50 Km = 27.6 µM) or nitrocefin 
(EC50 = 180 µM)) and protein were injected into buffer containing the 
putative inhibitor, followed by rate measurement for 50 s in 96-well 
format. IC50 values reflect the percentage inhibition fit to a dose–
response equation in GraphPad Prism with a Hill coefficient set to one 
( f (x) = max− max−min

1+ x
IC50

). The Ki was calculated using the Cheng–Prusoff 

equation (Ki =
IC50

1+ [S]
Km

). For 18 of the more potent compounds, based on 

the initial three concentration point results, full dose–response curves 
were measured and for another eight full Ki values were measured and 
calculated using Lineweaver–Burk plots. Data were analyzed using 
GraphPad Prism software v.9.

AmpC crystallization, data collection and structure 
determination
AmpC crystallization was carried out as previously described16. Briefly, 
cocrystals of AmpC and inhibitors were grown by vapor diffusion in 
hanging drops equilibrated over 1.7 M potassium phosphate buffer 
(pH 8.7) using microseeding. The initial concentration of protein in 
the drop was 6 mg ml−1 and the concentration of the inhibitor was 
0.5 mM. The inhibitor was added to the crystallization drop in a 4% 
DMSO, 1.7 M potassium phosphate buffer (pH 8.7) solution. Crystals 
appeared within 3–5 days after equilibration at 23 °C.

Data were measured from a single crystal per complex on the 
Beamline 8.3.1 of the Berkeley Advanced Light Source, with wave-
length 1.11583 Å at 100 K. Before data collection, cocrystals of AmpC 
were immersed in a cryoprotectant solution of 20% sucrose and 1.7 M 
potassium phosphate (pH 8.7) for about 20 s and then flash-cooled 
in liquid nitrogen. The structures were solved by molecular replace-
ment with PHENIX47 using PDB 1L2S as the search model. Structure 
refinement was carried out with PHENIX and COOT48. MolProbity49 
was used for validation (Extended Data Fig. 3); structural figures were 
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prepared using ChimeraX50. To test model bias, polder omit maps were 
calculated after perturbing the model by omitting the selected ligands: 
the ligands were first omitted, and the resulting model was subjected 
to three cycles of phenix.refine in both real and reciprocal space with 
simulated annealing. The ligands were then inserted to calculate the 
polder omit maps51.

Hit-rate curves
To obtain hit rate curves, the experimentally tested molecules for 
each target (AmpC, the σ2 and dopamine D4 receptors) were ordered 
by increasing DOCK score. A rolling window was passed over the list, 
calculating the hit rate as the percentage of molecules with experimen-
tally determined affinity equal to or better than the hit definition, and 
the DOCK score as the average for the window. A window size of 100 
was used for AmpC and σ2, and a window of 50 for D4 receptor. For all 
three targets, molecules were picked from both within and outside 
what would typically be considered high-ranking regions. The rolling 
window was stopped for those scores outside the high-ranking region 
since discrete score bins were used in the hit-picking of these likely 
nonbinders. The scores at which the rolling window was stopped are 
−78 for AmpC, −52.5 for σ2 and −60 for D4. For the pProp rescaling, the 
same strategy was used, but the DOCK scores were transformed to frac-
tional rank based on the observed score distribution. The negative base 
10 logarithm of the fractional rank is then reported, termed ‘pProp’.

Hit-rate modeling
For sampling hit-rate variability in relation to sample size, we used sam-
ple sizes for 10 to 1,250 in jumps of 10. For each sample size, we picked 
100,000 random samples of the uniform distribution [0, 1] using Python. 
The hit rate of the sample was then defined as the number of observations 
with equal to or lower than the observed experimental hit rate for that tar-
get. A single-sided 95% confidence interval is built by taking the boundary 
value between the top 95% observed hit rates and the bottom 5%.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The compounds docked in this study are freely available from the 
ZINC20 and ZINC22 databases, https://zinc20.docking.org and https://
cartblanche22.docking.org. All compounds tested can be purchased 
from Enamine. Compound information including their ZINC ID, catalog 
ID, SMILES, DOCK score, ranking and affinity can be found in Sup-
plementary Table 1. The synthetic procedures and purity informa-
tion for the hits can be found in the Supplementary Note. Extensive 
docking-related files can be found at https://lsd.docking.org. DOCK3.8 
is freely available for noncommercial research at https://dock.compbio.
ucsf.edu/DOCK3.8/. A web-based version is available without restric-
tion at https://blaster.docking.org/. X-ray structures and maps are 
available in the PDB under accession numbers 9C81 (Z4462773688), 
9C6P (Z6615017509), 9C84 (Z6615020275) and 9DHL (Z6615017782), 
respectively. Source data are provided with this paper.
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Extended Data Fig. 1 | Molecules with artifactually favorable scores disrupt the distribution of docking scores and concentrate among the top-ranking docked 
molecules. a, DOCK scores of molecules against AmpC. b, DOCK scores of molecules against σ2 receptor4.

http://www.nature.com/naturechemicalbiology
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Extended Data Fig. 2 | Concentration-response curves for 17 of the new 
docking-derived AmpC inhibitors. Nitrocefin was kept at a constant 
concentration of 100 µM (for positive control ZINC549719643, new inhibitors 
Z6615018018, Z6615017509, Z6615022372, Z6615017782, Z6615020275, 
Z6615019214 and Z6615014610) or 50 µM (for positive control ZINC339304163, 
new inhibitors Z2275216423, Z6615017736, Z2940316600, Z2940315182, 

Z6615019960, Z2940322517, Z6615017422, Z6615015266, Z6615016774 and 
Z6615155291). The estimated Ki is calculated based on the Kd of nitrocefin 
(180 µM) calculated from a Lineweaver-Burk analysis. The previously reported  
Ki for ZINC549719643 is 77 nM1 and for ZINC339304163 is 1.25 µM1. Data represent 
mean ± s.d.s from three biological replicates.
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Extended Data Fig. 3 | Lineweaver-Burk plots of seven of the new AmpC inhibitors (a-g). ZINC339304163 is a positive control inhibitor identified in a previous 
docking campaign1.
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Extended Data Fig. 4 | Electron density omit maps of the AmpC inhibitors. a-d, Polder omit maps of the inhibitors (3σ).
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Extended Data Fig. 5 | Comparative analysis of hit rates from large-scale and 
small-scale AmpC screens with statistical validation. a, The hit rates (number 
of actives/total tested) of the 1.7 Billion screen (blue bar; 8.26%) versus the 99 
Million screen (orange bar; 2.27%) with a hit defined as less than 100 µM. 
 b, The hit rates (number of actives/total tested) of the 1.7 Billion screen (blue 
bar; 2.47%) versus the 99 Million screen (orange bar; 2.27%) with a hit defined as 
less than 30 µM. c, The hit rates of all manually picked molecules of the 1.7 Billion 
screen (blue bar; 21.14%) versus the 99 Million screen (orange bar; 11.4%). d, The 
hit rates of the top 44 manually picked molecules of the 1.7 Billion screen (blue 
bar; 47.7%) versus the 99 Million screen (orange bar; 11.4%). e, Hit rates from the 

manually picked, experimentally tested molecules of the 99 Million and 1.7 Billon 
screens (44 and 626 molecules, respectively), referred to as the “Small” and “Big” 
screens. For each set, 44 or 626 molecules were resampled for 10,000 bootstrap 
iterations, and the mean of the resampled hit rates is shown in parenthesis. 
P-values for the null hypothesis that the difference between two resampled 
distributions is zero are provided. For panels a-d, a two-sided Z-test was used 
to compare the hit rates of the two screens, under the assumption that the data 
followed a normal distribution. For panel e, P-values were obtained from a one-
tailed non-parametric bootstrap test (10,000 iterations) comparing the means of 
the resampled distributions, with no assumption of normality.
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Extended Data Fig. 6 | The impact of testing fewer molecules on hit rate 
confidence. a, For 327 molecules tested against the σ2 receptor, each sample size 
is randomly drawn 30 times and the resulting hit rates were plotted. The error 
bars represent s.d.s of the hit rates. b, The impact of randomly purchasing 44 and 
139 molecules out of 327 molecules for testing on hit rates with different affinity 
cutoffs. Each sample size is drawn 30 times and the resulting hit rates were plotted. 

The error bars represent s.d.s of the hit rates. c, For 371 molecules tested against 
the D4 receptor, each sample size is randomly drawn 30 times and the resulting 
hit rates were plotted. The error bars represent s.d.s of the hit rates. d, The impact 
of randomly purchasing 44 and 139 molecules out of 371 molecules for testing on 
hit rates with different affinity cutoffs. Each sample size is drawn 30 times and the 
resulting hit rates were plotted. Data represent mean ± s.d.s of the hit rates.

http://www.nature.com/naturechemicalbiology


Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01797-w

Extended Data Fig. 7 | Examples of the new warheads and chemotypes from 
the AmpC screen, in their docked poses in the enzyme active site. a, docked 
pose of Z6615021877 (Ki = 121 µM). b, docked pose of Z2607647274 (Ki = 47 µM). 
c, docked pose of Z6615146667 (Ki = 173 µM). d, docked pose of Z6615020742 
(Ki = 184 µM). e, docked pose of Z2610488449 (Ki = 12 µM). f, docked pose of 

Z4173922012 (Ki = 230 µM). g, docked pose of Z6615146331 (Ki = 214 µM).  
h, docked pose of Z6722203632 (Ki = 465 µM). i, docked pose of Z5389129999  
(Ki = 298 µM). The Ki values for Z6615021877 and Z2610488449 were calculated 
using Lineweaver-Burk plots, while the rest were determined based on the three-
point inhibition assays.
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Extended Data Fig. 8 | Docking poses of the some of the top scoring molecules. Docking poses of ZINCop00000kUi3Y, ZINCov000006qjGM, 
ZINCpM00000d7IVN, ZINCpw000006Kp2I, ZINCqs000002TbmO and ZINCpa00000sPJnu are shown.
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Extended Data Fig. 9 | Hit rate of experimentally tested compounds 
plotted against DOCK scores with different affinity cutoffs. a, Hit rates of 
all compounds tested (1,447 well-behaved molecules among 1,521 purchased) 
plotted against DOCK scores with four different affinity cutoffs: < 400, <137, 

<40 and <13 µM. b, Hit rates of manually picked compounds (687 compounds) 
plotted against DOCK scores with four different affinity cutoffs: <400, <137, 
 <40 and <13 µM.
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