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Abstract

Motivation: Proteins are dynamic systems whose function and behavior are sensitive to environmental conditions and often involve multiple
cellular roles. Deep mutational scanning (DMS) experiments generate extensive datasets to capture the functional consequences of mutations.
However, the sheer volume of data presents challenges in visualization and interpretation. Current approaches often rely on heatmaps, but
these methods fail to capture the nuanced effects of amino acid substitutions, which are essential for understanding mutational impact.

Results: To address this, we extend the Rosace framework with Rosace-2AAa, a model that incorporates both position-specific information and
amino acid substitution trends. Using substitution matrices like BLOSUM90, Rosace-2A infers an interpretable score from the raw counts of
growth-based DMS data, on both protein-level and at the position-level while simultaneously inferring the effect of each variant. We demon-
strate its utility across datasets, including OCT1 and MET kinase, showing that Rosace-2Aa highlights key positions where mutations deviate
from expected substitution patterns and captures functionally relevant variation in protein behavior across multiple DMS screens. These results
suggest that Rosace-AA enables more robust and interpretable analysis of complex DMS datasets.

Availability and implementation: An implementation of Rosace-AA as an R package and vignettes can be found at this repository: https://
github.com/pimentellab/rosace-aa. Scripts for processing data and generating figures in this article are also available on GitHub (https://github.
com/roserao/rosaceaa-paper-script).

1 Introduction surface-exposed loops are generally less consequential, as these
regions are often peripheral to core functionality (Jones et al.
2020, Howard et al. 2024). Other investigations highlight that
the nature of the substitution itself is equally critical (Dunham
and Beltrao 2021, Munro and Singh 2021). Properties such as
charge, hydrophobicity, size, and hydrogen-bonding potential
could influence the functional impact of a mutation. Swapping
amino acids with markedly different properties, such as chang-
ing a hydrophobic residue to a polar one, can disrupt function,
especially if the original residue supports the protein’s core
structure or active site (Wilbur 1985, Henikoff and Henikoff
1992). On the other hand, substitutions that maintain similar
characteristics are often better tolerated.

Importantly, the interaction between the effects of position
and substitution type also affects the outcome. A

In protein biology, a central question is whether a variant’s
position within a protein or the type of amino acid (AA) sub-
stitution has a greater impact on function (Fowler and Fields
2014). Research has shown that a variant’s position and sub-
stitution type can affect the mutation outcome.

Studies have demonstrated the importance of position, as cer-
tain amino acids play key roles in maintaining structural integ-
rity, stability, or mediating interactions (Weile et al. 2021,
Coyote-Maestas et al. 2022, Gersing et al. 2023, Estevam et al.
2024). For example, in G-protein-coupled receptors (GPCRs),
some mutations can severely impair function due to their criti-
cal roles in ligand recognition and signal transduction (Jones
et al. 2020, Howard et al. 2024). In contrast, mutations in
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substitution’s impact often depends on its location within the
protein structure: a change in a conserved and functionally
critical region may lead to significant disruption, whereas the
same substitution in a less crucial area might be more tolera-
ble. This suggests that both factors matter, and that quantify-
ing their respective impacts could provide a clearer
understanding of mutation effects and relationships between
position and substitution type.

Researchers have developed simple statistics to explore
these questions. For example, using deep mutational scanning
(DMS) experiments to simultaneously measure the effect of
hundreds of thousands of variants and calculating the aver-
age effect of mutations at each position or counting function-
ally significant variants offers insights into functional
hotspots and sensitivity (Macdonald et al. 2023, Estevam
et al. 2024, Yee et al. 2024). Others have examined amino
acid substitution trends across positions, drawing on substi-
tution matrices such as BLOSUM (Henikoff and Henikoff
1992) and PAM (Wilbur 1985). From the perspective of mul-
tiple sequence alignment of protein sequences, methods such
as direct coupling analysis (Weigt et al. 2009) and its many
variants are developed to disentangle the direct or indirect
correlations between positions. Most recent efforts include
applying deep learning methods to predict the pathogenicity
of a variant, notably AlphaMissense (Cheng et al. 2023).
Those tools have varying degrees of success in mutation effect
prediction, and their validity is backed up by experimental
data. It is thus essential to have a tool that processes raw data
from such experiments (e.g. DMS) to produce reliable empiri-
cal estimates of mutation effects. Our tool is the first statisti-
cal inference tool that learns the interaction between position
and amino acid substitution while conducting statistical in-
ference from raw DMS count data.

We extend the Rosace framework (Rao et al. 2024) to
create a holistic framework which provides an intuitive inter-
pretation of the interplay between position and substitution
variant effects using growth-based DMS data. Our approach
incorporates both position-specific information and amino
acid substitution trends by decomposing variance into three
components: (i) average effect at a position, (ii) contribution
of amino acid substitution, and (iii) the remaining unex-
plained variation. This extended framework, termed
Rosace-AA, provides three summary statistics for each posi-
tion: the position-specific score, the position-specific scaling
factor (susceptibility) for amino acid substitution effects, and
the residual variance not explained by position or amino acid
substitution. Those statistics quantify the effects of position,
substitution, and their interaction, facilitating comparison
within a protein and among experiments of the same protein
under different conditions. For simplicity, we group amino
acid substitutions based on BLOSUMO90 in this article, but
the framework is flexible and can accommodate any user-
defined substitution grouping.

Using Rosace-AA, we show that different protein
domains exhibit distinct decomposition structures, as
reflected by the relation of summary statistics across posi-
tions. We demonstrate such utility by applying Rosace-AA
to an OCT1 DMS (Yee et al. 2024) to identify positions
where variance deviates from global amino acid substitution
expectations, emphasizing positions that disrupt local inter-
actions and exhibit specific amino acid effects. Protein resi-
dues with high unexplained variance also suggest difficulty in
prediction. Applying Rosace-AA to the MET dataset
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(Estevam et al. 2024), a multiscreen analysis across 11 inhibi-
tors and dimethyl sulfoxide (DMSO, the control cell environ-
ment), it effectively summarizes multiphenotype screens by
identifying positions with distinct sensitivities or resistance
profiles across various inhibitors. Unlike the OCT1 dataset,
which focuses on differentiating positions based on alignment
with global amino acid substitution expectations, the
MET dataset application highlights Rosace-AA’s strength in
capturing diverse phenotypic responses across multiple condi-
tions, revealing functional hotspots with specific inhibitor
interactions.

2 Results
2.1 Rosace-AA models both position and AA
substitution effect

The Rosace-AA framework extends the original Rosace
Bayesian hierarchical model (Rao et al. 2024) by modifying
the prior for the variant-specific effect, denoted as f8,. In the
original model, the prior mean of f, is represented by the
position-specific effect ¢, in Fig. 1A, where p(v) is the map-
ping from a variant index to its corresponding position. This
position-specific prior is shared across all variants at that lo-
cation, which enforces regularization and variance shrinkage
(Rao et al. 2024), in turn, increasing sensitivity and decreas-
ing false discovery rate.

In the extended model (Fig. 1B), an additional term, v,
is incorporated into the variant prior of 3, to account for AA
substitution effects, so that both the position and the substi-
tution influence f,. Here, a(v) denotes the mapping from the
variant index to its AA substitution group. As depicted in
Fig. 1B, the prior for the variant-specific score is now the sum
of the position-specific score ¢,(,) and the global AA substitu-
tion score v, (represented by the end of the green bar).
Variants with lower substitution scores, such as cysteine-to-
glutamic acid mutations (green group in Fig. 1B), are
expected to exhibit a greater loss-of-function (LOF) effect
compared to other variants at the same position. Conversely,
variants with higher substitution scores, such as aspartic
acid-to-glutamic acid mutations (red group in Fig. 1B), are
more likely to have a neutral or gain-of-function (GOF) ef-
fect. The substitution score thus indicates the sensitivity of a
function score to AA substitution.

In this study, we employ a substitution matrix to group
amino acids, restricting the AA substitution analysis to single
missense mutations. Insertions and deletions across positions
are grouped into a pseudo-position index, with no associated
AA substitution effects. Similarly, synonymous mutations,
which are pre-processed and normalized to an effect of ap-
proximately zero, are assigned a constant substitution effect
of zero.

While AA substitutions have a global impact (Henikoff
and Henikoff 1992), their effects vary across positions, as
seen in Fig. 1E for the OCT1 cytotoxicity screen (Yee et al.
2024). Some positions show dominant position-specific
effects, while others exhibit variable substitution effects. To
capture this heterogeneity, we introduce p,), a position-
specific scaling factor (0 to 1) that modulates the influence of
AA substitutions. The prior for f, combines the position-
specific effect ¢,,) and the scaled substitution effect v,(,)p) )
enabling better data fit, as illustrated in Fig. 1C.

The complete plate diagram for the third model, is shown
in Fig. 1D. Notably, all parameters of the prior for
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Figure 1. Overview of Rosace-AA model. (A-C) The functional score f, and its expectation under three models for the same variants on two positions.
The labels (1—6 ins, del) indicate the mutation. The colour legend on the left indicates BLOSUM group (only four are shown; the groups are 1&2, 3&4,
5&6, and indel). The lengths of the grey bars indicate $, and the coloured bars overlaying the former bars are its expectation under the assumption of
each model. (A) Model 1, original Rosace model. The prior of variant effect is the position-specific effect. (B) Model 2, Rosace with the addition of global
AA effect prior. (C) Model 3, Rosace with the addition of position-scaled AA effect. (D) Plate notation of Model 3. (E) DMS functional score distribution for
three types of positions, in the context of sensitivity to AA effects using OCT1 dataset as an example.

B,—namely ¢, ), Va@), and p,,—are estimated jointly with
B, and the rest of the model parameters. As a result, the esti-
mation of f, is expected to have minimal bias from the exper-
iment, and the regularization of the estimator through the
prior mainly exerts on the uncertainty estimates of f,.
Rosace-AA is publicly available on GitHub (https:/github.
com/pimentellab/rosace-aa).

2.2 Variance decomposition of mutation effects

One key novelty of the Rosace-AA method is that it achieves
variance decomposition through the prior specification of a
target parameter (e.g. AA substitution effects) within a
Bayesian hierarchical model. This method allows characteriz-
ing how much variance in a mutation’s effect within a protein
or domain (depending on the scope of the DMS experiment) is
attributable to different factors, such as position, AA substitu-
tion, and other unexplained sources (Fig. 2B). Our approach
extends the concept of variance decomposition, traditionally
used in analysis of variance (ANOVA), by integrating it into
the prior structure of a hierarchical model. Below, we explain
the concept of variance decomposition in the context of
ANOVA, highlight the key differences in our Bayesian formu-
lation, and describe its application to our data.

Variance decomposition is commonly used in ANOVA. In
the case of protein DMS data, we might consider the variance
attributed to different positions within the protein sequence
p(v) (Model 1 in Fig. 2A) and AA substitution a(v) (Models
2 and 3 in Fig. 2A).

Our model offers several advantages over ANOVA. First,
while ANOVA aims to determine whether a factor signifi-
cantly influences the target 8, through a simple F-test, our
model simultaneously performs multiple tasks. In our ap-
proach, f,, the target parameter representing mutation
effects, is treated as a random variable inferred from DMS
count data, rather than being fixed and known a priori. This

enables us to both estimate and perform hypothesis testing
on f,. Second, the factors ¢,,) and v,(,) are modeled as ran-
dom effects, allowing the inference of their distributions. In
contrast to a typical random-effects ANOVA, where the fac-
tor is treated as random but each group within the factor is
assumed identically distributed, in our model each group
within a factor has its unique posterior. Further, the uncer-
tainty in estimating $, from the DMS count data is propa-
gated into the variance estimates for each factor.

Finally, our model allows us to compute the percentage of
variance explained by each factor and to characterize the mu-
tation effect’s variance within a protein or domain. This de-
composition provides insight into how much of the observed
variance is due to position, AA substitution, or unexplained
local factors, which can be summarized to characterize the
protein. This rich variance decomposition serves as a power-
ful tool for understanding the role of different factors in pro-
tein function and evolution.

2.3 Position effects dominate variance
decomposition in human domainome data

We applied the three models from Fig. 1 to over 500 human
protein domains from the Human Domainome 1.0 dataset
(Beltran et al. 2024), which measures domain stability, a nec-
essary condition for function. Variance explained by position
effects (Model 1) and by both position and AA substitution
effects (Models 2 and 3) showed that position effects domi-
nate, explaining 40%-90% of stability variance in most pro-
teins. This high number could be partially attributed to
conservation in domains, leading to a stronger position-
specific effect regardless of the substitution type compared to
regions outside. Notably, variance explained by position was
consistent between Models 1 and 3 (Fig. 2B), highlighting
model robustness and the independence of our factor
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Figure 2. Global variance decomposition pattern and position-level effect trend applying Rosace-AA on Human Domainome 1.0 dataset. (A) Model
specifications revisited. (B) Variance explained by position, comparing Models 1 and 3. (C) Variance explained by AA, comparing Models 2 and 3. Variants
coloured purple (0.01 above the dotted line) have increased explained variance under Model 3 than 2. Those coloured green are the opposite (0.01 under
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the relation between position score and AA sensitivity scaling; Middle, an example of the relation described above; Bottom, Variance decomposition of
each example domain. H, Variance explained by each factor by position, grouped by domain family. The patterns are explained in the text below.

decomposition despite interdependence between position and
substitution effects.

Certain domain families consistently show high variance
explained by stability position effects, with PF00628 (PHD-
finger), PF00226 (Dna] domain), PF00643 (B-box zinc fin-
ger), and PF00412 (LIM domain) accounting for over 75%
of the variance (Fig. 2H). In contrast, families like Beta/
Gamma crystalline and PF02198 (Ets-domain) exhibit lower
variance explained by position effects (below 57%), suggest-
ing other factors contribute more to their variability.

Variance explained by global AA substitution effects
(Model 2) was small, ranging from 0% to 10% (Fig. 2C).
Adding the position-specific scaling factor in Model 3 in-
creased AA substitution variance for some proteins, reaching
up to 10% (annotated purple in Fig. 2C). While AA substitu-
tion effects are minor compared to position effects, their in-
teraction with position-specific factors can be significant for
certain proteins, highlighting their combined impact on sta-
bility mutation effects within protein domains.

Protein domain families with higher variance explained by
position tend to have lower variance explained by amino
acids, as expected. The PF00595 (PDZ domain) family, with
a narrow distribution in position variance but a broad range
in amino acid substitution variance, highlights this pattern.
For example, while DLG4 (P78352, 60) and MPDZ
(075970, 372) both show 60% position variance, DLG4 has
no significant amino acid substitution effect, whereas MPDZ
explains over 12%. This difference may indicate functional
specialization or structural constraints within PDZ domains,
where certain proteins might be more tolerant or dependent
on specific amino acid changes, reflecting nuanced aspects of
protein stability.

Additionally, we tested in entire proteins (as opposed to
domains), to see if the variance attributed to position effects still
dominates other sources. We observe that this is indeed the

case. Using datasets with raw counts from ProteinGym (Notin
et al. 2023), the proportion of variance attributed to position
effects and AA substitution effects are: 54.1%, 1.3%
[cAR11 gof (Meitlis et al. 2020)]; 55.6%, 2.6% [CAR11 lof
(Meitlis et al. 2020)]]; 24.3%, 0.5% [CAS9_neg (Spencer and
Zhang 2017)]; 39.9%, 0.2% [CAS9_pos (Spencer and Zhang
2017)]; 31.1%, 3.1% [cD19 (Klesmith et al. 2019)]; 45.8%,
16.7% [RNC (Weeks and Ostermeier 2023)]; 70.5%, 1.1%
[sPG1_Olson (Olson et al. 2014)].

2.4 Interaction between local position and AA
substitution effect

In this section, we shift focus from the global protein-level
summary statistics to an analysis of local, position-specific
statistics. Conceptually, the protein or domain can be divided
into four categories based on these plots: no effect, position-
only, AA-substitution-only, or both. In cases where both
position and AA substitution effects vary, the scatter plot typ-
ically exhibits a “downward parabola” shape (Fig. 2D).
When AA substitution effects dominate but position has min-
imal impact, the points align vertically (Fig. 2E), suggesting
uniform position effects across AA substitutions. Conversely,
when AA substitution effects are neutral and the position ef-
fect varies, the points form a horizontal distribution at p,,,) =
0.5 (Fig. 2F). If the domain is mutation-insensitive, the points
cluster near the origin (Fig. 2G).

Here, for strongly neutral or LOF positions, p,,) is low, in-
dicating that the position dominates regardless of the substi-
tution. However, for mildly LOF positions, substitution plays
a critical role, often depending on local structure and interac-
tions with nearby residues, resulting in a curve that opens
downward. While other shapes could theoretically emerge,
these four categories capture the primary trends we observe.
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These local statistics are directly produced by the
Rosace-AA model. We extract two key position-level poste-
rior distributions from the mutation effect prior. (i) The
position-specific effect, ¢,,,) € (—00,00), reflects the average
mutation impact at a given position, with 0 indicating neu-
trality and more negative values signifying a stronger loss of
function (LOF). (ii) The position-specific AA substitution
scaling factor, p,,,) € [0, 1], quantifies how much a position is
affected by global AA substitution patterns. p,) =0 indi-
cates no global AA substitution effect, while p,,) = 1 reflects
a significant influence. Further, since the prior of p,,) is cen-
tered at 0.5, the model defaults to 0.5 if the data is uninfor-
mative (Fig. 2F and G). This occurs either because (i) there is
no global AA substitution effect v,,) =0, resulting in no
overall effect, or (ii) AA substitution effects are uniform
across all positions, rendering scaling unnecessary.

Figure 2D-G demonstrates the different positional effects
and AA substitution sensitivity patterns we have described.
Each point represents a protein position, with the x-axis
showing the position-specific effect and the y-axis represent-
ing the AA sensitivity scaling factor.

We further demonstrate the global protein-level summary
statistics for the four categories, specifically, the proportion
of variance explained by positional and AA substitution
effects. In both the “no effect” and “position only” cases, po-
sitional effects dominate, explaining over 80% of the total
variance. However, in cases where AA substitution effects are
significant, we observe an increase in the overall proportion
of variance explained, with AA effects contributing meaning-
fully to the model’s fit. Notably, in Fig. 2D, the position-
scaled AA effect (Model 3) provides a substantially better fit
than the unscaled model (Model 2), highlighting the novelty
and advantage of incorporating both positional scaled AA
substitution effects in our approach. This result underscores
the importance of modeling the interplay between position-

A ~ N(prior mean, prior variance) Bm

specific and AA substitution effects for a more accurate repre-
sentation of protein mutational landscapes.

2.5 Unexplained mutation effects beyond position
and global AA substitution require closer
examination

The Rosace-AA model captures crucial information with
the Bayesian hierarchical prior of functional score f3,, which
is modeled as a normal distribution with both prior mean
and prior variance (Fig. 3A). Previously, we focused on the
composition of the prior mean without leveraging the prior
variance estimate 0127 »- Here, we explore the residual vari-
ance—specifically, tile portion of the score that is not
explained by position or global amino acid (AA) substitu-
tion—since this residual component is likely to be less pre-
dictable and may reveal important insights.

The position-specific variance 012)(1/) quantifies the unex-
plained variance in the variance decomposition outlined in
Section 2.2 of the Results. With the inclusion of variance
explained by AA substitution in Model 3 (Fig. 3A), one
would expect the unexplained variance to remain the same or
decrease when a significant AA substitution effect is ob-
served, indicated by a higher p,,, value (Fig. 3B and C). This
relationship is exemplified by the OCT1 cytotoxicity data
(Yee et al. 2024) (11,432 synonymous, missense, and single-
AA deletion variants).

To pinpoint the position exhibiting the greatest unex-
plained variance in OCT1, we plotted 0;2)(y) against p,,). We
expected an increase in variance explained by the global AA
substitution matrix would lead to a decrease in 012)(,/).
Contradictory to our expectation, we observe a seemingly
random pattern instead. Notably, the positions with the high-
est 0127(”) values (5189, A219, and N463) showed a broad
range of p,., values (Fig. 3D). This unexpected finding
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prompts a closer investigation into the functional scores asso-
ciated with these mutations.

To delve deeper into our analysis, We compared two
groups of positions: the “poor fit” group with high azz)(y) and
the “good fit” group with high p,., but low 6127 - In the
“good fit” group, substitutions with lower BLOSUM scores
showed stronger LOF effects, aligning with expectations
(Fig. 3E), while the “poor fit” group exhibited erratic
LOF effects, deviating from BLOSUM trends (Fig. 3F). This
discrepancy suggests that local factors, such as protein-
protein interactions or conformational changes, may be
influencing the functional impacts at these positions, rather
than the overarching evolutionary or biophysical patterns as-
sociated with amino acid substitution. These positions are
particularly compelling, as they may involve intricate local
interactions within the protein or interactions with external
factors, such as drugs, as seen in the OCT1 cytotoxic-
ity screen.

2.6 High positional unexplained variance suggests
challenges in variant effect prediction

We hypothesized that positions with the largest unexplained
variance would be more difficult to predict using variant effect
predictors like AlphaMissense (Cheng et al. 2023). This also
motivates experiment designs to sample more on such posi-
tions with high unexplained variance, to compensate for the
diminished efficacy of statistical methods. Conversely, suppose
an experiment is constrained on the number of variants to gen-
erate and test. In that case, researchers can devote more sam-
ples to positions with larger unexplained variance and use
predictors to predict other variants’ effects more reliably.

To test the hypothesis that high unexplained variance on a
position indicates difficulty in variant effect prediction, we
approached the prediction task as a linear regression within a
Bayesian hierarchical model, using the prior mean (Model 3,
Fig. 3A). This setup represents the upper bound of prediction
performance for a linear regression-based method. We evalu-
ated prediction accuracy using the R? metric, which reflects
the proportion of variance explained by position and global
AA substitution (Fig. 3G). To identify which features are as-
sociated with greater prediction difficulty, we grouped var-
iants into deciles based on position-specific AA substitution
scaling factor p,(,) and variance 012)( ”)"

As anticipated, when grouping variants by p,,, the R? val-
ues display an upward parabola pattern—positions with the
activation score approaching 0 or 1 have larger R?, consistent
with our model settings. However, when grouping by azlj(v), we

observed that positions with higher variance were significantly
harder to predict compared to those with lower variance, par-
ticularly for the highest ";l;(y) decile (Fig. 3H). We also observe

a statistically significant negative correlation between 012,

R? (correlation R? 92%). This suggests that higher 012)@) may

®) and

indicate difficulty in variant effect prediction.

We then analysed predictions from AlphaMissense on the
missense mutations (10,378 in total) of the same protein, us-
ing a continuous pathogenicity scoring scheme (0-1).
Interestingly, positions with higher p, ) values showed a
slight improvement in prediction accuracy, confirming that
evolutionary trends, captured by substitution matrices like
BLOSUM, may enhance predictive performance. Regarding

6127(1/)’ the lowest 10% of positions exhibited high R* values,
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approaching 75%, while the highest variance positions saw
this metric drop to around 30% (Fig. 31). These findings sup-
port our initial hypothesis: positions with higher unexplained
variance from DMS are indeed more difficult to predict.
Finally, we explored improving variant effect predictions
when full DMS experiments are infeasible—such as for large
proteins—using a sampling strategy guided by positional var-
iance (o-f)(u)). The approach is simple: sample more variants
from positions with high variance and fewer from those with
low variance (Fig. 3]). To test this, we randomly sampled
20% of variants at each position in the first round. In the sec-
ond round, we sampled another 20% either randomly or

guided by 0‘127(1/). In our implementation, we try to sample

10% more from the lowest 0127(1/

40% from the highest. Accounting for missing observations,
the latter method gained a similar number of samples as the
former, which randomly samples from non-missing observa-
tions. Parameters from these datasets were used with the
Rosace-AA model to predict functional scores of unsampled

1> 20% from the second, onto

variants, evaluated using R?. As shown in Fig. 3], 012)<D)—guided

sampling notably improved prediction accuracy over random
sampling, highlighting its effectiveness.

2.7 Rosace-AA for multiphenotype DMS analysis

To demonstrate the utility of Rosace-AA in multiphenotype
analysis, we applied the model to data from a DMS experi-
ment on the MET kinase domain under various ATP-
competitive inhibitor conditions (Estevam et al. 2024).

MET, a receptor tyrosine kinase (RTK) implicated in can-
cers like lung and gastric, drives cellular growth via ATP-
dependent signaling, but mutations often confer resistance to
inhibitors, requiring evaluation of multiple treatments
(Estevam et al. 2024). In this DMS dataset, experiments were
conducted under a control condition and with 11 different
ATP-competitive inhibitors. For each condition, we sepa-
rately computed the variant-level 8, and position-level ¢,
and p,(,), using Rosace-2A (Fig. 4A).

To identify positions with inhibitor-specific effects, we
computed the variance of these position-level scores and visu-
alized them in a scatter plot. Positions with minimal variabil-
ity across inhibitors represent the null condition, such as
position R1327, which showed consistent behavior across all
inhibitors (Fig. 4C). Positions of greater interest exhibit
significant variance in either ¢, (blue in Fig. 4B) or p,,
(purple in Fig. 4B), indicating inhibitor-specific effects.
We mapped these key positions onto the MET structure
(Fig. 4D and G).

The top three positions with high variance in ¢, were
located within the ATP-binding pocket of MET (Fig. 4G),
suggesting that mutations at these sites produce inhibitor-
specific effects at the inhibitor-binding pocket without
broadly affecting overall protein function. Each of these three
positions displayed distinct resistance profiles to the different
inhibitors (Fig. 4H). For example, MET inhibitors can be
grouped by their binding mode to the ATP pocket and con-
formational preference (Estevam et al. 2024). Mutations to
position P1158 are more sensitive to types 11/2, II, and III
inhibitors and more resistant to types Ia and Ib inhibitors
(this is also shown in Fig. 41), implying that the mutations are
likely blocking the binding of the latter inhibitors and facili-
tating that of the former ones. Position Y1230 displays a
roughly opposite profile. Position G1163 is the most
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Figure 4. Applying Rosace-AA on MET kinase domain DMS dataset. The protein structure herein is 3DKC in PDB. In this experiment, a high fitness score
implies more resistance to an inhibitor. (A) Experiment description: 12 DMS experiments are conducted on MET kinase under 12 environments, obtaining
12 sets of 8, ¢, and p. (B) Cross-inhibitor variance of ¢ and p by position, categorized according to cross-inhibitor consistency of each factor—if the
variance of ¢ > 1, if the variance of p> 1%, or if both thresholds are reached. (C) Example of both ¢ and p being consistent on a position across inhibitors.
(D, E) Examples of consistent ¢ but varying p positions. (F) Functional score heatmap of a position with consistent ¢ but varying p. (G, H) Examples of
consistent p but varying ¢ positions. (I) Functional score heatmap of a position with consistent p but varying ¢.

interesting case among the three as sensitivity to inhibitors is
apparently not related to inhibitor type.

In contrast, the top three positions with high variance in p,,
were located farther from the ATP-binding pocket, suggesting a
more distal allosteric effect (Fig. 4D). Interestingly, these positions
shared a common substitution profile: DMSO and Tivantinib
(Tiv) inhibitors displayed high general amino acid substitution
effects, while Capmatinib (Cap) showed the lowest (Fig. 4E).
Further inspection of other positions with high p shows that Tiv
generally has similar behavior to that of DMSO, in contrast to
other inhibitors, probably due to its MET independence and a
different inhibition mode. A detailed examination of the heatmap
for position V1290 revealed that substitutions to Ile, Leu, Val,
and Trp were driving these changes of p,, (Fig. 4F).

In summary, this MET analysis demonstrates how
Rosace-AA’s position-level summary statistics can reveal
nuanced insights into the functional impact of mutations
across different phenotypic conditions. By capturing variance
in mutation effects both locally (within critical functional
sites) and distally (at allosteric positions), Rosace-AA
enables the identification of mutation-specific and condition-
specific functional shifts. This approach not only aids in
understanding the mechanistic underpinnings of inhibitor re-
sistance but also provides a broader framework for multiphe-
notype analyses, allowing researchers to explore complex
genotype-phenotype relationships in various experimental
contexts.

3 Discussion

The Rosace-AA framework provides a new powerful ap-
proach to dissecting the functional effects of mutations across

diverse conditions by incorporating both position-specific in-
formation and amino acid substitution trends. Its ability to
classify positions based on mutation effects and susceptibility
to amino acid changes has broad applications in fields such
as precision medicine, protein engineering, and drug discov-
ery. For example, the insights gained from the MET DMS
dataset highlight its potential for identifying mutation-driven
resistance mechanisms in cancer therapeutics. By extending
this framework to other proteins or drug-target interactions,
researchers can uncover novel functional insights that inform
personalized treatment strategies or guide the design of more
effective inhibitors.

A current major challenge in DMS is to gain biological in-
sight from the screen. It usually involves ad hoc quantitative
analyses of sequence patterns and protein structure.
Incorporating mutational information allows for identifying
positions that statistically diverge from the background.
Divergent variants and their residues are likely to have dis-
tinct roles in protein function such as binding interfaces, cata-
lytic sites, and other crucial positions, and thus merit
further inspection.

Despite its strengths, the Rosace-AA framework has limi-
tations. First, the decomposition of variance relies on prede-
fined substitution groupings, such as the BLOSUM90 matrix,
which may not fully capture all biological contexts. The
framework’s effectiveness in analyzing other protein families
with distinct evolutionary or functional constraints remains
to be thoroughly tested.

Future research could extend Rosace-2AA by incorporat-
ing more sophisticated models of AA substitution, allowing
users to input custom substitution matrices. This flexibility
would enhance the framework’s applicability across diverse
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protein domains and evolutionary contexts, providing more
biologically relevant insights. Another important direction is
to model epistatic interactions with multi-mutation DMS
data, enabling Rosace-AA to capture non-linear mutation
effects that go beyond position-specific and substitution
effects. This extension would provide a more comprehensive
view of mutational impacts, especially in cases where substi-
tution patterns are more complex. Additionally, the posi-
tional features extracted by Rosace-2AA could guide more
targeted subsampling of mutations, facilitating the mapping
of mutational landscapes and helping prioritize regions of in-
terest for further experimental or computational study.

4 Methods

4.1 Rosace-AA: notation and count

Following Rosace’s notation, in a growth-based DMS
screen, each raw sequencing count is denoted by ¢, ,, stand-
ing for variant, selection round, and replicate indices,
respectively.

p(-) encodes the positional information of a variant. In
most cases, it maps a variant to its amino acid position.
There are two notable exceptions, however: (i) If information
is given whether each variant is synonymous or not, all syn-
onymous variants are grouped as a virtual “control” posi-
tion. (ii) If a position has too few variants (due to missing
data, for example), all variants of this position will be merged
into the next position. The process is repeated if the com-
bined position also lacks sufficient variants.

a(-) is a similar mapping that extracts the mutant corre-
sponding to a variant, it can be substitution, insertion, or de-
letion. In this article, the terms “mutant” and “AA
substitution” are used interchangeably.

Every possible mutant is further assigned a mutant group
label, with A possible mutants in total. a(-) thus maps var-
iants to such “AA substitution groups.” Since each AA substi-
tution group contains multiple mutants, a(-) is by
construction a coarser mapping than u(-).

Rosace-AA preprocesses raw sequencing counts identi-
cally as Rosace: variant filtering, missing data imputation,
scale transformation, and count normalization. The resultant
aligned count is denoted 11, .

4.2 Rosace-2AA: Bayesian hierarchical model

Like Rosace, Rosace-AA assumes linear growth of the
aligned count m with regard to time ¢ (selection round):

151By+ b 2,y ~ Normal (ﬂyt/T +b ez(v)) (1)

U?g

where the growth rate f, is treated as the functional score of
the variant and b, as the intercept. &y, is the scale of the er-
ror, grouped by the mean group of the variant g(v) described
in Rosace. The prior of each error scale is independently
given by: g4,y ~ InvGamma(1,1).

The variant-level mean growth rate f, is modeled as:

B,b,v,p, 06> ~ Normal (¢p<v) T Vaw)Pp(v)s 012,(1,)) (2)

The position-level mean effect ¢ and variance o2 are, con-
sistent with Rosace, given weak priors: ¢,,,) ~ Normal(0, 1)
and 6%(1/) ~InvGamma(1,1).
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The hierarchical model is solved with numeric Bayesian in-
ference using Stan (Stan Development Team 2023). We use
the default sampler offered, the No-U-Turn sampler (NUTS).

4.2.1 AA-substitution-level growth rate and activation
Rosace-AA has two additional components to f,: (i) AA-
substitution-group-level functional effect v,,). It can be
loosely interpreted as the functional “potential” inherent to
an AA substitution. This term is not directly additive with
®p()> but regulated by: (ii) position-level activation score
Pp(w)- The AA substitution has the largest impact at positions
with the highest activation scores (the most “activated”).

We use BLOSUMO0 to score every possible AA substitu-
tion. A high BLOSUM score implies that the substitution is
prevalent, which likely translates into less impact on protein
function. Substitutions of similar BLOSUM scores are
grouped so that each group covers at least 20% of positions.
Insertions and deletions, not explicitly scored, are given two
separate BLOSUM group labels from substitutions as their
functional effects are assumed to be vastly different.

Synonymous variants are assigned the same virtual
“position” and the same substitution label, whose functional
effect centers to 0. Also, to avoid identification problems, we
force all non-synonymous AA substitution effects v to sum up
to 0, weighted by the variant count of each AA substitution
group. As opposed to equal weighting, this weighting scheme
is invariant to how AA substitutions are grouped.

Recall that the AA substitution group label A is the
“synonymous group.” Let the mean-normalized variant
count of non-synonymous mutation be w € RA~1, then the
Gaussian prior on v is set as follows:

v_a ~ Normal(0, diag(w) "M diag(w) ")

1 (3)
where Mj; = 1;—j - e lizi, va=0

M is an exchangeable but degenerate correlation matrix with
rank A-2. w is mean-normalized so that if all non-
synonymous mutation groups have the same number of var-
iants, diag(w) is simply the identity matrix.

Activation scores Ppw) are assumed to range in [0, 1].
Intuitively, an activation score of 1 implies full activation of
AA substitution effects and 0 complete inactivation. It is also
assumed that most positions are moderately activated.
Therefore, activation scores are given an independent and
symmetric beta prior: p,,, ~ Beta(1.5,1.5)

4.3 Data availability and processing

OCT1 (Macdonald et al. 2023), MET (Estevam et al. 2024),
and the Human Domainome (Beltran et al. 2024) dataset are
retrieved from supplementary files to their respective publica-
tions. The ProteinGym (Notin ez al. 2023) datasets are available
at https://marks.hms.harvard.edu/proteingym/ProteinGym_v1.
3/DMS_ProteinGym_substitutions.zip, and only datasets with
raw count information are processed. For all DMS data, var-
iants with high-order mutation are filtered out, and only raw se-
quencing counts of synonymous, missense, and nonsense
mutations are input into the Rosace-AA tool and processed
with the default workflow: count normalization, posterior dis-
tribution sampling, and result summaries.
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