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eLife Assessment
This manuscript provides an important overview of potential resistance mutations within MET 
Receptor Tyrosine Kinase. The evidence supporting the findings is convincing - it should be pointed 
out that the approach is comparatively new for the application of protein kinases and the results are 
therefore of potentially great value. The results will be of value for clinicians facing drug resistance 
mutations, computational biologists who are training models of drug resistance mechanisms and 
biologists with an interest in cell signaling.

Abstract Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine 
Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed 
treatments. Determining the most effective inhibitor for each mutational profile is a major chal-
lenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational 
scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a 
panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously 
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identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ 
inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-
resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model 
with biophysical and chemical features to improve the predictive performance for inhibitor-treated 
datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance 
mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and 
offers insights for future drug development.

Introduction
Receptor Tyrosine Kinases (RTKs) are critical signaling molecules that activate and regulate cellular 
pathways. Disruption of typical RTK regulatory mechanisms through point mutations, gene amplifi-
cation, protein fusions, or autocrine loops can drive the development, maintenance, and spread of 
cancers. Small molecule inhibitors are designed to disrupt aberrant signaling cascades by selectively 
targeting the kinase domain, with tyrosine kinase inhibitors (TKIs) like imatinib showing durable treat-
ment outcomes (Cohen et al., 2021; Attwood et al., 2021). Inhibitors are generally designed against 
either a wild-type kinase or a specific mutational profile, yet acquired mutations can alter sensitivity to 
different inhibitors and undermine efficacy. The most extreme case of this is resistance, which emerges 
in the treatment of many cancers by TKI selective pressure (Cohen et al., 2021; Attwood et al., 2021). 
These mutations may act by altering kinase stability, expression, conformation, or activity of the target 
kinase. Although several recurrent mutations at inhibitor-interacting positions have predictable resis-
tance, specific and rare resistance mutations can be associated with the interactions or conformations 
unique to certain inhibitors.

An attractive strategy to counter resistance is optimizing the interactions that differ between inhib-
itors. Small-molecule kinase inhibitors fall into four distinct groups, characterized by their binding 
modality to the ATP pocket and conformational preferences (Arter et  al., 2022; Attwood et al., 
2021; Zuccotto et al., 2010). Among these groups, three are ATP-competitive: type I, type II, and 
type I½ (Figure 1A–C). Type I inhibitors occupy the adenosine binding pocket, form hydrogen bonds 
with ‘hinge’ region residues, and favor an active conformation. Type II inhibitors also occupy the 
adenosine pocket but extend into an opening in the R-spine that is accessible in an inactive confor-
mation (Arter et al., 2022; Figure 1B). Type I½ inhibitors combine features from both type I and type 
II inhibitors, engaging with both the adenosine pocket and the R-spine pocket (Arter et al., 2022; 
Figure 1B). Finally, type III inhibitors are allosteric, non-ATP competitive inhibitors (Arter et al., 2022; 
Figure 1B). Given the chemical interaction differences and conformational preferences among TKI 
groups for distinct kinase states, a general approach to combating resistance is sequential treatment 
of type I and II inhibitors (Recondo et  al., 2020a). However, without understanding the potential 
sensitivity of an acquired resistance mutation to the subsequent inhibitor, the efficacy of such strate-
gies is not guaranteed.

The problem of which inhibitor to use and in what order is exemplified by the choice of inhibitors 
targeting MET kinase (Recondo et al., 2020b; Fernandes et al., 2021). MET is an RTK and proto-
oncogene that has been implicated in the pathogenesis of gastric, renal, colorectal, and lung cancers 
(Frampton et al., 2015; Duplaquet et al., 2018; Wood et al., 2021; Lu et al., 2017). Molecular 
profiling and next-generation sequencing of tumor samples has provided insight on cancer-associated 
MET variants (Frampton et al., 2015; Bahcall et al., 2022). Clinical reports following post-treatment 
outcomes have documented recurrent resistance mutations at positions such as D1228, Y1230, 
G1163, L1195 for MET (Fernandes et al., 2021; Lu et al., 2017; Recondo et al., 2020a; Li et al., 
2017). The challenge of acquired resistance following MET inhibitor therapy has been approached 
with strategies including sequential treatment of type I and type II TKIs (Recondo et  al., 2020b; 
Bahcall et al., 2016, Cai et al., 2021), and combination therapy with type I and type II TKIs (Bahcall 
et al., 2022; Fernandes et al., 2021; Smyth et al., 2014). However, without extensive documentation 
of the behavior of resistance and sensitizing mutations in MET towards specific TKIs, there remains a 
barrier towards leveraging inhibitors for specific mutational responses, optimizing inhibitor pairings, 
and informing rational drug design. Thousands of compounds have been screened against the MET 
kinase domain, and while several have undergone clinical trials, currently four MET inhibitors have 
received FDA approval: crizotinib, cabozantinib, tepotinib, and capmatinib (Santarpia et al., 2021; 
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Figure 1. MET kinase inhibitor types and resistance mutations screened against a nearly comprehensive library of kinase domain substitutions. 
(A) Crystal structure of the ATP-bound MET kinase domain (3DKC) overlaid with type Ia (crizotinib, 2WGJ), type Ib (savolitinib, 6SDE), type II (merestinib, 
4EEV), type I½ (AMG-458, 5T3Q), and type III inhibitors (tivantinib, 3RHK). (B) Pocket view of ATP and each inhibitor type bound to the active site of 
the MET kinase domain with the respective inhibitor and crystal structures from panel A. (C) 2D chemical structures of each inhibitor screened against 

Figure 1 continued on next page
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Wang and Lu, 2023). Nevertheless, the emergence of resistance not only limits the efficacy of these 
drugs but also poses challenges for second-line therapeutic strategies, particularly in the context of 
rare and novel mutations.

Previously, we used deep mutational scanning (DMS), a pooled cellular selection experiment, to 
massively screen a library of nearly all possible MET kinase domain mutations. The juxtamembrane 
domain is encoded by exon 14 in MET, serves an incompletely understood negative regulatory func-
tion in the kinase (Ma et al., 2003) and is recurrently excluded in cancer by somatically encoded exon 
skipping mutations. By testing this library in the context of a wild-type intracellular domain and the 
recurrent cancer exon 14 skipped variant (METΔEx14; Figure 1E), we identified conserved regulatory 
motifs, interactions involving the juxtamembrane and ⍺C-helix, a critical β5 motif, clinically docu-
mented cancer mutations, and classified variants of unknown significance (Estevam et  al., 2024). 
Understanding how these variants respond to specific inhibitors can inform therapeutic strategies, 
with precedent in inhibitor-based DMS studies across kinases such as ERK, CDK4/6, Src, EGFR, and 
others (Brenan et al., 2016; Persky et al., 2020; Chakraborty et al., 2024; An et al., 2023).

Here, we explore the landscape of TKI resistance of the MET kinase domain against a panel of 11 
inhibitors, utilizing our previously established platform (Estevam et al., 2024). By profiling a near-
comprehensive library of kinase domain variants in the MET and METΔEx14 intracellular domain, we 
captured a diverse range of effects based on inhibitor chemistry and 'type' classifications (Figure 1). 
Within our screen, mutations that confer resistance and offer differential sensitivities across inhibitors 
were identified, which can be leveraged in sequential or combination therapy. We use Rosace, a 
Bayesian fitness scoring framework, to reduce false discovery rates in mutational scoring and allow 
for post-processing normalization of inhibitor treatments (Rao et al., 2024). With our dataset, we 
have analyzed differential sensitivities to inhibitor pairs and provided a platform for assessing inhibitor 
efficacy based on mutational sensitivity and likelihood. Lastly, we augment a protein language model 
(Rives et al., 2021; Brandes et al., 2023; Chen and Guestrin, 2016) with biophysical and chemical 
features to improve predictions for MET inhibitor datasets, and in the future more effectively learn and 
predict mutational fitness towards novel inhibitors.

Results
Measuring the mutational fitness of 5,764 MET kinase domain variants 
against ATP-competitive inhibitors
To evaluate the response of MET mutations to different inhibitors, we selected six type I inhibitors 
(crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, and NVP-BVU972), three type II inhibitors 
(cabozantinib, glesatinib analog, merestinib), and a proposed type III inhibitor, tivantinib (Figure 1C). 
Type I MET inhibitors leverage pi-stacking interactions with Y1230 and salt-bridge formation between 
D1228 and K1110, and are further classified as type Ia or Ib based on whether they interact with 
solvent front residue G1163 (Cui, 2014; Fujino et al., 2019; Wang and Lu, 2023; Figure 1C). Here, 
we specifically define type Ia inhibitors as having a solvent-front interaction (Cui, 2014), which struc-
turally classifies tepotinib and capmatinib as type Ia based on our analysis of experimental structures 

the site saturation mutagenesis library of the MET kinase domain, with each experimentally determined IC50 values displayed for Ba/F3 cells stably 
expressing the wild-type MET ICD in a TPR-fusion background. (D) Dose-response curves for each inhibitor against the wild-type MET intracellular 
domain expressed in a TPR-fusion in the Ba/F3 cell line (n=3). (E) Schematics of the full-length and exon 14 skipped MET receptor alongside the TPR-
fusion constructs with the full-length and exon 14 skipped intracellular domain, displaying four mechanisms of oncogenic activity: point mutations, 
exon 14 skipping, constitutive activity through domain fusions, and inhibitor resistance mutations. (F) Experimental workflow for defining the mutational 
landscape of the wild-type TPR-MET and exon 14 skipped TPR-METΔEx14 intracellular domain against 11 ATP-competitive inhibitors in Ba/F3, 
interleukin-3 (IL-3) withdrawn pooled competition assay.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Structural inhibitor classification and dose-response determination.

Figure supplement 2. Correlation analysis of the MET kinase domain site saturation mutagenesis library across replicates and conditions.

Figure supplement 3. Correlation analysis of the MET∆Ex14 kinase domain site saturation mutagenesis library across replicates and conditions.

Figure supplement 4. Fitness landscapes of the MET kinase domain against a panel of 11 inhibitors.

Figure 1 continued
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and inhibitor docked models (Figure 1A–C; Figure 1—figure supplement 1), despite classification as 
type Ib in other studies (Brazel et al., 2022; Fujino et al., 2022; Recondo et al., 2020a).

As in our previous work, we employed the Ba/F3 cell line as our selection system due to its unde-
tectable expression of endogenous RTKs and addiction to exogenous interleukin-3 (IL-3; Estevam 
et  al., 2024). These properties allow for positive selection based on ectopically expressed kinase 
activity and proliferation in the absence of IL-3 (Daley and Baltimore, 1988; Warmuth et al., 2007; 
Koga et al., 2022). We used a TPR-MET fusion to generate IL-3-independent constitutive activity 
(Estevam et al., 2024). While this system affords cytoplasmic expression, constitutive oligomeriza-
tion, and HGF-independent activation, features like membrane-proximal effects are lost (Cooper 
et al., 1984; Park et al., 1986; Peschard et al., 2001; Rodrigues and Park, 1993; Vigna et al., 
1999; Mak et al., 2007; Pal et al., 2017; Lu et al., 2017; Fujino et al., 2019). The constitutive activity 
of TPR-MET and the reliance of Ba/F3 cells on that activity render this selection system quite sensitive 
for determining reduction in growth from small molecule inhibition.

We generated dose response curves for each inhibitor against wild-type TPR-MET (wild-type 
intracellular domain, including exon 14) and TPR-METΔEx14 (exon 14 skipped intracellular domain) 
constructs, stably expressed in Ba/F3 cells to determine IC50 values for our system (Figure 1D; 
Figure  1—figure supplement 1). We used our previously published library harboring  >99% of 
all possible 5764 kinase domain (1059-1345aa) mutations in a TPR-fusion background carrying 
either a wild-type MET or exon 14 skipped intracellular domain (Estevam et al., 2024; Figure 1E). 
Time points were selected every two cell doublings over the course of four time points, and cells 
were split and maintained in the absence of IL-3 and presence of drug at IC50 for each inhibitor, 
including a DMSO control. All samples, across all time points and replicates, were prepared for 
next-generation sequencing (NGS) in parallel, and sequenced on the same Illumina NovaSeq 6000 
flow cell to identify variant frequencies (Figure 1F). We then calculated variant fitness scores using 
Rosace (Rao et al., 2024; Figure 1F; Figure 1—figure supplements 1–4). We performed parallel 
analysis of the TPR-MET and TPR-METΔEx14 screens; however, we focus our analysis below on 
TPR-MET with the parallel and largely consistent analyses of TPR-METΔEx14 available in the 
supplement.

Defining the mutational landscape of resistant and sensitizing 
mutations for the MET kinase domain
While growth rates were experimentally controlled through equipotent dosing during selection, there 
was no direct way to validate this post-processing. To generate meaningful comparisons between 
inhibitor scores and conditions, in addition to performing downstream score subtractions, we normal-
ized cell growth rates for each inhibitor to the growth rate observed for the DMSO population. As 
expected, the DMSO control population displayed a bimodal distribution with mutations exhibiting 
wild-type fitness centered around 0, with a wider distribution of mutations that exhibited loss- or gain-
of-function effects, as defined by fitness scores with statistically significant lower or greater scores 
than wild-type, respectively (Figure 2A; Figure 2—figure supplement 1). Also as expected, inhibitor-
treated populations displayed distributions with a loss-of-function peak, representative of mutations 
that are sensitive to the inhibitor. Unlike DMSO, inhibitor populations were right-skewed, showing 
greater enrichment of gain-of-function scores at the positive tail of distributions (Figure 2A). These 
population differences were exemplified by the low correlation between each inhibitor and DMSO, 
with capmatinib showing the greatest difference from DMSO with a Pearson’s correlation of 0.45, and 
tivantinib standing as an outlier with a Pearson’s correlation of 0.93 (Figure 2B).

In comparing all conditions to each other, we were able to further capture differences between 
and within inhibitor types. Type II inhibitors displayed the greatest similarities to one another, with 
merestinib and the glesatinib analog having the highest correlation (r=0.93) and cabozantinib and 
glesatinib analog showing the lowest (r=0.87; Figure 2C). While type I inhibitors were also highly 
correlated, capmatinib stood out as an outlier, displaying the lowest correlations potentially due to 
difficulty in experimental overdosing due to its greater potency (Bahcall et al., 2022; Fujino et al., 
2019; Figure 2C). While there was only one type I½ inhibitor, AMG-458, it displayed higher similarity 
to type II inhibitors than to type I, likely due to similar type II back pocket interactions with the kinase 
R-spine (Figure 1B; Figure 2C). Nevertheless, AMG-458 was most distinct from cabozantinib (r=0.83) 
and type I inhibitors tepotinib (r=0.79) and savolitinib (r=0.73; Figure 2C). Between type I and type 

https://doi.org/10.7554/eLife.101882
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Figure 2. Mutational landscape of the MET kinase domain under 11 ATP-competitive inhibitor selection. (A) Distributions of all variants (wild-type 
synonymous, early stop, and missense) for each condition in the wild-type TPR-MET kinase domain, scored with Rosace and normalized to the growth 
rate of the DMSO control population. (B) Correlation plots for all mutational fitness scores for each drug against DMSO, fitted with a linear regression 
and Pearson’s R value displayed. (C) Heatmap showing the Pearson’s R correlation for each condition against each other, annotated by condition and 
inhibitor type. Correlations are colored according to a scale bar from gray to blue (low to high correlation). (D) Crystal structure of the tivantinib-bound 
MET kinase domain (PDB 3RHK) overlaid with the ATP-bound kinase domain (PDB 3DKC), with tivantinib-stabilizing residues and overlapping density 
of tivantinib (orange) and ATP (purple) highlighted. (E) Dose responses of crizotinib and tivantinib tested against stable Ba/F3 cells expressing the wild-
type intracellular domain of MET fused to TPR, tested in the presence and absence of interleukin-3 (IL-3) (n=3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mutational landscape of the MET∆Ex14 kinase domain under 11 ATP-competitive inhibitor selection.

https://doi.org/10.7554/eLife.101882
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II groups, with the exception of capmatinib, tepotinib, and savolitinib showed the lowest correlation 
with merestinib and glesatinib analog (Figure 2C).

The strong correlation of tivantinib with the DMSO control (r=0.93) and low correlation with all 
other inhibitors suggested a MET-independent mode of action. Until recently (Michaelides et  al., 
2023), tivantinib was considered the only type III MET-inhibitor and showed promising early clinical 
trial results (Eathiraj et al., 2011; Bahcall et al., 2022). In vitro assays on the purified MET kinase 
domain have shown that tivantinib has the potential to hinder catalytic activity (Munshi et al., 2010) 
and structural studies revealed that it selectively targets an inactive DFG-motif conformation, with 
tivantinib stabilizing residues (F1089, R1227) blocking ATP binding (Eathiraj et al., 2011; Figure 2D). 
Yet in contradiction, comparative MET-dependent and MET-independent cell-based studies on tivan-
tinib have also shown MET agnostic anti-tumor activity, posing that tivantinib may have an alternative 
inhibitory mechanism than an MET-selective one (Michieli and Di Nicolantonio, 2013; Basilico et al., 
2013; Katayama et al., 2013; Fujino et al., 2019).

Therefore, to test the hypothesis that tivantinib is not MET-selective in our system, we compared 
the dose response of tivantinib and crizotinib in the presence and absence of IL-3 for wild-type TPR-
MET, stably expressed in Ba/F3 cells (Figure 2E). As expected, crizotinib only displayed an inhibitory 
effect under IL-3 withdrawal, highlighting a MET-dependent mode of action. In contrast, tivantinib 
displayed equivalent inhibition regardless of IL-3, reinforcing that tivantinib has cytotoxicity effects 
unrelated to MET inhibition (Figure 2E) and underscores the sensitivity of the DMS in identifying 
direct protein-drug effects.

Crizotinib-MET kinase domain resistance profiles exemplify the 
information accessible from individual inhibitor DMS
As an example of the insights that can be learned from the inhibitor DMS screens, we examined the 
profile for crizotinib, one of four FDA approved inhibitors for MET and a multitarget TKI (Cui et al., 
2011; Wang and Lu, 2023; Santarpia et al., 2021). To identify mutations that show gain-of-function 
and loss-of-function behaviors specific to inhibitors compared to DMSO, we subtracted DMSO from 
all fitness scores. (Figure 3A), with the expectation that effects related to expression or stability 
would be similar in both conditions, enhancing the ability to identify drug sensitivity or resistance. 
Indeed, the highest frequency of gain-of-function mutations occurred at residues mediating direct 
drug-protein interactions, such as D1228, Y1230, and G1163. These sites, and many of the indi-
vidual mutations, have been noted in prior reports, such as: D1228N/H/V/Y, Y1230C/H/N/S, G1163R 
(Fernandes et al., 2021; Yao et al., 2023; Bahcall et al., 2022; Recondo et al., 2020a; Rotow et al., 
2020; Fujino et al., 2019; Lu et al., 2017; Pecci et al., 2024). Beyond these well-characterized sites, 
regions with sensitivity occurred throughout the kinase, primarily in loop-regions which have the 
greatest mutational tolerance in DMSO, but do not provide a growth advantage in the presence of 
an inhibitor.

In mapping positions with resistance to the crizotinib-bound kinase domain crystal structure (PDB 
2WGJ), our DMS results further emphasize the emergence of resistance mutations at the ATP-binding 
site and direct-protein drug interacting residues (Figure 3B–D). Mutations to the hinge position, Y1159, 
and C-spine residues, including M1211 and V1092, introduce charge or are predicted to change the 
conformation of the pocket to clash with crizotinib but not ATP (Figure 3E and F). Outside of direct 
drug-protein interactions, positions I1084, T1261, Y1093, and G1242 displayed the largest resistance 
signals (Figure 3A–D). Structurally, I1084 is located in β1 at the roof of the ATP-binding pocket, and a 
mutation to His clashes with crizotinib’s hinge-binding and solvent-front moieties without interfering 
with bound-ATP (Figure 3E and F). Y1093 is also at the roof of the ATP-binding site, residing in β2 
(Figure 3B). However, its structural influence on resistance is unobvious. In all rotameric states, the 
R-group of Y1093 points away from the catalytic site and does not clash with crizotinib. We specu-
late that Y1093 mutations may negatively impact crizotinib’s stability in the catalytic site compared 
to ATP, as ATP’s triphosphate group is stabilized by the P-loop. Therefore, comparing crizotinib to 
DMSO highlights both known hotspots and rarer sites like I1084 and Y1093, which may contribute to 
resistance through conformational changes rather than disrupting direct inhibitor-protein contacts. 
Individual inhibitor resistance landscapes also aid in identifying target residues for novel drug design 
by providing insights into mutability and known resistance cases. This enables the selection of vectors 
for chemical elaboration with a potential lower risk of resistance development. Sites with mutational 

https://doi.org/10.7554/eLife.101882
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Figure 3. Novel resistance mutations identified and mapped for crizotinib. (A) Heatmap of crizotinib fitness scores subtracted from DMSO, scaled 
from loss-of-function (red) to gain-of-function (blue), with the wild-type protein sequence, secondary structure, kinase domain residue position, 
and mutational substitution annotated. Wild-type synonymous substitutions are outlined in green, and uncaptured mutations are in light yellow. 
(B) Resistance positions mapped onto the crizotinib-bound, MET crystal structure (PDB 2WGJ). Positions that contain one or multiple resistance 
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profiles such as R1086 and C1091, located in the common drug target P-loop of MET, could be likely 
candidates for crizotinib.

Resistance mutations identified for type I, type II, and type I ½ 
inhibitors
To assess the agreement between our DMS and previously annotated resistance mutations, we 
compiled a list of reported resistance mutations from recent clinical and experimental studies (Pecci 
et al., 2024; Yao et al., 2023; Bahcall et al., 2022; Recondo et al., 2020b; Rotow et al., 2020; 
Fujino et al., 2019; Figure 4A and B). Overall, previously discovered mutations are strongly shifted 
to a GOF distribution for the drugs where resistance is reported from treatment or experiment; in 
contrast, the distribution is centered around neutral for those sites for other drugs not reported in the 
literature (Figure 4C). However, even in cases such as L1195V, we observe GOF DMS scores indica-
tive of resistance to previously reported inhibitors. Given this overall strong concordance with prior 
literature and clinical results, we can also provide hypotheses to clarify the role of mutations that are 
observed in combination with others. For example, H1094Y is a reported driver mutation that has 
been linked to resistance in METΔEx14 for glesatinib with either the secondary L1195V mutation or 
in isolation (Recondo et al., 2020a). However, in our assay H1094Y demonstrated slight sensitivity 
to gelesatinib, suggesting that either resistance is linked to the exon14 deletion isoform, the L1195V 
mutation, or a cellular factor not modeled well by the BaF3 system.

With this validation, we next wanted to identify the strongest potential resistance mutations. We 
identified unique resistance mutations enriched at the ATP-binding site across all inhibitors, yet also 
noticed discernible differences between type I and II inhibitors, the R-spine, and ⍺C-helix (Figure 5A–G). 
Mapping inhibitor-specific positions and mutational scores, not only provides a mutation-level break-
down of inhibitor contributions to common resistance mutations, but also demonstrates differences in 
structural resistance enrichment across specific inhibitors (Figure 5A–G). To summarize this informa-
tion, we next examined trends by grouping inhibitors by type.

Next, we filtered resistance mutations by their score and test statistics (Figure 6—figure supple-
ment 1) and collapsed the information by inhibitor type, plotting the total frequency of resistance 
mutations at each position (Figure 6A). In this condensed heatmap, several common resistance posi-
tions emerged within and across inhibitor types to provide a broad view of ‘hotspots’. Two positions 
stood out with the highest frequency of resistance: G1163 and D1228 (Figure 6A–D). Both sites are 
unsurprising due to their inhibitor interactions - G1163 is at the solvent front entrance of the active 
site and D1228 stabilizes an inactive conformation of the A-loop with an inhibitor bound (Cui, 2014; 
Recondo et al., 2020a; Fernandes et al., 2021). Located at the base of the active site, M1211 is a 
previously documented resistance site (Tiedt et al., 2011) and a C-spine residue (Estevam et al., 
2024), which harbors a smaller number of resistance mutations for all inhibitor types within our anal-
ysis (Figure 6A). In contrast to these universal sites, Y1230 was a hotspot for type I and I ½ inhibitors, 
but not a major resistance site for type II inhibitors (Figure 6A–D). This specificity can be rationalized 
based on the role of Y1230 in stabilizing inhibitors through pi-stacking interactions (Cui, 2014). In 
contrast, F1200 and L1195 (Bahcall et al., 2022; Recondo et al., 2020b), are both hotspots for type II 
but not type I inhibitors (Figure 6A–C). Again, this effect can be rationalized structurally: both residues 
make direct contact with type II inhibitors, but not type I inhibitors.

Across all inhibitor types, there were a total of 17 shared variants with G1163, D1228, and M1211 
being the most common (Figure 6G). The overall spatial pattern of mutations for each inhibitor type 
follows general principles that are expected based on their interactions. For example, I1084 is enriched 
as a resistance site for type I inhibitors, consistent with previous studies in hereditary papillary renal 

mutations are labeled and colors are scaled according to the average score for the resistance mutations at each site. (C) 2D protein-drug interactions 
between crizotinib and the MET kinase domain (PDB 2WGJ) with pocket residues and polar and pi interactions annotated. Schematic generated 
through PoseEdit (Diedrich et al., 2023; https://proteins.plus/). (D) Condensed crizotinib heatmap displaying direct drug-protein interacting and 
non-direct resistance position. Again, fitness scores are scaled from loss-of-function (red) to gain-of-function (blue), wild-type synonymous substitutions 
are outlined in green, and uncaptured mutations are in light yellow. (E) Crizotinib binding site and pocket residues displayed with resistance positions 
highlighted (pink) and the wild-type residue and inhibitor interactions shown (PDB 2WGJ). (F) Resistance mutations modeled for I1084H, V1092I, Y1159R, 
M1211Y, and N1167 relative to ATP (PDB 3DKC).

Figure 3 continued

https://doi.org/10.7554/eLife.101882
https://proteins.plus/


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology

Estevam et al. eLife 2024;13:RP101882. DOI: https://doi.org/10.7554/eLife.101882 � 10 of 29

-3 -2 -1 0 1 2 3
ScoreReported inhibitorA

CB

0

5

10

15

20

-2 0 2
Score

C
ou

nt

Not reported

Reported

Y1230C/N/D/H/N/S
D1163E/R

M1211L/V

D1164G

Y1159H/N

H1238R

V1092I/L V1155L

G1090A

D1228A/E/G/H/N/V/Y

F1200I/L/V

V1195V/F

D1133V

H1094Y

Y1230C/
E/R

211L/V

64G

59H/N

H12

V1092I/L V1155L

G

D1228A

F1200

V11

D

H1094Y

Figure 4. Comparison of previously reported resistance mutations with DMS fitness scores. (A) Data table summarizing reported resistance mutations 
from clinical and experimental studies. Inhibitors linked to reported resistance cases are listed, along with corresponding DMSO subtracted fitness 
scores from the DMS. The scores are represented with a color gradient ranging from loss-of-function (red) to gain-of-function (blue), with the reported 
inhibitor scores underlined. (B) Residue locations of previously reported resistance mutations mapped on a representative crystal structure as blue 
spheres (2WGJ). (C) Histograms of fitness scores from the DMS for previously annotated resistance mutations, comparing their reported inhibitor (blue) 
to non-reported inhibitor scores (gray).

https://doi.org/10.7554/eLife.101882


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology

Estevam et al. eLife 2024;13:RP101882. DOI: https://doi.org/10.7554/eLife.101882 � 11 of 29

Cabozantinib Merestinib GlesatinibD E F

Tepotinib Capmatinib GlumetinibA B C

N1167

G1085

Y1230
D1228M1211

G1163

Y1093

L1225

I1115

L1142

T1261

G1242

Y1230
D1228

L1142

H1068

L1195

M1211
G1163

G1090

I1115

V1155

N1167
L1165

L1272

G1242

T1261

G1163

Y1230
D1228

Y1093

S1074

I1115

I1345 T1261

L1272

F1200
L1195N1167

M1211

M1131

L1165

G1163

Y1159

L1140

F1200
L1195

T1261

L1165
M1211

I1084

Y1159

M1131

L1140

A1065

F1200

L1195

L1140
M1131
L1142

Y1159 Y1159

M1211

G1163

−3
−2
−1
0
1
2
3

score

WT syn
TRUE

11
63

11
95

11
42

11
55

12
30

12
28

10
68

10
90

11
15

H
K
R
D
E
C
M
N
Q
S
T
A
I
L
V

W
F
Y
G
P
HGILVGLMDY

12
11

H
K
R
D
E
C
M
N
Q
S
T
A
I
L
V
W
F
Y
G
P

11
42

12
11

12
25

11
63

11
67

12
30

12
28

12
42

12
61

10
85

10
93

11
15

GYILGNMLDYGT
Tepotinib Capmatinib Glumetinib

H
K
R
D
E
C
M
N
Q
S
T
A
I
L
V
W
F
Y
G
P

11
59

12
00

12
11

11
63

11
95

11
40

11
42

11
31

MLLYGLFM
Cabozantinib Merestinib Glesatinib

11
63

11
65

11
67

10
74

10
93

11
15

H
K
R
D
E
C
M
N
Q
S
T
A
I
L
V
W
F
Y
G
P

12
30

12
42

12
72

12
61

SYIGLNDYGTL

12
28

11
63

11
95

12
00

11
65

11
67

12
61

12
11

1 1
40

11
59

12
72

13
45

11
31

H
K
R
D
E
C
M
N
Q
S
T
A
I
L
V
W
F
Y
G
P
MLYGLNLFMDGTLI

12
28

12
42

11
40

11
95

12
00

11
59

11
65

12
61

12
11

10
84

11
31

10
65

H
K
R
D
E
C
M
N
Q
S
T
A
I
L
V
W
F
Y
G
P
AIMLYLLFMDT

12
28

G

Figure 5. Resistance mutations mapped onto experimental and docked kinase domain structures for type I and type II inhibitors. (A–F) Resistance 
positions and average resistance mutational score mapped onto representative crystal structures (tepotinib, 4R1V; merestinib, 4EEV) and labeled (type I, 
pink; type II, blue). Inhibitors lacking experimental structures (capmatinib, cabozantinib, glumetinib, and glesatinib) were docked onto a representative 
type I (2WGJ) and type II (4EEV) crystal structure through AutoDock Vina (Eberhardt et al., 2021; Trott and Olson, 2010). (G) Heatmaps of each 
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cell carcinomas (Guérin et  al., 2023). I1084 is located at the solvent front of the phosphate-loop 
(P-loop) of the kinase N-lobe (Figure 1A), which is responsible for stabilization of the ATP phosphate 
groups. This region of the kinase is leveraged for interactions with type I, but not type II inhibitors. In 
contrast, L1142, an R-spine residue, and L1140, which sits at the back of the ATP-binding pocket, are 
enriched for type II inhibitor resistance, consistent with their spatial locations (Figure 6E–F). Resistance 
mutations tend to cluster around the catalytic site across all types, but the shared mutations across 
different inhibitor types did not display a unifying pattern that evokes a simple rule for combining or 
sequencing inhibitors to counter resistance (Figure 6H).

Differential sensitivities of the MET kinase domain to type I and type II 
inhibitors
Strategies aimed at preventing resistance, such as sequential or combination dosing of type I and 
type II inhibitors, have been explored and offer promise in preventing resistance (Recondo et al., 
2018; Bahcall et  al., 2022; Fernandes et  al., 2021). However, the efficacy of these strategies is 
limited to the emergence of secondary resistance mutations, and specific inhibitor pairings are further 
limited to case examples of disparate effects. Using our DMS datasets, we sought to identify inhibitor 
pairings with the largest divergence in cross-sensitivity. By comparing the fitness landscape of each 
type I inhibitor to each type II inhibitor, we could again assess inhibitor response likeness based on 
correlations (Figure 2A; Figure 7—figure supplement 1). Type I and type II pairs with the highest 
correlations included capmatinib and glesatinib analog (r=0.92), suggesting a large overlapping 
fitness profile, in contrast to pairs with the lower correlations, like savolitinib and merestinib (r=0.7; 
Figure 7A; Figure 7—figure supplement 1). Overall, cabozantinib maintained the lowest average 
correlation with all type I inhibitors, making it the most divergent type II inhibitor within our screen, 
and potentially offering the least overlap in resistance (Figure 7A; Figure 7—figure supplement 1).

To narrow our characterization of cross-sensitivity, we focused on the inhibitor pair crizotinib and 
cabozantinib (Figure 7B; Figure 7—figure supplement 1). By statistically filtering mutations that are 
categorized as gain-of-function in one inhibitor, but loss-of-function in the other, a set of 44 muta-
tions were identified as having crizotinib resistance and cabozantinib sensitivity, and 3 mutations with 
the opposite profile (Figure 7B and C). Structural mapping of divergent mutations further revealed 
enrichment at the N-lobe and typical protein-drug interaction sites like Y1230, G1163, and M1211 
(Figure 7B and C). While these positions have precedence for resistance, as previously noted, they are 
also resistance hotspots across all inhibitor types (Figure 6A), where even mutations with differential 
sensitivities may be insufficient targets to counteract the reemergence of resistance, thus limiting the 
interchangeability of drugs.

Understanding which mutations have resistance profiles for only type I or type II inhibitors provides 
better leverage for sequential and combination dosing. To identify such mutations across our dataset, 
we further filtered variants that met our resistance metrics and were only observed for inhibitors of 
the same type. In again comparing crizotinib to cabozantinib, Y1093K was a mutation with one of the 
largest differences between crizotinib and cabozantinib, having a gain-of-function profile for crizotinib 
and loss-of-function for cabozantinib (Figure 7B). Interestingly, Y1093 is located in β2 of the N-lobe, at 
the roof of the ATP-binding site, and does not directly engage with crizotinib. We speculate this muta-
tion potentially contributes to resistance by perturbing the packing of β1-β2 and altering the confor-
mation of the ATP binding site in a manner that destabilizes crizotinib binding. When comparing the 
dose-response of Y1093K to the wild-type TPR-MET kinase domain, Y1093K shows a nearly 10-fold 
shift in crizotinib sensitivity with no difference in cabozantinib sensitivity (Figure 7D). In identifying 
mutations with the opposite profiles, resistance to cabozantinib and sensitivity to crizotinib, L1195M 
displayed the greatest differential scores (Figure 7B). L1195 is an ⍺E-helix position with previously 
recorded resistance (L1195V/F), which our analysis further supports as a type II-only resistance hotspot 
(Figure 6A). Structurally, mutations like Met or Phe at 1195 clash with the fluorophenyl moiety of 
cabozantinib used to access and stabilize a deep, back pocket of the kinase in an inactive confor-
mation, unlike crizotinib which occupies the solvent front and adenosine binding region of the ATP 

resistance position within an inhibitor DMS. Fitness scores are scaled from loss-of-function (red) to gain-of-function (blue). Wild-type synonymous 
substitutions are outlined in green, and mutations uncaptured by the screen are in light yellow.

Figure 5 continued
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Figure 6. Resistance mutations and ‘hotspots’ identified for MET inhibitor types. (A) Collapsed heatmap of common resistance positions along the 
kinase domain, with the wild-type protein sequence and secondary structure annotated. Each tile represents a sum of counts for statistically filtered 
resistance mutations across all inhibitors for type I (pink), type II (blue), and the type I½ inhibitor AMG-458 (green), with the scale bar reflecting counts 
of resistance mutations across respective inhibitor types. (B–D) Expanded heatmap showing each resistance position and the counts for each specific 
resistance mutation across all inhibitor types type I (pink), type II (blue), and the type I½ inhibitor AMG-458 (green). Wild-type sequence and variant 
change are annotated. (E–F) Average frequency of resistance mutations for each mapped on to a representative type I (crizotinib, 2WGJ) and type 
II (merestinib, 4EEV) crystal structure, alongside the type I½, AMG-458 structure (5T3Q), with associated scale bars. Individual positions with high 
resistance mutation frequencies are annotated on each structure, with a zoom-in of the bound inhibitor and surrounding resistance sites. (G) Venn 

Figure 6 continued on next page
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binding site. In comparing the dose-response of L1195M to the wild-type TPR-MET kinase domain, 
we find that L1195M is refractory to all concentrations of cabozantinib tested, but still sensitive to 
crizotinib (Figure 7D). Beyond a type I and type II pairing, such cross-resistance identification can be 
further applied to identify differential sensitivities within an inhibitor group (Figure 7—figure supple-
ment 2), which can further expand opportunities for inhibitor-specific sensitivity in therapy and drug 
design.

Identification of biophysical contributors to inhibitor-specific fitness 
landscapes using machine learning
Machine learning models originally developed for predicting protein structure Jumper et al., 2021; 
Rives et  al., 2021; Lin et  al., 2023 have been adapted for predicting protein-ligand complexes 

diagram showing mutations shared among type I (pink), type II (light blue), and type I½ (green). (H) Structurally mapped (PDB 2WGJ) resistance positions 
shared among type I, II, I½ (blue-gray), type I and II (purple), type I and I½ (dusty rose), type II and I½ (teal) inhibitors.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Statistically filtered resistance mutations for grouped type I, type II, and type I½ inhibitors for MET.

Figure 6 continued
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Figure 7. MET kinase domain differential sensitivities revealed for type I and type II inhibitors. (A) Heatmap showing Pearson correlation values for 
all combinations of screened type I and type II inhibitors. Correlations were determined from DMSO subtracted fitness scores (B) Correlation plot 
correlation plot of DMSO subtracted fitness scores for crizotinib and cabozantinib. Mutations with differential scores are highlighted for type I (pink) and 
type II (blue). (C) Average scores of mutations with differential sensitivities within inhibitor pairs mapped and annotated in respective crystal structures 
(crizotinib, 2WGJ; cabozantinib, docked into 4EEV). Positions that are gain-of-function for type I but loss-of-function in type II are highlighted in pink, 
whereas positions that are gain-of-function for type II but loss-of-function in type I are highlighted in blue. (D) Dose-response curves for crizotinib and 
cabozantinib in Ba/F3 cells expressing TPR-MET (full MET intracellular domain) harboring mutations at Y1093K and L1195M. Dose-response for each 
inhibitor concentration is represented as the fraction of viable cells relative to the TKI free control.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Cross-comparison of type I and type II inhibitor pairs.

Figure supplement 2. Cross-comparison analysis of inhibitors within the same type.
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(Bryant et al., 2023), and predicting fitness values from DMS studies (Meier et al., 2021; Brandes 
et al., 2023; Jones et al., 2020). In particular, protein language models have shown the ability to 
estimate the functional effects of sequence variants in correlation with DMS data (Rives et al., 2021; 
Meier et al., 2021; Brandes et al., 2023). We observed that ESM-1b, a protein language model 
(Rives et al., 2021), predicts the fitness of variants in the untreated/DMSO condition (correlation 0.50) 
much better than it does for the inhibitor treated datasets (correlation 0.28). This difference in predic-
tive ability is likely because the language model is trained on sequences in the evolutionary record 
and fitness in the presence of inhibitors does not reflect a pressure that has operated on evolutionary 
timescales.

To overcome this limitation and improve the predictive properties of the ESM approach, we sought 
to augment the model with additional features that reflect the interactions between protein and inhib-
itors that are not present in the evolutionary record (Chen and Guestrin, 2016). While our features 
can account for some changes in MET-mutant conformation and altered inhibitor binding pose, the 
prediction of these aspects can likely be improved with new methods. There are several challenges 
associated with this task, including the narrow sequence space explored, high correlations between 
datasets, and the limited chemical space explored by the 11 inhibitors. We used an XGBoost regressor 
framework and designed a test-train-validation strategy to account for these issues (Figure  8A), 
exploring many features representing conformation, stability, inhibitor-mutation distance, and inhib-
itor chemical information (Figure 8—figure supplement 1). To avoid overfitting, we introduced several 
constraints on the monotonicity and the precision of certain features. The final model uses a subset of 
the features we tested and improves the performance from 0.28 to 0.37 (Figure 8B and C). The model 
primarily improves the correlation by shifting the distribution of predicted fitness values to center 
around drug sensitivity, reflecting the pressures that are not accounted for by ESM-1b (Figure 8D). 
Nonetheless, many resistant mutations are correctly predicted by the new model.

To examine whether the model could help interpret the mechanisms of specific mutations, we exam-
ined several cases with notable improved predictions as the model increased in complexity (Figure 8E 
and F). For some mutations, as in Y1230D, we observe a gradual improvement in prediction for each 
set of features, suggesting that resistance relies on multiple factors. For other mutations, such as 
N1167K, we see a single set of features driving the improvement, which suggests much more domi-
nant driving forces. Lastly, in other mutations, like G1290D, the models trained with different features 
can over or under predict the true value, demonstrating the value of combining features together. 
The reliance on simple features helps identify some of the major factors in drug resistance and sensi-
tization such as distance to the inhibitor and active/inactive conformation; however, improved feature 
engineering and coverage of both sequence and chemical space will likely be needed to create a 
more interpretable model.

Discussion
Tyrosine kinase inhibitors have revolutionized the treatment of many diseases, but the development of 
resistance creates a significant challenge for long term efficacy. Many strategies, including sequential 
dosing (Attwood et al., 2021; Recondo et al., 2020a), are being explored to overcome resistance. 
Our DMS of the MET receptor tyrosine kinase domain, performed against a panel of varying inhibitors 
offers a framework for experimentally identifying resistance and sensitizing mutations in an activated 
kinase context for different inhibitors. By massively screening the effect of a nearly comprehensive 
library of amino acid mutations in the MET kinase domain against 11 inhibitors, some generalizable 
patterns emerged. In concordance with the binding mode of both type I and II inhibitors, residues 
that commonly confer resistance, or act as ‘hotspots’, were mapped to previously reported sites like 
D1228, Y1230, M1211, G1163 (Figure 4), and novel sites like I1084, L1140, L1142, T1261, and L1272 
(Figure 5). Annotation of hotspots also offers an opportunity to inform inhibitor selection based on 
likelihood of cross-inhibitor resistance (Figure 6). For instance, I1084 is a hotspot for type I and II inhib-
itors within our study that displayed wild-type sensitivity to the type I½ inhibitor screened (Figure 6). 
Understanding positions with high resistance frequencies that are distal from the ATP-binding site also 
offers a design opportunity for allosteric inhibitors that can target cancer-associated and resistance-
associated regions within the N- and C-lobe (Mingione et al., 2023).

Nevertheless, similar to its ability in identifying resistance for inhibitors, our parallel DMS also 
demonstrated the ability to detect non-selective drugs, with the example of tivantinib. Despite being 

https://doi.org/10.7554/eLife.101882
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Figure 8. Inhibitor-bound variant fitness predicted from a machine learning model trained on the MET DMS dataset. (A) Model architecture outlining 
the information flow and inputs for model training, validation, fitness predictions, and prediction tests. (B) Improvement in correlation between 
experimental and predicted fitness for each inhibitor with usage of different kinds of features. (C) Cross-validation trends between the baseline ESM 
model and the model with all features incorporated. (D) Scatter plots of predictions versus experimental fitness scores of the baseline ESM model (top) 
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a proposed MET-selective inhibitor, like several others, tivantinib failed clinical trials, and follow-up 
studies suggested cytotoxicity and off-target binding as the culprit (Michieli and Di Nicolantonio, 
2013; Basilico et  al., 2013; Katayama et  al., 2013; Fujino et  al., 2019) - a scenario that is not 
uncommon to antitumor drugs that do not advance to the clinic (Lin et al., 2019). To this effect, the 
ability of DMS to differentiate between selective compounds provides a unique prospect for devel-
oping inverse structure-activity relationships, whereby varying protein sequence both inhibitor speci-
ficity and resistance can be learned.

Reported cancer mutations in databases such as OncoKB or cBioPortal are useful for patient data 
and cancer type reporting (Suehnholz et al., 2024; Chakravarty et al., 2017; Cerami et al., 2012). A 
recent analysis of these databases aided in annotation of mutations observed within patient popula-
tions (Pecci et al., 2024). This study used pre-clinical models to examine a subset of these mutations 
and identified sensitivities to multiple inhibitors and confirmed clinical responses of two rare driver 
mutations (H1094Y and F1200I) to elzovantinib, a type Ib inhibitor (Pecci et al., 2024). Their results 
are consistent with the predictions of our DMS, illustrating the potential value of having a broad 
dictionary of inhibitor sensitivity and resistance patterns.

Finally, a significant challenge of inhibitor screening is the considerable time and cost involved, 
even at high-throughput. While docking has accelerated the prioritization of compounds for protein 
targeting and screening in silico (Sadybekov and Katritch, 2023), prediction of drug resistance is 
of high interest in informing iterative drug design. Screening for resistance in the early stages of 
drug design is particularly useful for obtaining inhibitors that can be effective in the long-term by 
optimizing protein-inhibitor interactions in the wildtype and functionally silent mutant context (Pisa 
and Kapoor, 2020). While base-editor approaches can rapidly screen for inhibitor resistance muta-
tions within full-length, endogenous genes, undersampling of rare variants due to lower coverage is 
a significant caveat (Dorighi et al., 2024), compared to DMS where nearly full coverage is achieved 
and controlled. A full landscape of mutational effects can help to predict drug response and guide 
small molecule design to counteract acquired resistance. The ability to define molecular mechanisms 
towards that goal will likely require more purposefully chosen chemical inhibitors and combinatorial 
mutational libraries to be maximally informative. The ideas motivating our ML-model, which combines 
protein language models and biophysical/chemical features, to novel inhibitors could eventually be 
used to profile resistance and sensitivity for novel and unscreened small molecules, greatly extending 
the scale of kinase inhibitor repositioning for second-line therapies.

Materials and methods
Mammalian cell culturing
Ba/F3 cells (DSMZ) were maintained and passaged in 90% RPMI (Gibco), 10% HI-FBS (Gibco), 1% 
penicillin/streptomycin (Gibco), and 10 ng/ml IL-3 (Fisher), and incubated at 37 °C with 5% CO2. Cells 
were passaged at or below 1.0e6 cells/ml to avoid acquired IL-3 resistance, and regularly checked for 
IL-3 dependence by performing 3 x PBS (Gibco) washes and outgrowth in the absence of IL-3.

Plat-E cells stably expressing retroviral envelope and packaging plasmids were originally gifted by 
Dr. Wendell Lim, and maintained in 90% DMEM, HEPES (Gibco), 10% HI-FBS (Gibco), 1% penicillin/
streptomycin (Gibco), 10 µg/ml blasticidin, 1 µg/ml puromycin. Cells were cultured at 37 °C with 5% 
CO2 and maintained under blasticidin and puromycin antibiotic pressure unless being transfected.

Dose response and IC50 determination of inhibitors
Unless otherwise stated, all inhibitors used in this study were purchased from SelleckChem.

compared to the model with all features (bottom), with a dashed cross-graph line in red displayed. (E) Residue-level analysis of feature significance in 
fitness predictions (ESM, stability, distance, conformation, all features). The Rosace experimental score is shown as a red line. (F) Residues with improved 
predictions mapped on a crizotinib-bound MET kinase domain (PDB 2WGJ). Predicted resistance mutations (dark purple) modeled relative to the wild-
type residue (pink).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Distribution and visualization of features used in the XGBoost machine learning models.
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Ba/F3 cells stably expressing TPR-MET and TPR-METΔEx14 were washed with DPBS (Gibco) 3 x 
times to remove IL-3, puromycin, penicillin, and streptomycin. Cells were resuspended in 90% RPMI 
and 10% FBS, and were seeded in the wells of a 96-well, round-bottom plate at a density of 2.5e4 
cells/ml in 200 µl. Cells were incubated for 24 hr to allow kinase-driven signaling. The next day, inhibi-
tors were added to triplicate rows of cells at a concentration range of 0–10 µM (twofold dilutions), and 
allowed to incubate for 72 hr post TKI addition. CellTiter-Glo reagent (Promega) was mixed at a 1:1 
ratio with cells to lyse and provide a luminescence readout, which was measured on a Veritas luminom-
eter. Cell numbers were determined from a Ba/F3 cell and ATP standard curve generated according 
to the manufacturer’s instructions. Dose response curves were fitted using GraphPad Prism with the 
log(inhibitor) vs. response, variable slope function. Data are presented as cell viability normalized to 
the fold change from the TKI free control.

MET kinase domain variant library generation, cloning, and library 
introduction into Ba/F3
In this study, we repurposed cell lines transduced with TPR-MET and TPR-METΔEx14 kinase domain 
variant libraries, previously reported in Estevam et  al., 2024. All libraries were generated, trans-
fected, and tested in parallel.

In short, the MET kinase domain sequence used in this study spans amino acid positions 1059–1345, 
which includes the full kinase domain (aa 1071–1345) and a small region of the juxtamembrane (aa 
1059–1070). The variant DNA library was synthesized by Twist Bioscience, containing one mammalian 
high-usage codon per amino acid. A ‘fill-in’ library was generated to introduce an early stop control 
codon every 11 amino acids evenly spaced across the sequence. In addition, mutations at positions 
with failed synthesis (positions 1194 and 1278) were generated and added at equimolar concentration 
into the variant library. The kinase domain variant library was introduced into two different cloning 
backbones, one carrying the TPR-fusion sequence with the wild-type juxtamembrane sequence (aa 
963–1058), wild-type C-terminal tail (aa 1346–1390), and IRES-EGFP (pUC19_kozak-TPR-METΔEx14-
IRES-EGFP) and the other carrying the TPR-fusion sequence with an exon 14 skipped juxtamembrane 
sequence (aa 1010–1058), wild-type C-terminal tail (aa 1346–1390), and IRES-mCherry (pUC19_kozak-
TPR-MET-IRES-mCherry). The libraries were transformed in MegaX 10 beta cells (Invitrogen), propa-
gated in 50 mL LB and Carbinacillin at 37 °C to an OD of 0.5, and then midiprepped (Zymo). Library 
coverage was determined by colony count of serial dilutions from the recovery plate at varying dilu-
tions (1:100, 1:1 k, 1:10 k, 1:100 k, 1:1 M).

The full TPR-METΔEx14-IRES-EGFP and TPR-MET-IRES-mCherry variant libraries were then shut-
tled into the mammalian retroviral MSCV backbone (addgene) through restriction enzyme digest with 
MluI-HF (NEB) and MfeI-HF (NEB), then ligated into the empty backbone with T4 ligase (NEB). Liga-
tions were DNA cleaned (Zymo), electroporated into ElectroMAX Stbl4 Competent Cells (Thermo 
Fisher), plated on LB-agar bioassay plates with Carbenicillin, incubated at 37 °C, then colonies were 
scraped into 50 mL LB and midi-prepped for transfections (Zymo).

Variant libraries were transfected into Plat-E cells for retroviral packaging using Lipofectamine3000 
(Invitrogen) following the manufacturer’s for a T-175 scale, and using a total of 46 μg DNA. 48 hr 
post-transfection, the viral supernatant was harvested, passed through a 0.45 μm sterile filter, then 
concentrated with Retro-X concentrator (TakaraBio) using a 1:4 ratio of concentrator to supernatant. 
The concentrated virus was titered in Ba/F3 to determine the proper volume for a transduction MOI 
of 0.1–0.3. The viral titer was calculated from the percent of fluorescent cells and viral dilution. To 
generate the DMS transduced cell lines, 6 million cells were spinfected at an MOI of 0.1, in triplicate. 
Then infected cells were selected with 1 μg/ml puromycin in 4 days, with fluorescence and cell counts 
tracked each day.

DMS time point selection and sample preparation
All screening conditions were performed and handled in parallel for TPR-MET and TPR-METΔEx14 
libraries across all independent conditions and biological replicates.

For each biological replicate, a stock of 4.0e6 cells transduced with TPR-MET and TPR-METΔEx14 
kinase domain variants was thawed and expanded for 48 hr in the presence of IL-3 and puromycin to 
prevent pre-TKI selection to reach a density for screen seeding. Each batch of cells were grown to a 
density of 72 million cells to be split into 12 dishes (15 cm) for each selection condition. Cells were 
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first washed with DPBS (Gibco) three times to remove IL-3 and antibiotics. Cells were resuspended in 
90% RPMI and 10% FBS, counted, and split across 12 dishes (15 cm) at a density of 6 million cells in 
30 mL. A total of 6 million cells from each replicate was harvested and pelleted at 250 x g to serve as 
the ‘time point 0’ pre-selection sample (T0).

To begin selection of each replicate for each library, DMSO was added to the control plate (0.01% 
final) while the appropriate IC50 concentration of inhibitor was added to each respective plate (inde-
pendent pool of cells). Three time points post T0 were collected for each library replicate and inhibitor 
condition for a total of 4 time points (T0, T1, T2, T3). Time points were harvested every two doublings 
(~72 hr) across 12 days; 6 million cells were harvested for each condition and pelleted at 250 x g 
for 5 min; 2.0e5 cells/ml were split at every time point and maintained either in DMSO or TKI at the 
appropriate concentration to maintain cellular growth rates under inhibitor selection.

The gDNA of each time point sample was isolated with the TakaraBio NucleoSpin Blood Quick-
Pure kit the same day the cells were harvested. gDNA was eluted in 50 μl of elution buffer provided 
by the kit, using the high concentration and high yield elution manufacturer’s protocol. Immediately 
after gDNA was isolated, 5 μg of gDNA was used for PCR amplification of the target MET KD gene 
to achieve the proper variant coverage. A 150 μl PCR master mix was prepared for each sample using 
the TakaraBio PrimeStar GXL system according to the following recipe: 30 μl 5 X PrimeStar GXL buffer, 
4.5 μl 10 μM forward primer (0.3 μM final), 4.5 μl 10 μM reverse primer (0.3 μM final), 5 μg gDNA, 12 μl 
10 mM dNTPs (2.5 mM each NTP), 6 μl GXL polymerase, nuclease free water to a final reaction volume 
of 150 μL. The PCR master mix for each sample was split into three PCR tubes with 50 μl volumes for 
each condition and amplified with the following thermocycler parameters: initial denaturation at 98 °C 
for 30 s, followed by 24 x cycles of denaturation at 98 °C for 10 s, annealing at 60 °C for 15 s, extension 
at 68 °C for 14 s, and a final extension at 68 °C for 1 min.

PCR samples were stored at –20 °C until all time points and replicates were harvested and ampli-
fied, so as to prepare all final samples for NGS together with the same handling and sequence them 
in the same pool to prevent sequencing bias.

Library preparation and next-generation sequencing
After all time points were selected, harvested, and PCR amplified, the target gene amplicon was 
isolated from gDNA by gel purification (Zymo), for a total of 222  samples. The entire 150 μl PCR 
reaction for each sample was mixed with 1 X NEB Purple Loading Dye (6 X stock) and run on a 0.8% 
agarose, 1 X TBE gel, at 100 mA until there was clear ladder separation and distinct amplicon bands. 
The target amplicons were gel excised and purified with the Zymo Gel DNA Recovery kit. To remove 
excess agarose contamination, each sample was then further cleaned using the Zymo DNA Clean and 
Concentrator-5 kit and eluted in nuclease free water. Amplicon DNA concentrations were then deter-
mined by Qubit dsDNA HS assay (Invitrogen).

Libraries were then prepared for deep sequencing using the Nextera XT DNA Library Prep kit in a 
96-well plate format (Illumina). Manufacturer’s instructions were followed for each step: tagmentation, 
indexing and amplification, and clean up. Libraries were indexed using the IDT for Nextera Unique 
Dual Indexes Set A,B and C (Illumina). Then, indexed libraries were quantified using the Agilent TapeS-
tation with HS D5000 screen tape (Agilent) and reagents (Agilent). DNA concentrations were further 
confirmed with a Qubit dsDNA HS assay (Invitrogen). All samples were manually normalized and 
pooled at 10 nM (MET and METΔEx14 in the same pool). The library was then paired-end sequenced 
(SP300) on two lanes of a NovaSeq6000.

MET kinase domain variant analysis and scoring
Enrich2 scoring
Our approach followed the one used for our initial MET DMS experiments (Estevam et al., 2024). 
Sequencing files were obtained from the sequencing core as demultiplexed ​fastq.​gz files. The reads 
were first filtered for contamination and adapters using BBDuk, then the paired reads were error-
corrected and merged with BBMerge and mapped to the reference sequence using BBMap (all from 
BBTools; Bushnell, 2015). Read consequences were determined and counted using the AnalyzeSatu-
rationMutagenesis tool in GATK v4 (van der Auwera and O’Connor, 2020). This is further processed 
by use of a script to filter out any variants that are not expected to be in the library (i.e. variants due 
to errors in sequencing, amplification, etc). The final processed count files were then analyzed with 
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Enrich2 (Rubin et al., 2017), using weighted least squares and normalizing to wildtype sequences 
(NCBI SRA BioProject PRJNA1136906).

Rosace scoring
We used Rosace to analyze experiments of different conditions (DMSO or inhibitors) independently. 
In order to make the scores more comparable and interpretable across conditions, we modified the 
original Rosace software so that the output scores reflect the scale of cell doubling rate between every 
contiguous time point. For example, in an ideal experiment, if the wild-type cell doubling rate is 2 and 
its score is 0 by wild-type normalization, a score of –2 means that the cells are not growing (2^(2-2)) 
and a score of 1 means that the cells are doubling three times (increasing to 2^(2+1) times the original 
count) between every contiguous time point.

The input to Rosace is the filtered count files provided by the AnalyzeSaturationMutagenesis 
tool described in the above section. From here, we filtered variants by the mean count (≥ 4) and the 
proportion of 0 count across replicates and time points (≤ 10/12) and before inhibitor selection at T0 
(≤ 2/3). Second, we normalized the counts using wild-type normalization with log2 transformation 
rather than the default natural log transformation to maintain the doubling rate scale. Finally, the 
normalized count is regressed on time intervals (t = {1, 2, 3, 4}) instead of the entire time span (t = 
{1/4, 2/4, 3/4, 4/4}) so that the resulting score reflects the growth rate between every contiguous 
time point.

Statistical filtering and resistance classification
In mathematical terms, we define the raw Rosace fitness scores of a mutation in DMSO as ‍βv,DMSO‍ and 
in a specific inhibitor condition as ‍βv,inh‍. The scores of wildtype variants were normalized to 0, and we 
denote them as ‍βwt,DMSO = 0‍ and ‍βwt,inh = 0‍. Growth rate of wild-type cells under different inhibitor 
selections were controlled to be identical (two doublings between every time point), so even though 
raw Rosace scores are computed independently per condition, ‍βv,inh‍ are directly comparable between 
inhibitor conditions.

Within one condition (DMSO or inhibitor), according to convention, we call variants with ‍βv,inh ≫ 0‍ 
or ‍βv,DMSO ≫ 0‍ ‘gain-of-function’ and ‍βv,inh ≪ 0‍ or ‍βv,DMSO ≪ 0‍ ‘loss-of-function’. With scores from 
multiple conditions, we presented three types of filtering strategies and produced the following clas-
sification: inhibitor-specific ‘resistance mutation’, inhibitor-specific ‘resistance position’, and ‘loss-of-
function’ and ‘gain-of-function’ mutation in the context of growth rate differential with and without 
an inhibitor.

We stress the different interpretations of ‘gain-of-function’ and ‘loss-of-function’ labels. Within one 
condition, this label is a general term to describe whether the function of protein is perturbed by the 
mutation. In contrast, the latter describes the difference with and without a given inhibitor, canceling 
effects of folding, expression, and stability and targeting only the inhibitor sensitivity function of the 
protein.

A ‘resistance mutation’ is specific to a certain inhibitor, and it satisfies the chained inequality 

‍βv,inh ≫ βwt,inh = βwt,DMSO ≥ βv,DMSO‍. The first inequality specifies that the growth rate of a resistant 
mutation needs to be much larger than that of the wild-type in the presence of the inhibitor, and we 
used the one-sided statistical test ‍βv,inh > 0.5‍ with the test statistics cutoff 0.1. The second inequality 
specifies that in DMSO, the growth rate of that mutation is equal to or lower than that of the wild-
type, ensuring that the resistance behavior we see is specific to that inhibitor, not that it grows faster 
under every condition, and thus we used the effect size cutoff ‍βv,DMSO ≤ 0‍.

A ‘resistance position’ is a position that contains at least one ‘resistance mutation’ to a certain 
inhibitor.

In the context of growth rate differential with and without an inhibitor, a mutation is ‘gain-of-
function’ if it has a higher growth rate in the presence of the inhibitor than in its absence, which is one 
feature of ‘resistance mutation’. It is ‘loss-of-function’ if it grows faster in the absence of the inhibitor. 
To label the mutations accordingly, we first computed a recentered Rosace score for each mutation 
under inhibitor selection ‍γv,inh = βv,inh − βv,DMSO‍, and define ‘gain-of-function’ ‍γv,inh > 0.75‍ and ‘loss-
of-function’ ‍γv,inh < 0‍ in the differential sensitivity analysis.

https://doi.org/10.7554/eLife.101882
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Machine learning modeling
Feature selection for the machine learning model
Interpretable features of the MET sequence variants and inhibitors were carefully chosen to be incre-
mentally added to a model. To extract structural features from inhibitor bound mutant complexes, 
we used Umol to predict the structures of all the MET kinase variants bound to each of the inhibitors 
(Bryant et al., 2023). The input to Umol is the MET kinase variant sequence, SMILES string of the 
inhibitor and list of residues lining the putative binding pocket. The predicted complexes (MET kinase 
bound to inhibitor) were relaxed using OpenMM (Eastman et al., 2013). To ensure the inhibitor in 
the predicted structures are in the same pose as compared to reference structures, we tethered the 
predicted inhibitor structure to the reference pose using a modified version of the script available in 
https://github.com/Discngine/rdkit_tethered_minimization, copy archived at Discngine, 2019. The 
reference pose for crizotinib, NVP-BVU972, Merestenib and Savolitinib were taken from the corre-
sponding crystal structures in the PDB - 2WGJ, 3QTI, 4EEV and 6SDE, while the reference pose for 
cabozantinib, capmantinib, glumetinib, and glesatinib analog were taken from the structures docked 
using Autodock Vina (see Kinase domain structural analysis). Following this, the tethered inhibitors 
were redocked back to the predicted variant structures using Autodock Vina (Eberhardt et al., 2021). 
We also extracted features from wild-type MET kinase structures. The features could be broadly clas-
sified into four categories: inhibitor, stability, distance, conformation and inhibitor binding. Apart from 
these, ESM Log Likelihood Ratio was used as a feature in all models that we trained. Each of the 
feature categories that we explored and the rationale behind choosing them are explained below:

ESM Log Likelihood Ratio (ESM LLR)
ESM1b is an unsupervised protein language model trained on a large set of protein sequences from 
UniProt that has successfully learned protein fitness patterns (Rives et al., 2021; Lin et al., 2023). By 
including a mask token at a given position in the sequence, the log-likelihoods of all amino acid substi-
tutions can be extracted from the model. The ratio between ESM1b log-likelihoods for the mutant 
and wildtype amino acids provides a score that indicates the fitness of each variant in the mutational 
scan, with log-likelihood ratios having precedent as a variant predictor (Rives et al., 2021; Lin et al., 
2023). The predictions used here were obtained using esm-variants webserver (https://huggingface.​
co/spaces/ntranoslab/esm_variants) (Brandes et al., 2023).

Inhibitor features
•	 Inhibitor molecular weight: We calculated the molecular weight of each inhibitor as a feature.
•	 Ligand RMSD: We structurally superposed the predicted variant structure onto the corre-

sponding wildtype structure and calculated the RMSD between the predicted, re-docked inhib-
itor and the reference inhibitor structure (Figure 8—figure supplement 1J)

Stability features
•	 ΔΔΔG and ΔG: Because inhibitor types are largely distinguished based on binding configura-

tion, we reasoned that the difference in stability contributed by each mutation between given 
binding states (e.g. Type I bound state vs. a Type II bound state) could contribute to the success 
of the predictor. To compute the stability difference, we used structural representatives for 
type-I bound (2WGJ) and type II bound (4EEV) MET kinase and calculated the change in free 
energy (∆∆G) of every possible mutation at every position using ThermoMPNN (Dieckhaus 
et al., 2023). The difference in ∆∆G between type-I bound and type-II bound structures (∆∆∆G) 
for every variant was added as a feature to the XGBoost model to capture the difference in 
stabilization from the mutation in the Type I or Type II bound state (Figure 8—figure supple-
ment 1C). We also used the predicted Δ score of the corresponding inhibitor type-bound struc-
ture directly as a feature. For instance, if the input data corresponds to a mutation to Alanine 
at position 1065 in the presence of glumetinib (a type I inhibitor), the difference between Δ 
predicted for the 1065 A variant for the type-I bound (2WGJ) and for type II bound (4EEV) 
structure is used as a feature (Δ). The Δ predicted for the 1065 A variant for the type-I bound 
(2WGJ) structure is also used as a feature.

https://doi.org/10.7554/eLife.101882
https://github.com/Discngine/rdkit_tethered_minimization
https://huggingface.co/spaces/ntranoslab/esm_variants
https://huggingface.co/spaces/ntranoslab/esm_variants
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Distance features
•	 Residue to ATP distance: Proximity to the ATP-binding site indicates the ability of the given 

residue to influence inhibitor binding given that Type I and Type II inhibitors are ATP compet-
itive. To include this feature, the distance between C-alpha residue atoms and the centroid of 
bound ATP in a representative structure (PDB 3DKC) was calculated and the distance corre-
sponding to each position was added as a feature (Figure 8—figure supplement 1D).

•	 Inhibitor distance: This is the shortest distance between the inhibitor and mutated residue in 
the predicted variant-inhibitor complexes. (Figure 8—figure supplement 1G).

Conformational features
•	 MET crystal structure RMSF: The extent of flexibility at the mutation position could be signifi-

cantly affected by the mutation, which in turn can affect the function of the variant. To account 
for this, we utilized the structural information abundantly available for MET kinases in PDB. We 
structurally aligned all crystal structures of human MET kinases with resolution better than 3 Å 
(81 structures) using mTM-align (Dong et al., 2018) and calculated the Root Mean Squared 
Fluctuation at every residue position using Prody (Zhang et al., 2021; Figure 8—figure supple-
ment 1F).

•	 Residue RMSD: We structurally superposed the predicted variant structure onto the corre-
sponding wildtype structure and calculated the RMSD between the mutant and wildtype 
residue at the mutation position (Figure 8—figure supplement 1I)

Inhibitor binding features
•	 RF-Score: To quantify the binding strength between the inhibitor and the variant protein struc-

ture, we calculated the RF-score, which is a random forest-based approach to predict protein-
ligand binding affinity (Wójcikowski et al., 2017)

•	 Pocket volume, hydrophobicity score, and polarity score: Changes to the binding pocket in 
terms of volume and hydrophobicity due to mutations could affect the interaction and binding 
between the inhibitor and variant. These effects were brought in as features into the model by 
calculating the binding pocket volume, hydrophobicity score, and polarity score of the binding 
pocket using fpocket (Le Guilloux et al., 2009; Figure 8—figure supplement 1H).

This category of features are not part of the best performing model shown in Figure 8.
Apart from these categories, we calculated the difference in volume between the wildtype and 

mutated residue at a given position and added it as a feature (Δ) since residue volume changes upon 
mutation could contribute to steric hindrance (Figure 8—figure supplement 1E). This feature is also 
not part of the best performing model.

This led to a total of 14 interpretable features to evaluate our models on. We trained and tested a 
total of 8192 models by considering all possible numbers and combinations of these features (keeping 
ESM LLR as a constant feature in all models). The hyperparameter tuning, cross-validation, training 
and testing of each of these models are described in detail below.

Training and selecting the predictive model
An XGBoost regressor model, which is a gradient boosting method based on decision trees as the 
base learner (Chen and Guestrin, 2016), was used to predict DMS fitness scores in presence of inhib-
itors. Given the relatively small dataset we are using here, the models are prone to overfitting. Hence, 
we used monotonic constraints on features that had a monotonic relationship with the experimental 
fitness scores. ESM LLR score and Δ have a positive and negative correlation with the experimental 
fitness scores respectively (Figure 8—figure supplement 1A). Therefore, ESM LLR was constrained 
positively and Δ was constrained negatively by assigning 1 and –1 respectively to the ‘monotone_
constraints’ parameter in Python XGBoost. This ensures that the monotonic relationship between the 
input feature and the target value is maintained during predictions.To further prevent overfitting, we 
binned the values of the 12 remaining into four or five bins and assigned the median of the bin as their 
value. The bins were chosen such that one or two bins would contain the majority of feature values. 
The distribution of these twelve features are shown in Figure 8—figure supplement 1B. The bins of 

https://doi.org/10.7554/eLife.101882
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each feature are shown as red dashed lines on the histograms. Model performance was evaluated 
using Pearson’s R and mean squared error (MSE).

Experimental fitness scores of MET variants in the presence of DMSO and AMG458 were ignored 
in model training and testing since having just one set of data for a type I ½ inhibitor and DMSO 
leads to learning by simply memorizing the inhibitor type, without generalizability. The remaining 
dataset was split into training and test sets to further avoid overfitting (Figure 8A). The following 
data points were held out for testing - (a) all mutations in the presence of one type I (crizotinib) 
and one type II (glesatinib analog) inhibitor, (b) 20% of randomly chosen positions (columns) and 
(c) all mutations in two randomly selected amino acids (rows; e.g. all mutations to Phe, Ser). After 
splitting the dataset into train and test sets, the train set was used for XGBoost hyperparameter 
tuning and cross-validation. For tuning the hyperparameters of each of the XGBoost models, we 
held out 20% of randomly sampled data points in the training set and used the remaining 80% data 
for Bayesian hyperparameter optimization of the models with Optuna (Akiba et al., 2019), with an 
objective to minimize the mean squared error between the fitness predictions on 20% held out split 
and the corresponding experimental fitness scores. The following hyperparameters were sampled 
and tuned: type of booster (booster - gbtree or dart), maximum tree depth (max_depth), number of 
trees (n_estimators), learning rate (eta), minimum leaf split loss (gamma), subsample ratio of columns 
when constructing each tree (colsample_bytree), L1 and L2 regularization terms (alpha and beta) and 
tree growth policy (grow_policy - depthwise or lossguide). After identifying the best combination of 
hyperparameters for each of the models, we performed 10-fold cross validation (with re-sampling) of 
the models on the full training set. The training set consists of data points corresponding to 230 posi-
tions and 18 amino acids. We split these into 10 parts such that each part corresponds to data from 
23 positions and 2 amino acids. Then, at each of 10 iterations of cross-validation, models were trained 
on 9 of 10 parts (207 positions and 16 amino acids) and evaluated on the 1 held out part (23 positions 
and 2 amino acids). Through this protocol we ensure that we evaluate performance of the models with 
different subsets of positions and amino acids. The average Pearson correlation and mean squared 
error of the models from these 10 iterations were calculated and the best performing model out of 
8192 models was chosen as the one with the highest cross-validation correlation. The final XGBoost 
models were obtained by training on the full training set and also used to obtain the fitness score 
predictions for the validation and test sets. These predictions were used to calculate the inhibitor-wise 
correlations shown in Figure 8B.

Kinase domain structural analysis
Unless otherwise stated, all structural analysis was performed on PyMOL. Structural mapping incor-
porated tools from the Bio3D bioinformatics package in R (Grant et al., 2006). Inhibitors that lacked 
an experimental crystal structure were docked into a representative type I (2WGJ) or type II (4EEV) 
structure with AutoDock Vina (Eberhardt et al., 2021). Existing ligands in both the structures were 
removed in silico and the proteins prepared for docking using AutoDockTools by adding polar hydro-
gens and Kollman charges. The inhibitors were also prepared using AutoDockTools by adding polar 
hydrogens and charges and identifying rotatable torsions. A grid box which dictates the search space 
for the docking tool was defined approximately around the region where the existing ligands in 2WGJ 
and 4EEV were bound. The energy range and exhaustiveness of docking was set to 3 and 8, respec-
tively. AutoDock Vina was made to output 5 modes for each ligand. Capmatenib and glumetinib (type 
I inhibitors) were docked on to 2WGJ and glesatinib analog and cabozantinib (type II inhibitors) were 
docked on to 4EEV.
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Data availability
The sequencing data has been deposited at the NCBI SRA (BioProject PRJNA1136906). Original data 
files, analysis, and source code is available at https://github.com/fraser-lab/MET_kinase_Inhibitor_​
DMS (copy archived at Estevam, 2024).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Estevam et al. 2024 Inhibitor-based deep 
mutational scanning of 
MET kinase

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/?​
term=​PRJNA1136906
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