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Abstract
Motivation: Proteins are dynamic systems whose function and behavior are sensitive to environmental conditions and often involve multiple 
cellular roles. Deep mutational scanning (DMS) experiments generate extensive datasets to capture the functional consequences of mutations. 
However, the sheer volume of data presents challenges in visualization and interpretation. Current approaches often rely on heatmaps, but 
these methods fail to capture the nuanced effects of amino acid substitutions, which are essential for understanding mutational impact.
Results: To address this, we extend the Rosace framework with Rosace-AA, a model that incorporates both position-specific information and 
amino acid substitution trends. Using substitution matrices like BLOSUM90, Rosace-AA infers an interpretable score from the raw counts of 
growth-based DMS data, on both protein-level and at the position-level while simultaneously inferring the effect of each variant. We demon
strate its utility across datasets, including OCT1 and MET kinase, showing that Rosace-AA highlights key positions where mutations deviate 
from expected substitution patterns and captures functionally relevant variation in protein behavior across multiple DMS screens. These results 
suggest that Rosace-AA enables more robust and interpretable analysis of complex DMS datasets.
Availability and implementation: An implementation of Rosace-AA as an R package and vignettes can be found at this repository: https:// 
github.com/pimentellab/rosace-aa. Scripts for processing data and generating figures in this article are also available on GitHub (https://github. 
com/roserao/rosaceaa-paper-script).

1 Introduction
In protein biology, a central question is whether a variant’s 
position within a protein or the type of amino acid (AA) sub
stitution has a greater impact on function (Fowler and Fields 
2014). Research has shown that a variant’s position and sub
stitution type can affect the mutation outcome.

Studies have demonstrated the importance of position, as cer
tain amino acids play key roles in maintaining structural integ
rity, stability, or mediating interactions (Weile et al. 2021, 
Coyote-Maestas et al. 2022, Gersing et al. 2023, Estevam et al. 
2024). For example, in G-protein-coupled receptors (GPCRs), 
some mutations can severely impair function due to their criti
cal roles in ligand recognition and signal transduction (Jones 
et al. 2020, Howard et al. 2024). In contrast, mutations in 

surface-exposed loops are generally less consequential, as these 
regions are often peripheral to core functionality (Jones et al. 
2020, Howard et al. 2024). Other investigations highlight that 
the nature of the substitution itself is equally critical (Dunham 
and Beltrao 2021, Munro and Singh 2021). Properties such as 
charge, hydrophobicity, size, and hydrogen-bonding potential 
could influence the functional impact of a mutation. Swapping 
amino acids with markedly different properties, such as chang
ing a hydrophobic residue to a polar one, can disrupt function, 
especially if the original residue supports the protein’s core 
structure or active site (Wilbur 1985, Henikoff and Henikoff 
1992). On the other hand, substitutions that maintain similar 
characteristics are often better tolerated.

Importantly, the interaction between the effects of position 
and substitution type also affects the outcome. A 
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substitution’s impact often depends on its location within the 
protein structure: a change in a conserved and functionally 
critical region may lead to significant disruption, whereas the 
same substitution in a less crucial area might be more tolera
ble. This suggests that both factors matter, and that quantify
ing their respective impacts could provide a clearer 
understanding of mutation effects and relationships between 
position and substitution type.

Researchers have developed simple statistics to explore 
these questions. For example, using deep mutational scanning 
(DMS) experiments to simultaneously measure the effect of 
hundreds of thousands of variants and calculating the aver
age effect of mutations at each position or counting function
ally significant variants offers insights into functional 
hotspots and sensitivity (Macdonald et al. 2023, Estevam 
et al. 2024, Yee et al. 2024). Others have examined amino 
acid substitution trends across positions, drawing on substi
tution matrices such as BLOSUM (Henikoff and Henikoff 
1992) and PAM (Wilbur 1985). From the perspective of mul
tiple sequence alignment of protein sequences, methods such 
as direct coupling analysis (Weigt et al. 2009) and its many 
variants are developed to disentangle the direct or indirect 
correlations between positions. Most recent efforts include 
applying deep learning methods to predict the pathogenicity 
of a variant, notably AlphaMissense (Cheng et al. 2023). 
Those tools have varying degrees of success in mutation effect 
prediction, and their validity is backed up by experimental 
data. It is thus essential to have a tool that processes raw data 
from such experiments (e.g. DMS) to produce reliable empiri
cal estimates of mutation effects. Our tool is the first statisti
cal inference tool that learns the interaction between position 
and amino acid substitution while conducting statistical in
ference from raw DMS count data.

We extend the Rosace framework (Rao et al. 2024) to 
create a holistic framework which provides an intuitive inter
pretation of the interplay between position and substitution 
variant effects using growth-based DMS data. Our approach 
incorporates both position-specific information and amino 
acid substitution trends by decomposing variance into three 
components: (i) average effect at a position, (ii) contribution 
of amino acid substitution, and (iii) the remaining unex
plained variation. This extended framework, termed 
Rosace-AA, provides three summary statistics for each posi
tion: the position-specific score, the position-specific scaling 
factor (susceptibility) for amino acid substitution effects, and 
the residual variance not explained by position or amino acid 
substitution. Those statistics quantify the effects of position, 
substitution, and their interaction, facilitating comparison 
within a protein and among experiments of the same protein 
under different conditions. For simplicity, we group amino 
acid substitutions based on BLOSUM90 in this article, but 
the framework is flexible and can accommodate any user- 
defined substitution grouping.

Using Rosace-AA, we show that different protein 
domains exhibit distinct decomposition structures, as 
reflected by the relation of summary statistics across posi
tions. We demonstrate such utility by applying Rosace-AA 
to an OCT1 DMS (Yee et al. 2024) to identify positions 
where variance deviates from global amino acid substitution 
expectations, emphasizing positions that disrupt local inter
actions and exhibit specific amino acid effects. Protein resi
dues with high unexplained variance also suggest difficulty in 
prediction. Applying Rosace-AA to the MET dataset 

(Estevam et al. 2024), a multiscreen analysis across 11 inhibi
tors and dimethyl sulfoxide (DMSO, the control cell environ
ment), it effectively summarizes multiphenotype screens by 
identifying positions with distinct sensitivities or resistance 
profiles across various inhibitors. Unlike the OCT1 dataset, 
which focuses on differentiating positions based on alignment 
with global amino acid substitution expectations, the 
MET dataset application highlights Rosace-AA’s strength in 
capturing diverse phenotypic responses across multiple condi
tions, revealing functional hotspots with specific inhibitor 
interactions.

2 Results
2.1 Rosace-AA models both position and AA 
substitution effect
The Rosace-AA framework extends the original Rosace 
Bayesian hierarchical model (Rao et al. 2024) by modifying 
the prior for the variant-specific effect, denoted as βv. In the 
original model, the prior mean of βv is represented by the 
position-specific effect ϕpðvÞ in Fig. 1A, where pðvÞ is the map
ping from a variant index to its corresponding position. This 
position-specific prior is shared across all variants at that lo
cation, which enforces regularization and variance shrinkage 
(Rao et al. 2024), in turn, increasing sensitivity and decreas
ing false discovery rate.

In the extended model (Fig. 1B), an additional term, νaðvÞ, 
is incorporated into the variant prior of βv to account for AA 
substitution effects, so that both the position and the substi
tution influence βv. Here, aðvÞ denotes the mapping from the 
variant index to its AA substitution group. As depicted in 
Fig. 1B, the prior for the variant-specific score is now the sum 
of the position-specific score ϕpðvÞ and the global AA substitu
tion score νaðvÞ (represented by the end of the green bar). 
Variants with lower substitution scores, such as cysteine-to- 
glutamic acid mutations (green group in Fig. 1B), are 
expected to exhibit a greater loss-of-function (LOF) effect 
compared to other variants at the same position. Conversely, 
variants with higher substitution scores, such as aspartic 
acid-to-glutamic acid mutations (red group in Fig. 1B), are 
more likely to have a neutral or gain-of-function (GOF) ef
fect. The substitution score thus indicates the sensitivity of a 
function score to AA substitution.

In this study, we employ a substitution matrix to group 
amino acids, restricting the AA substitution analysis to single 
missense mutations. Insertions and deletions across positions 
are grouped into a pseudo-position index, with no associated 
AA substitution effects. Similarly, synonymous mutations, 
which are pre-processed and normalized to an effect of ap
proximately zero, are assigned a constant substitution effect 
of zero.

While AA substitutions have a global impact (Henikoff 
and Henikoff 1992), their effects vary across positions, as 
seen in Fig. 1E for the OCT1 cytotoxicity screen (Yee et al. 
2024). Some positions show dominant position-specific 
effects, while others exhibit variable substitution effects. To 
capture this heterogeneity, we introduce ρpðvÞ, a position- 
specific scaling factor (0 to 1) that modulates the influence of 
AA substitutions. The prior for βv combines the position- 
specific effect ϕpðvÞ and the scaled substitution effect νaðvÞρpðvÞ, 
enabling better data fit, as illustrated in Fig. 1C.

The complete plate diagram for the third model, is shown 
in Fig. 1D. Notably, all parameters of the prior for 
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βv—namely ϕpðvÞ, νaðvÞ, and ρpðvÞ—are estimated jointly with 
βv and the rest of the model parameters. As a result, the esti
mation of βv is expected to have minimal bias from the exper
iment, and the regularization of the estimator through the 
prior mainly exerts on the uncertainty estimates of βv. 
Rosace-AA is publicly available on GitHub (https://github. 
com/pimentellab/rosace-aa).

2.2 Variance decomposition of mutation effects
One key novelty of the Rosace-AA method is that it achieves 
variance decomposition through the prior specification of a 
target parameter (e.g. AA substitution effects) within a 
Bayesian hierarchical model. This method allows characteriz
ing how much variance in a mutation’s effect within a protein 
or domain (depending on the scope of the DMS experiment) is 
attributable to different factors, such as position, AA substitu
tion, and other unexplained sources (Fig. 2B). Our approach 
extends the concept of variance decomposition, traditionally 
used in analysis of variance (ANOVA), by integrating it into 
the prior structure of a hierarchical model. Below, we explain 
the concept of variance decomposition in the context of 
ANOVA, highlight the key differences in our Bayesian formu
lation, and describe its application to our data.

Variance decomposition is commonly used in ANOVA. In 
the case of protein DMS data, we might consider the variance 
attributed to different positions within the protein sequence 
pðvÞ (Model 1 in Fig. 2A) and AA substitution aðvÞ (Models 
2 and 3 in Fig. 2A).

Our model offers several advantages over ANOVA. First, 
while ANOVA aims to determine whether a factor signifi
cantly influences the target βv through a simple F-test, our 
model simultaneously performs multiple tasks. In our ap
proach, βv, the target parameter representing mutation 
effects, is treated as a random variable inferred from DMS 
count data, rather than being fixed and known a priori. This 

enables us to both estimate and perform hypothesis testing 
on βv. Second, the factors ϕpðvÞ and νaðvÞ are modeled as ran
dom effects, allowing the inference of their distributions. In 
contrast to a typical random-effects ANOVA, where the fac
tor is treated as random but each group within the factor is 
assumed identically distributed, in our model each group 
within a factor has its unique posterior. Further, the uncer
tainty in estimating βv from the DMS count data is propa
gated into the variance estimates for each factor.

Finally, our model allows us to compute the percentage of 
variance explained by each factor and to characterize the mu
tation effect’s variance within a protein or domain. This de
composition provides insight into how much of the observed 
variance is due to position, AA substitution, or unexplained 
local factors, which can be summarized to characterize the 
protein. This rich variance decomposition serves as a power
ful tool for understanding the role of different factors in pro
tein function and evolution.

2.3 Position effects dominate variance 
decomposition in human domainome data
We applied the three models from Fig. 1 to over 500 human 
protein domains from the Human Domainome 1.0 dataset 
(Beltran et al. 2024), which measures domain stability, a nec
essary condition for function. Variance explained by position 
effects (Model 1) and by both position and AA substitution 
effects (Models 2 and 3) showed that position effects domi
nate, explaining 40%–90% of stability variance in most pro
teins. This high number could be partially attributed to 
conservation in domains, leading to a stronger position- 
specific effect regardless of the substitution type compared to 
regions outside. Notably, variance explained by position was 
consistent between Models 1 and 3 (Fig. 2B), highlighting 
model robustness and the independence of our factor 

Figure 1. Overview of Rosace-AA model. (A–C) The functional score βv and its expectation under three models for the same variants on two positions. 
The labels (1—6 ins, del) indicate the mutation. The colour legend on the left indicates BLOSUM group (only four are shown; the groups are 1&2, 3&4, 
5&6, and indel). The lengths of the grey bars indicate βv and the coloured bars overlaying the former bars are its expectation under the assumption of 
each model. (A) Model 1, original Rosace model. The prior of variant effect is the position-specific effect. (B) Model 2, Rosace with the addition of global 
AA effect prior. (C) Model 3, Rosace with the addition of position-scaled AA effect. (D) Plate notation of Model 3. (E) DMS functional score distribution for 
three types of positions, in the context of sensitivity to AA effects using OCT1 dataset as an example.
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decomposition despite interdependence between position and 
substitution effects.

Certain domain families consistently show high variance 
explained by stability position effects, with PF00628 (PHD- 
finger), PF00226 (DnaJ domain), PF00643 (B-box zinc fin
ger), and PF00412 (LIM domain) accounting for over 75% 
of the variance (Fig. 2H). In contrast, families like Beta/ 
Gamma crystalline and PF02198 (Ets-domain) exhibit lower 
variance explained by position effects (below 57%), suggest
ing other factors contribute more to their variability.

Variance explained by global AA substitution effects 
(Model 2) was small, ranging from 0% to 10% (Fig. 2C). 
Adding the position-specific scaling factor in Model 3 in
creased AA substitution variance for some proteins, reaching 
up to 10% (annotated purple in Fig. 2C). While AA substitu
tion effects are minor compared to position effects, their in
teraction with position-specific factors can be significant for 
certain proteins, highlighting their combined impact on sta
bility mutation effects within protein domains.

Protein domain families with higher variance explained by 
position tend to have lower variance explained by amino 
acids, as expected. The PF00595 (PDZ domain) family, with 
a narrow distribution in position variance but a broad range 
in amino acid substitution variance, highlights this pattern. 
For example, while DLG4 (P78352, 60) and MPDZ 
(O75970, 372) both show 60% position variance, DLG4 has 
no significant amino acid substitution effect, whereas MPDZ 
explains over 12%. This difference may indicate functional 
specialization or structural constraints within PDZ domains, 
where certain proteins might be more tolerant or dependent 
on specific amino acid changes, reflecting nuanced aspects of 
protein stability.

Additionally, we tested in entire proteins (as opposed to 
domains), to see if the variance attributed to position effects still 
dominates other sources. We observe that this is indeed the 

case. Using datasets with raw counts from ProteinGym (Notin 
et al. 2023), the proportion of variance attributed to position 
effects and AA substitution effects are: 54.1%, 1.3% 
[CAR11_gof (Meitlis et al. 2020)]; 55.6%, 2.6% [CAR11_lof 
(Meitlis et al. 2020)]]; 24.3%, 0.5% [CAS9_neg (Spencer and 
Zhang 2017)]; 39.9%, 0.2% [CAS9_pos (Spencer and Zhang 
2017)]; 31.1%, 3.1% [CD19 (Klesmith et al. 2019)]; 45.8%, 
16.7% [RNC (Weeks and Ostermeier 2023)]; 70.5%, 1.1% 
[SPG1_Olson (Olson et al. 2014)].

2.4 Interaction between local position and AA 
substitution effect
In this section, we shift focus from the global protein-level 
summary statistics to an analysis of local, position-specific 
statistics. Conceptually, the protein or domain can be divided 
into four categories based on these plots: no effect, position- 
only, AA-substitution-only, or both. In cases where both 
position and AA substitution effects vary, the scatter plot typ
ically exhibits a “downward parabola” shape (Fig. 2D). 
When AA substitution effects dominate but position has min
imal impact, the points align vertically (Fig. 2E), suggesting 
uniform position effects across AA substitutions. Conversely, 
when AA substitution effects are neutral and the position ef
fect varies, the points form a horizontal distribution at ρpðvÞ ¼

0:5 (Fig. 2F). If the domain is mutation-insensitive, the points 
cluster near the origin (Fig. 2G).

Here, for strongly neutral or LOF positions, ρpðvÞ is low, in
dicating that the position dominates regardless of the substi
tution. However, for mildly LOF positions, substitution plays 
a critical role, often depending on local structure and interac
tions with nearby residues, resulting in a curve that opens 
downward. While other shapes could theoretically emerge, 
these four categories capture the primary trends we observe.

Figure 2. Global variance decomposition pattern and position-level effect trend applying Rosace-AA on Human Domainome 1.0 dataset. (A) Model 
specifications revisited. (B) Variance explained by position, comparing Models 1 and 3. (C) Variance explained by AA, comparing Models 2 and 3. Variants 
coloured purple (0.01 above the dotted line) have increased explained variance under Model 3 than 2. Those coloured green are the opposite (0.01 under 
the dotted line). Others are coloured grey. (D–G) ϕ is the position effect and ρ is the position AA sensitivity scaling coefficient. Top, the general shapes of 
the relation between position score and AA sensitivity scaling; Middle, an example of the relation described above; Bottom, Variance decomposition of 
each example domain. H, Variance explained by each factor by position, grouped by domain family. The patterns are explained in the text below.
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These local statistics are directly produced by the 
Rosace-AA model. We extract two key position-level poste
rior distributions from the mutation effect prior. (i) The 
position-specific effect, ϕpðvÞ 2 ð−1;1Þ, reflects the average 
mutation impact at a given position, with 0 indicating neu
trality and more negative values signifying a stronger loss of 
function (LOF). (ii) The position-specific AA substitution 
scaling factor, ρpðvÞ 2 ½0;1�, quantifies how much a position is 
affected by global AA substitution patterns. ρpðvÞ ¼ 0 indi
cates no global AA substitution effect, while ρpðvÞ ¼ 1 reflects 
a significant influence. Further, since the prior of ρpðvÞ is cen
tered at 0.5, the model defaults to 0.5 if the data is uninfor
mative (Fig. 2F and G). This occurs either because (i) there is 
no global AA substitution effect νaðvÞ ¼ 0, resulting in no 
overall effect, or (ii) AA substitution effects are uniform 
across all positions, rendering scaling unnecessary.

Figure 2D–G demonstrates the different positional effects 
and AA substitution sensitivity patterns we have described. 
Each point represents a protein position, with the x-axis 
showing the position-specific effect and the y-axis represent
ing the AA sensitivity scaling factor.

We further demonstrate the global protein-level summary 
statistics for the four categories, specifically, the proportion 
of variance explained by positional and AA substitution 
effects. In both the “no effect” and “position only” cases, po
sitional effects dominate, explaining over 80% of the total 
variance. However, in cases where AA substitution effects are 
significant, we observe an increase in the overall proportion 
of variance explained, with AA effects contributing meaning
fully to the model’s fit. Notably, in Fig. 2D, the position- 
scaled AA effect (Model 3) provides a substantially better fit 
than the unscaled model (Model 2), highlighting the novelty 
and advantage of incorporating both positional scaled AA 
substitution effects in our approach. This result underscores 
the importance of modeling the interplay between position- 

specific and AA substitution effects for a more accurate repre
sentation of protein mutational landscapes.

2.5 Unexplained mutation effects beyond position 
and global AA substitution require closer 
examination
The Rosace-AA model captures crucial information with 
the Bayesian hierarchical prior of functional score βv, which 
is modeled as a normal distribution with both prior mean 
and prior variance (Fig. 3A). Previously, we focused on the 
composition of the prior mean without leveraging the prior 
variance estimate σ2

pðvÞ. Here, we explore the residual vari
ance—specifically, the portion of the score that is not 
explained by position or global amino acid (AA) substitu
tion—since this residual component is likely to be less pre
dictable and may reveal important insights.

The position-specific variance σ2
pðvÞ quantifies the unex

plained variance in the variance decomposition outlined in 
Section 2.2 of the Results. With the inclusion of variance 
explained by AA substitution in Model 3 (Fig. 3A), one 
would expect the unexplained variance to remain the same or 
decrease when a significant AA substitution effect is ob
served, indicated by a higher ρpðvÞ value (Fig. 3B and C). This 
relationship is exemplified by the OCT1 cytotoxicity data 
(Yee et al. 2024) (11,432 synonymous, missense, and single- 
AA deletion variants).

To pinpoint the position exhibiting the greatest unex
plained variance in OCT1, we plotted σ2

pðvÞ against ρpðvÞ. We 
expected an increase in variance explained by the global AA 
substitution matrix would lead to a decrease in σ2

pðvÞ. 
Contradictory to our expectation, we observe a seemingly 
random pattern instead. Notably, the positions with the high
est σ2

pðvÞ values (S189, A219, and N463) showed a broad 
range of ρpðvÞ values (Fig. 3D). This unexpected finding 

Figure 3. Applying Rosace-AA on OCT1 dataset. (A) Model specifications revisited. (B) Unexplained variance in Models 1 and 3. Points on the diagonal 
have identical σ, and purple points have significantly reduced σ in Model 3 (significantly below the diagonal). (C) Difference in unexplained variance is non- 
linearly attributable to AA substitution effects. Purple points (on the top-right of the plot) have significantly reduced σ in Model 3, apparently driven by 
larger substitution sensitivity ρ. (D) Sensitivity to AA substitution and unexplained variance by position. Orange points have high positional variance. (E) 
Functional score heatmap of positions with good fit or bad fit under Model 3. Variants sorted by BLOSUM score. (F) Estimated AA substitution effect by 
BLOSUM group. (G) Variant sampling strategy, sampling more on a position when its σ is larger. (H, I) For each ρ and σ2 position ventile bins, the R2 of β 
using Rosace-AA (H) and AlphaMissense (I). (J) Difference in out-of-sample R2 using random sampling or σ2-guided sampling.
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prompts a closer investigation into the functional scores asso
ciated with these mutations.

To delve deeper into our analysis, We compared two 
groups of positions: the “poor fit” group with high σ2

pðvÞ and 
the “good fit” group with high ρpðvÞ but low σ2

pðvÞ. In the 
“good fit” group, substitutions with lower BLOSUM scores 
showed stronger LOF effects, aligning with expectations 
(Fig. 3E), while the “poor fit” group exhibited erratic 
LOF effects, deviating from BLOSUM trends (Fig. 3F). This 
discrepancy suggests that local factors, such as protein- 
protein interactions or conformational changes, may be 
influencing the functional impacts at these positions, rather 
than the overarching evolutionary or biophysical patterns as
sociated with amino acid substitution. These positions are 
particularly compelling, as they may involve intricate local 
interactions within the protein or interactions with external 
factors, such as drugs, as seen in the OCT1 cytotoxic
ity screen.

2.6 High positional unexplained variance suggests 
challenges in variant effect prediction
We hypothesized that positions with the largest unexplained 
variance would be more difficult to predict using variant effect 
predictors like AlphaMissense (Cheng et al. 2023). This also 
motivates experiment designs to sample more on such posi
tions with high unexplained variance, to compensate for the 
diminished efficacy of statistical methods. Conversely, suppose 
an experiment is constrained on the number of variants to gen
erate and test. In that case, researchers can devote more sam
ples to positions with larger unexplained variance and use 
predictors to predict other variants’ effects more reliably.

To test the hypothesis that high unexplained variance on a 
position indicates difficulty in variant effect prediction, we 
approached the prediction task as a linear regression within a 
Bayesian hierarchical model, using the prior mean (Model 3, 
Fig. 3A). This setup represents the upper bound of prediction 
performance for a linear regression-based method. We evalu
ated prediction accuracy using the R2 metric, which reflects 
the proportion of variance explained by position and global 
AA substitution (Fig. 3G). To identify which features are as
sociated with greater prediction difficulty, we grouped var
iants into deciles based on position-specific AA substitution 
scaling factor ρpðvÞ and variance σ2

pðvÞ.
As anticipated, when grouping variants by ρpðvÞ, the R2 val

ues display an upward parabola pattern—positions with the 
activation score approaching 0 or 1 have larger R2, consistent 
with our model settings. However, when grouping by σ2

pðvÞ, we 
observed that positions with higher variance were significantly 
harder to predict compared to those with lower variance, par
ticularly for the highest σ2

pðvÞ decile (Fig. 3H). We also observe 

a statistically significant negative correlation between σ2
pðvÞ and 

R2 (correlation R2 92%). This suggests that higher σ2
pðvÞ may 

indicate difficulty in variant effect prediction.
We then analysed predictions from AlphaMissense on the 

missense mutations (10,378 in total) of the same protein, us
ing a continuous pathogenicity scoring scheme (0 −1). 
Interestingly, positions with higher ρpðvÞ values showed a 
slight improvement in prediction accuracy, confirming that 
evolutionary trends, captured by substitution matrices like 
BLOSUM, may enhance predictive performance. Regarding 
σ2

pðvÞ, the lowest 10% of positions exhibited high R2 values, 

approaching 75%, while the highest variance positions saw 
this metric drop to around 30% (Fig. 3I). These findings sup
port our initial hypothesis: positions with higher unexplained 
variance from DMS are indeed more difficult to predict.

Finally, we explored improving variant effect predictions 
when full DMS experiments are infeasible—such as for large 
proteins—using a sampling strategy guided by positional var
iance (σ2

pðvÞ). The approach is simple: sample more variants 
from positions with high variance and fewer from those with 
low variance (Fig. 3J). To test this, we randomly sampled 
20% of variants at each position in the first round. In the sec
ond round, we sampled another 20% either randomly or 
guided by σ2

pðvÞ. In our implementation, we try to sample 

10% more from the lowest σ2
pðvÞ, 20% from the second, onto 

40% from the highest. Accounting for missing observations, 
the latter method gained a similar number of samples as the 
former, which randomly samples from non-missing observa
tions. Parameters from these datasets were used with the 
Rosace-AA model to predict functional scores of unsampled 
variants, evaluated using R2. As shown in Fig. 3J, σ2

pðvÞ-guided 
sampling notably improved prediction accuracy over random 
sampling, highlighting its effectiveness.

2.7 Rosace-AA for multiphenotype DMS analysis
To demonstrate the utility of Rosace-AA in multiphenotype 
analysis, we applied the model to data from a DMS experi
ment on the MET kinase domain under various ATP- 
competitive inhibitor conditions (Estevam et al. 2024).

MET, a receptor tyrosine kinase (RTK) implicated in can
cers like lung and gastric, drives cellular growth via ATP- 
dependent signaling, but mutations often confer resistance to 
inhibitors, requiring evaluation of multiple treatments 
(Estevam et al. 2024). In this DMS dataset, experiments were 
conducted under a control condition and with 11 different 
ATP-competitive inhibitors. For each condition, we sepa
rately computed the variant-level βv and position-level ϕpðvÞ

and ρpðvÞ, using Rosace-AA (Fig. 4A).
To identify positions with inhibitor-specific effects, we 

computed the variance of these position-level scores and visu
alized them in a scatter plot. Positions with minimal variabil
ity across inhibitors represent the null condition, such as 
position R1327, which showed consistent behavior across all 
inhibitors (Fig. 4C). Positions of greater interest exhibit 
significant variance in either ϕpðvÞ (blue in Fig. 4B) or ρpðvÞ

(purple in Fig. 4B), indicating inhibitor-specific effects. 
We mapped these key positions onto the MET structure 
(Fig. 4D and G).

The top three positions with high variance in ϕpðvÞ were 
located within the ATP-binding pocket of MET (Fig. 4G), 
suggesting that mutations at these sites produce inhibitor- 
specific effects at the inhibitor-binding pocket without 
broadly affecting overall protein function. Each of these three 
positions displayed distinct resistance profiles to the different 
inhibitors (Fig. 4H). For example, MET inhibitors can be 
grouped by their binding mode to the ATP pocket and con
formational preference (Estevam et al. 2024). Mutations to 
position P1158 are more sensitive to types I1/2, II, and III 
inhibitors and more resistant to types Ia and Ib inhibitors 
(this is also shown in Fig. 4I), implying that the mutations are 
likely blocking the binding of the latter inhibitors and facili
tating that of the former ones. Position Y1230 displays a 
roughly opposite profile. Position G1163 is the most 
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interesting case among the three as sensitivity to inhibitors is 
apparently not related to inhibitor type.

In contrast, the top three positions with high variance in ρpðvÞ
were located farther from the ATP-binding pocket, suggesting a 
more distal allosteric effect (Fig. 4D). Interestingly, these positions 
shared a common substitution profile: DMSO and Tivantinib 
(Tiv) inhibitors displayed high general amino acid substitution 
effects, while Capmatinib (Cap) showed the lowest (Fig. 4E). 
Further inspection of other positions with high ρ shows that Tiv 
generally has similar behavior to that of DMSO, in contrast to 
other inhibitors, probably due to its MET independence and a 
different inhibition mode. A detailed examination of the heatmap 
for position V1290 revealed that substitutions to Ile, Leu, Val, 
and Trp were driving these changes of ρpðvÞ (Fig. 4F).

In summary, this MET analysis demonstrates how 
Rosace-AA’s position-level summary statistics can reveal 
nuanced insights into the functional impact of mutations 
across different phenotypic conditions. By capturing variance 
in mutation effects both locally (within critical functional 
sites) and distally (at allosteric positions), Rosace-AA 
enables the identification of mutation-specific and condition- 
specific functional shifts. This approach not only aids in 
understanding the mechanistic underpinnings of inhibitor re
sistance but also provides a broader framework for multiphe
notype analyses, allowing researchers to explore complex 
genotype-phenotype relationships in various experimental 
contexts.

3 Discussion
The Rosace-AA framework provides a new powerful ap
proach to dissecting the functional effects of mutations across 

diverse conditions by incorporating both position-specific in
formation and amino acid substitution trends. Its ability to 
classify positions based on mutation effects and susceptibility 
to amino acid changes has broad applications in fields such 
as precision medicine, protein engineering, and drug discov
ery. For example, the insights gained from the MET DMS 
dataset highlight its potential for identifying mutation-driven 
resistance mechanisms in cancer therapeutics. By extending 
this framework to other proteins or drug-target interactions, 
researchers can uncover novel functional insights that inform 
personalized treatment strategies or guide the design of more 
effective inhibitors.

A current major challenge in DMS is to gain biological in
sight from the screen. It usually involves ad hoc quantitative 
analyses of sequence patterns and protein structure. 
Incorporating mutational information allows for identifying 
positions that statistically diverge from the background. 
Divergent variants and their residues are likely to have dis
tinct roles in protein function such as binding interfaces, cata
lytic sites, and other crucial positions, and thus merit 
further inspection.

Despite its strengths, the Rosace-AA framework has limi
tations. First, the decomposition of variance relies on prede
fined substitution groupings, such as the BLOSUM90 matrix, 
which may not fully capture all biological contexts. The 
framework’s effectiveness in analyzing other protein families 
with distinct evolutionary or functional constraints remains 
to be thoroughly tested.

Future research could extend Rosace-AA by incorporat
ing more sophisticated models of AA substitution, allowing 
users to input custom substitution matrices. This flexibility 
would enhance the framework’s applicability across diverse 

Figure 4. Applying Rosace-AA on MET kinase domain DMS dataset. The protein structure herein is 3DKC in PDB. In this experiment, a high fitness score 
implies more resistance to an inhibitor. (A) Experiment description: 12 DMS experiments are conducted on MET kinase under 12 environments, obtaining 
12 sets of β, ϕ, and ρ. (B) Cross-inhibitor variance of ϕ and ρ by position, categorized according to cross-inhibitor consistency of each factor—if the 
variance of ϕ≥1, if the variance of ρ≥1%, or if both thresholds are reached. (C) Example of both ϕ and ρ being consistent on a position across inhibitors. 
(D, E) Examples of consistent ϕ but varying ρ positions. (F) Functional score heatmap of a position with consistent ϕ but varying ρ. (G, H) Examples of 
consistent ρ but varying ϕ positions. (I) Functional score heatmap of a position with consistent ρ but varying ϕ.
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protein domains and evolutionary contexts, providing more 
biologically relevant insights. Another important direction is 
to model epistatic interactions with multi-mutation DMS 
data, enabling Rosace-AA to capture non-linear mutation 
effects that go beyond position-specific and substitution 
effects. This extension would provide a more comprehensive 
view of mutational impacts, especially in cases where substi
tution patterns are more complex. Additionally, the posi
tional features extracted by Rosace-AA could guide more 
targeted subsampling of mutations, facilitating the mapping 
of mutational landscapes and helping prioritize regions of in
terest for further experimental or computational study.

4 Methods
4.1 Rosace-AA: notation and count
Following Rosace’s notation, in a growth-based DMS 
screen, each raw sequencing count is denoted by cv;t;r, stand
ing for variant, selection round, and replicate indices, 
respectively.

pð�Þ encodes the positional information of a variant. In 
most cases, it maps a variant to its amino acid position. 
There are two notable exceptions, however: (i) If information 
is given whether each variant is synonymous or not, all syn
onymous variants are grouped as a virtual “control” posi
tion. (ii) If a position has too few variants (due to missing 
data, for example), all variants of this position will be merged 
into the next position. The process is repeated if the com
bined position also lacks sufficient variants.

að�Þ is a similar mapping that extracts the mutant corre
sponding to a variant, it can be substitution, insertion, or de
letion. In this article, the terms “mutant” and “AA 
substitution” are used interchangeably.

Every possible mutant is further assigned a mutant group 
label, with A possible mutants in total. að�Þ thus maps var
iants to such “AA substitution groups.” Since each AA substi
tution group contains multiple mutants, að�Þ is by 
construction a coarser mapping than uð�Þ.
Rosace-AA preprocesses raw sequencing counts identi

cally as Rosace: variant filtering, missing data imputation, 
scale transformation, and count normalization. The resultant 
aligned count is denoted mv;t;r.

4.2 Rosace-AA: Bayesian hierarchical model
Like Rosace, Rosace-AA assumes linear growth of the 
aligned count m with regard to time t (selection round): 

mv;t;rjβv; bv; ɛ2
gðvÞ � Normal

�
βvt=Tþ bv; ɛ2

gðvÞ

�
(1) 

where the growth rate βv is treated as the functional score of 
the variant and bv as the intercept. ɛgðvÞ is the scale of the er
ror, grouped by the mean group of the variant gðvÞ described 
in Rosace. The prior of each error scale is independently 
given by: ɛgðvÞ � InvGammað1;1Þ.

The variant-level mean growth rate βv is modeled as: 

βvjϕ; ν; ρ; σ2 � Normal
�

ϕpðvÞ þ νaðvÞρpðvÞ; σ2
pðvÞ

�
(2) 

The position-level mean effect ϕ and variance σ2 are, con
sistent with Rosace, given weak priors: ϕpðvÞ �Normalð0;1Þ
and σ2

pðvÞ � InvGammað1;1Þ.

The hierarchical model is solved with numeric Bayesian in
ference using Stan (Stan Development Team 2023). We use 
the default sampler offered, the No-U-Turn sampler (NUTS).

4.2.1 AA-substitution-level growth rate and activation
Rosace-AA has two additional components to βv: (i) AA- 
substitution-group-level functional effect νaðvÞ. It can be 
loosely interpreted as the functional “potential” inherent to 
an AA substitution. This term is not directly additive with 
ϕpðvÞ, but regulated by: (ii) position-level activation score 
ρpðvÞ. The AA substitution has the largest impact at positions 
with the highest activation scores (the most “activated”).

We use BLOSUM90 to score every possible AA substitu
tion. A high BLOSUM score implies that the substitution is 
prevalent, which likely translates into less impact on protein 
function. Substitutions of similar BLOSUM scores are 
grouped so that each group covers at least 20% of positions. 
Insertions and deletions, not explicitly scored, are given two 
separate BLOSUM group labels from substitutions as their 
functional effects are assumed to be vastly different.

Synonymous variants are assigned the same virtual 
“position” and the same substitution label, whose functional 
effect centers to 0. Also, to avoid identification problems, we 
force all non-synonymous AA substitution effects ν to sum up 
to 0, weighted by the variant count of each AA substitution 
group. As opposed to equal weighting, this weighting scheme 
is invariant to how AA substitutions are grouped.

Recall that the AA substitution group label A is the 
“synonymous group.” Let the mean-normalized variant 
count of non-synonymous mutation be w 2 RA − 1, then the 
Gaussian prior on ν is set as follows: 

ν − A � Normalð0; diagðwÞ− 1M diagðwÞ− 1
Þ

where Mij ¼ 1i¼j −
1

A − 2
1i6¼j; νA ¼ 0

(3) 

M is an exchangeable but degenerate correlation matrix with 
rank A −2. w is mean-normalized so that if all non- 
synonymous mutation groups have the same number of var
iants, diagðwÞ is simply the identity matrix.

Activation scores ρpðvÞ are assumed to range in [0, 1]. 
Intuitively, an activation score of 1 implies full activation of 
AA substitution effects and 0 complete inactivation. It is also 
assumed that most positions are moderately activated. 
Therefore, activation scores are given an independent and 
symmetric beta prior: ρpðvÞ � Betað1:5;1:5Þ

4.3 Data availability and processing
OCT1 (Macdonald et al. 2023), MET (Estevam et al. 2024), 
and the Human Domainome (Beltran et al. 2024) dataset are 
retrieved from supplementary files to their respective publica
tions. The ProteinGym (Notin et al. 2023) datasets are available 
at https://marks.hms.harvard.edu/proteingym/ProteinGym_v1. 
3/DMS_ProteinGym_substitutions.zip, and only datasets with 
raw count information are processed. For all DMS data, var
iants with high-order mutation are filtered out, and only raw se
quencing counts of synonymous, missense, and nonsense 
mutations are input into the Rosace-AA tool and processed 
with the default workflow: count normalization, posterior dis
tribution sampling, and result summaries.
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