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Advances in uncovering the mechanisms of 
macromolecular conformational entropy
 

Stephanie A. Wankowicz       & James S. Fraser     

During protein folding, proteins transition from a disordered polymer into 
a globular structure, markedly decreasing their conformational degrees 
of freedom, leading to a substantial reduction in entropy. Nonetheless, 
folded proteins retain substantial entropy as they fluctuate between the 
conformations that make up their native state. This residual entropy 
contributes to crucial functions like binding and catalysis, supported by 
growing evidence primarily from NMR and simulation studies. Here, we 
propose three major ways that macromolecules use conformational entropy 
to perform their functions; first, prepaying entropic cost through ordering 
of the ground state; second, spatially redistributing entropy, in which a 
decrease in entropy in one area is reciprocated by an increase in entropy 
elsewhere; third, populating catalytically competent ensembles, in which 
conformational entropy within the enzymatic scaffold aids in lowering 
transition state barriers. We also provide our perspective on how solving 
the current challenge of structurally defining the ensembles encoding 
conformational entropy will lead to new possibilities for controlling 
binding, catalysis and allostery.

During protein folding, proteins go from a disordered linear polymer, 
which can access almost infinite states1, to a globular, folded form, in 
which access to most conformations, especially in backbone atoms, 
is restricted by steric clashes2,3 The hydrophobic collapse accompany-
ing folding also liberates water molecules from ordering around side 
chains. This collapse is entropically favorable, as the water molecules 
acquire additional degrees of freedom4. However, the substantial reduc-
tion in conformational freedom of the protein that accompanies folding 
has a steep entropic cost. This entropic loss is governed by the Gibbs 
entropy equation ((∑pln(p)); in which p denotes the number of states)5. 
Additional free energy favoring folding is due to attractive interactions 
(for example, hydrogen bonds), which must outweigh the cost of fur-
ther reducing the number of accessible conformations that forming 
those interactions requires (Fig. 1).

The remaining conformations folded proteins access provide the 
residual entropy required for protein stability and activity. A strategy 
for maximizing the stability of the folded state is therefore to balance 
the attractive interactions (enthalpy) with as minimal a reduction in 
accessible conformations (entropy) as possible. In the conformational 

ensemble of the folded native state for most globular proteins, confor-
mational heterogeneity is usually dominated by alternative conforma-
tions of side chains, with only minor influences from the backbone6. 
Perturbations, such as ligand binding, change the conformational 
ensemble, altering the residual conformational entropy alongside 
enthalpic interactions. Examining perturbations or alterations to a 
protein from a conformational ensemble perspective highlights the 
need to integrate enthalpic and entropic contributions, opening up the 
use of entropy prospectively to explain function, including allostery, 
binding and catalysis, or to drive down ligand binding affinity and 
functional protein design.

To concretely illustrate how the residual conformational entropy 
in the native state can influence the free energy of the system upon 
perturbation, consider a single leucine side chain near the active site 
of a protein kinase (Fig. 1). In the unfolded state, the leucine side chain 
can equally access all rotamers7, and the backbone is only restricted by 
the neighboring residues on the chain (Fig. 1a). Upon folding, the back-
bone becomes heavily restricted by steric clashes with other residues 
and adopts a relatively unique conformation2. This loss of backbone 
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more populated one). But, by considering the underlying ensemble, 
we can see that ligand binding induces a ‘conformational redistribu-
tion’ and can start to think about the entropic consequences for the 
free energy of binding.

Ligand binding can also, counterintuitively, increase the confor-
mational entropy of side chains10,11. For example, a ligand binding at 
a different part of the active site may stabilize different residues in 
conformations that create a small void adjacent to the leucine. The 
void could permit populating an additional, third, leucine rotameric 
conformation compared to apo (Fig. 1d) or increase the thermal fluc-
tuations around the two already populated rotameric conformations 
(Fig. 1e). Both of these scenarios increase conformational entropy and 
can, therefore, favor ligand binding.

While the entropic contribution of a single side chain may appear 
small, accumulating numerous conformational redistributions across 
the protein can lead to a substantial entropic impact and provide an 
allosteric source of free energy. Structural descriptions of allostery 
are frequently based on averaged single-conformer structures and 
described in a ‘domino effect’ of conformational changes through a 
well-defined pathway12. But, over 40 years ago, Cooper and Dryden13 
postulated that protein thermal fluctuations, without change in 
mean atomic positions, were sufficient to provide ‘dynamic allostery’ 
between sites. This model can be reconciled with the domino effect by 
examining allostery through a thermodynamic lens where any change 
in the conformational ensemble, whether large or small, can impact 
free energy and protein function through both entropy and enthalpy9.

Despite the apparent energetic importance of conformational 
entropy, the ability to probe it experimentally is underdeveloped. 
Currently, the best experimental support comes from solution NMR 
relaxation techniques. By probing methyl or amide groups, NMR 
relaxation techniques obtain a site-specific measurement of the 
amount of disorder on the pico–nanosecond timescale, called an 
order parameter14. Changes in the average side chain order parameter 
for methyl-containing residues (like leucine) across a protein have 
been correlated with calorimetric measurements of conformational 
entropy14–18. Excitingly, these experiments reveal a great diversity of 
behaviors across systems: some binding events are entropically driven 
due to increased side chain disorder, whereas others are strongly 
entropically disfavored. Additionally, some side chains exhibit 
increased disorder even when the overall trend is toward unfavora-
ble conformational entropy (and vice versa). Furthermore, different 
ligands bound to the same receptor can have drastically different 
impacts on conformational entropy10,19,20. While NMR order parameters 
provide the extent of the disorder, many equivalent side chain confor-
mational ensembles can produce a given order parameter value, as 
seen in the packing void example17 (Fig. 1d,e). This degeneracy makes 
it challenging to connect conformational entropy to structural models.

An alternative and readily available source to reveal the struc-
tural basis of conformational entropy is ensemble modeling of 
X-ray crystallography and cryo-EM data. These experiments collect 
ensemble-averaged data from tens of thousands to billions of individual 
molecules, capturing all conformations regardless of the exchange 
timescale. While the protein is in a solid state and, in the case of X-ray 
crystallography, a crystalline state, protein side chains, which contain 
most protein conformational entropy, are often not disruptive to dif-
fraction or alignment. While careful attention to experimental noise 
and additional artifacts is needed21,22, we have demonstrated that multi-
conformer modeling in high-resolution X-ray datasets can detect subtle 
and weak conformations, explaining statistically significant signals in 
the density map23. The leucine side chain would have a subtly differ-
ent density surrounding it in each scenario. While a multiconformer 
model would help tease apart the contributions of different rotamers, 
a conventional single-state structure would almost certainly model all 
four examples the same way. A ‘crystallographic order parameter’ that 
agrees reasonably with NMR relaxation experiments can be obtained 

freedom incurs a substantial entropic penalty, with residual entropy 
contributed only by the harmonic motion about its mean position. 
Unlike the backbone, side chains can be much less restricted, and most 
side chains access multiple rotameric states, even within the protein 
core8. Without a ligand in the active site, the leucine side chain can 
access two of the five possible rotameric states, while steric clashes 
with other residues disfavor the remaining three. This scenario leads 
to a reduction in, but not the elimination of, side chain conformational 
entropy upon folding (Fig. 1b).

Perturbations, including ligand binding, can further alter the 
conformational ensemble with varying entropic consequences9. An 
active site ligand may form van der Waals contacts with the leucine 
side chain in a way that strongly prefers one of the apo state alternative 
conformations (Fig. 1c). The transition from two to one rotameric con-
formation further decreases conformational entropy. Because most 
structural models from X-ray crystallography or cryo-EM would only 
have one of the two conformations modeled in the apo state, whether 
ligand binding induces a ‘conformational change’ depends on which 
conformation is modeled in the apo state (usually, but not always, the 
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Fig. 1 | Examples of a structure and estimated conformational entropy for a 
leucine side chain. Left, the structural state of the entire protein with leucine 
depicted as colored spheres. Middle, the conformation(s) of leucine in each state. 
Right, the relative location of each conformation on the energy landscape of the 
leucine side chain. The width of the arrow represents the number of accessible 
conformations. a, In an unfolded state, the entire protein and the leucine side 
chain access many different conformations, with each conformation sitting at 
the top of a wide energy landscape. b, Upon folding, the majority of the protein 
is structured. This results in a large loss of entropy in the leucine side chain. The 
leucine can only access two rotamer states (teal and purple), separated by an 
energy barrier. One conformation (purple) has substantially more harmonic 
entropy, as shown by a wider energy well. c, When ligand 1 binds, the leucine loses 
access to an additional rotameric state, reducing its conformational entropy.  
d, When ligand 2 binds, the leucine gains conformational entropy compared to the 
unbound state. This would be observed as a decrease in NMR order parameters 
(representing increased disorder) but three alternative conformations in X-ray 
or cryo-EM data. e, When ligand 3 binds, the leucine has the same number of 
accessible rotamer states as in the unbound state (2); however, the harmonic 
motion in both rotamer states greatly increases. This would be observed as a 
decrease in NMR order parameters (representing increased disorder) but two 
alternative conformations with increased B factors in X-ray or cryo-EM data.
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by determining the distance between each alternative conformation 
and the weighted B factor, a refined parameter to account for har-
monic disorder, of each conformer24. Importantly, it is not limited to 
methyl-containing side chains and, due to the time-averaged nature of 
diffraction or single-particle imaging, this metric extends to timescales 
beyond the pico–nanosecond timescale of NMR order parameters. 
Ideally, molecular dynamics (MD) simulations could directly observe 
the fluctuations of residue upon perturbation25, but substantial protein 
dynamics happen on a timescale inaccessible to MD26–29, necessitating 
hybrid approaches that bias agreement to experimentally observed 
order parameters28,30. Collectively, these techniques are beginning to 
quantify the structural basis of conformational entropy.

Our prevailing models for understanding proteins focus on explic-
itly representing and considering enthalpic interactions, emphasizing 
the precise orientation of ‘functional’ residues, with entropy relegated 
to a more implicit role in the analysis. However, we need to consider 
how a local narrowing of the conformational ensemble is opposed by 
entropy. This opens the question of what strategies proteins employ 
to optimize overall free energy by optimizing entropic contributions.

Here, we review evidence of how nature has evolved to harness 
protein conformational entropy and how new approaches in X-ray 
crystallography and cryo-EM could uncover the link between structure 
and conformational entropy. The first principle is most well known: 
prepaying entropic costs through ordering in the initial, or ground, 
state. The second phenomenon is spatial entropic redistribution: an 
increasing conformational entropy in one region of the protein or sys-
tem in response to a decrease in conformational entropy elsewhere in 
the system. The third concept extends the concept of spatial redistribu-
tion to catalytically competent ensembles: conformational entropy in 
the enzymatic scaffold, distant from the catalytic site, contributes to 
lowering transition state barriers. Explorations of these mechanisms 
could profoundly impact our answers to long-standing questions in 
binding events, catalysis and cell signaling. After all, without explicitly 
considering conformational entropy, we ignore a large thermodynamic 
component driving free energy. Now is the time to apply a conforma-
tional entropy lens to our explanation of protein function and begin 
applying that lens prospectively to ligand and protein design.

Prepaying entropic penalties as a strategy for 
cooperativity
Binding affinity is largely dictated by surface complementarity and 
attractive interactions (for example, hydrogen bonds) between the 
ligand and the receptor. Like folding, both these features greatly con-
strain the potential conformations the receptor can adopt, incurring 
an entropic penalty. The loss of conformational entropy is countered 
largely by the enthalpy gained by these interactions. However, if the 
ground state conformational ensemble is restricted to a similar extent 
as that adopted in the bound state, the protein prepays the entropic 
penalty. The cost of the entropic penalty can be minimized or even 
rendered non-existent. This simple concept extends most interestingly 
to cooperativity in allostery.

Consider an allosteric system with two binding sites, each of which 
must be well ordered to stably bind a ligand. The first binding event sub-
stantially reduces the conformational freedom of side chains across the 
protein, paying a large entropic penalty31. This reduction in conforma-
tional heterogeneity can stabilize binding-competent conformations 
at the second binding site. In this scenario, the first event ‘prepays’ the 
entropic penalty of the second binding event and reduces the entropic 
organization penalty for stabilizing the binding-competent conforma-
tion. Compared to a scenario in which the second binding site remains 
dynamic, allosteric ordering lowers the energy gap for the second bind-
ing event, leading to an observation of ‘positive cooperativity’ (Fig. 2a).

A beautiful example of how entropy influences positive coopera-
tivity is in the dimeric enzyme human thymidylate synthase (hTS)19,32. 
Careful calorimetric measurements at multiple protein concentrations 

demonstrated positive cooperativity between sites, with the second 
binding event requiring ~1.5 kcal mol−1 less energy than the first. This 
difference is driven primarily by entropy. Both crystallography and 
sensitive NMR measurements revealed no protein structural changes 
upon ligand binding. However, NMR measurements of side chain order 
parameters suggest that the first binding event greatly reduces con-
formational entropy throughout the protein, including at the sec-
ond binding site. This ordering leads to virtually no change in protein 
conformational entropy after the second binding event, consistent 
with calorimetry indicating that the second binding event is more 
favored entropically (Fig. 2b). In addition, NMR relaxation dispersion 
and chemical exchange saturation transfer experiments revealed a 
reduction in the exchange of some lowly populated states (~1%) upon 
ligand saturation at both sites. However, this population change is 
insufficient to explain the large swing in entropy. The loss of slow 
dynamics and dramatic change in side chain fluctuations can be recon-
ciled through population shuffling, where the fast dynamics undergo 
reorganization due to the influence of slower movements19,33. Remark-
ably, the entropy-driven positive cooperativity is highly specific to the 
hTS substrate dUMP. Even though the substrate (dUMP) and product 
(dTMP) differ by only a single methyl group, no positive cooperativity 
is observed by calorimetry for dTMP binding. Again, the NMR data are 
consistent with this observation, showing no difference in side chain 
order parameters between hTS–TMP and apo hTS. These observations 
link the thermodynamics of cooperativity to the pre-ordering of side 
chain conformations across the protein (Fig. 2c).

Entropy can also contribute to cooperativity in monomeric pro-
teins with multiple binding sites, as observed in protein kinases34–36. 
For example, in protein kinase A, cooperativity is observed between 
the nucleotide and substrate (peptide) binding sites34. As in hTS, this 
cooperativity has an entropic origin with prepaying entropic costs and 
pre-organization as dominant molecular mechanisms. Inhibitors that 
resemble the natural substrate, ATP, lead to ordering at the substrate 
binding site and exhibit greater apparent cooperativity34. This example 
highlights how evolution (and, perhaps unwittingly, medicinal chem-
istry efforts) have manipulated conformational entropy to achieve 
positive cooperativity.

In contrast to the positive cooperativity discussed above, entropy 
can also drive negative cooperativity. In the homotetramer transthyre-
tin (TTR), the affinity for small molecules to the second site is weaker. 
However, the structure of each subunit, including the binding sites, 
looks structurally similar, posing the question of why there is a differ-
ence in affinity. Cryo-EM revealed an inherent asymmetry in the ensem-
ble of conformations of each dimer and that the first binding event 
does not lead to ordering the second binding site. On the contrary, 
the subsequent binding event requires more extensive structural rear-
rangements, including loop ordering, which comes at a higher entropic 
cost37. Entropically driven negative cooperativity is also observed with 
NMR order parameter measurements in the bacterial transcription 
factor CzrA, which has a zinc-binding site more than 15 Å away from 
a DNA-binding site. Without zinc, DNA binding increases side chain 
flexibility throughout the core of CrzA, increasing DNA-binding affinity 
through favorable entropy. However, upon binding zinc, side chain flex-
ibility (and thus conformational entropy) strongly decreases, reducing 
DNA-binding affinity38 (Fig. 2c).

These examples show how both negative and positive coopera-
tivity can result from changes in the conformational distributions 
that accompany initial binding events. These variations in confor-
mational distributions arise not only from substantial shifts in their 
dominant conformation (conformational change) but also, crucially, 
from fluctuations. Prepaying (or, in the case of negative cooperativity, 
exacerbating) entropic penalties is a key way proteins allosterically con-
trol function. A greater structural understanding of the entropic and 
reorganization penalties accompanying these binding events may be 
especially therapeutically relevant to double-drugging strategies39,40.
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Spatial entropic redistribution can counter local 
ordering at binding sites
While there are examples of ‘fuzzy’ ligand–protein binding events in 
which both the protein and the ligand adopt many conformations upon 
binding41, most binding events involve a local reduction in confor-
mational dynamics at the binding site10. As in folding, this creates an 
entropic cost that must be countered by the new attractive interactions 
between ligand and receptor. As stated above, prepaying this entropic 
cost using a ground state with a relatively less dynamic binding site is 
an attractive strategy. However, such well-packed binding sites are at 
odds with the fact that most binding sites have large voids that can 
be filled by alternative conformations of binding site residues in the 
unbound form.

Although binding often comes with a local entropic cost, not all 
binding events have large overall entropic penalties. A substantial 
contributor to counter the cost is surely the liberation of ordered 
water molecules in the bound state; however, even after accounting 
for solvation changes, the contributions of protein conformational 
entropy can still favor binding, even outweighing the contribution of 
solvent in some systems42,43. This finding raises the hypothesis that 
nature counters the entropic penalty incurred at the binding site by 
modulating entropy elsewhere in the protein. Substantial evidence 
suggests that proteins have evolved to redistribute entropy from 
the binding site upon ligand interaction. This phenomenon, which 
we term spatial entropic redistribution, involves countering local 
ordering, manifested as a loss of entropy at the binding site, with an 
increase in disorder at more distant sites, reducing the overall change 

in conformational entropy (Fig. 3a). Importantly, this is not a ‘zero 
sum’ compensation, as in classic entropy–enthalpy compensation44, 
but rather spatial entropy redistribution. This redistribution is an 
important mechanism for reducing the impact of unfavorable local 
entropic changes and, therefore, improving the overall free energy 
of binding. While prepaying entropic penalties result from ordering 
a specific binding site in the ground state, spatial entropic redistribu-
tion results from distal sites increasing entropy in response to a local 
reduction at the binding site. The change in entropy from distal sites 
can, therefore, partially contribute to overcoming the entropy reduc-
tion in the binding site or even exceed it, leading to a favorable change 
in the conformational entropy of binding.

The most intuitive way of thinking about spatial redistribution 
of entropy is through portions of a protein acting as ‘entropic reser-
voirs’ that are poised to greatly change their conformational ensem-
ble upon perturbation. Intrinsically disordered regions (IDRs) are 
prime candidates to serve as these entropic reservoirs45. In human 
UDP-α-d-glucose-6-dehydrogenase (UGDH), the deletion of the 
C-terminal tail IDR reduces the affinity for the allosteric metabolite 
UDP-xylose by approximately tenfold, despite making no direct contact 
with the ligand46. The ligand-bound state stabilizes altered contacts 
near the IDR, which allows the IDR to adopt an even more expanded 
conformational ensemble relative to the apo state. Thus, a major driv-
ing force for binding is increased disorder and entropy in an already 
high-entropy IDR. To test this model, they showed that binding affinity 
lacked sequence dependence in the IDR region, but that the length of 
the IDR was strongly predictive of affinity. These results are consistent 
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Fig. 2 | Entropy can be used as a way for proteins to modulate cooperativity 
with the first binding event, either raising or lowering the protein 
conformational entropy, thereby leading to cooperativity through increasing 
(negative cooperativity) or reducing (positive cooperativity) the entropic 
penalty required for subsequent binding events. a, In entropically driven 
positive cooperativity (orange), a substantial entropic penalty occurs upon 
the initial binding event (likely leading to some pre-ordering in the second 
binding site), allowing the second binding event to cause a smaller entropy 
reduction, which increases the binding affinity, leading to positive cooperativity. 
By contrast (blue), the initial binding event only pays the entropic penalty of 
the first binding event, leading to the second binding event paying the same 
entropic penalty, preventing entropically driven positive cooperativity. b, hTS 
displays entropically driven positive cooperativity when binding its substrate 

dUMP (orange). The entropic contribution of the first dUMP binding hurts 
the binding affinity (+2.5 kcal mol−1) and corresponds to a large reduction in 
side chain flexibility (represented by the number of side chain conformation 
boxes). However, the entropic contribution of the second dUMP helps the 
binding affinity (−2.5 kcal mol−1). When hTS binds to its product dTMP (blue), 
no positive cooperativity is observed. Both binding events have similar binding 
affinities, with the entropy decreasing upon both binding events, and there are 
a similar number of reductions in side chains in both events. c, In the bacterial 
transcription factor CzrA, when zinc is not bound, there is an increase in side-
chain flexibility, leading to improved DNA-binding affinity due to favorable 
conformational entropy. Zinc binding (blue sphere) reduces side chain flexibility, 
diminishing the favorable protein conformational entropy and lowering DNA-
binding affinity.
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with an entropic force where the IDR can impact the overall entropy 
through its entropic reservoirs but also its impact on the globular 
protein conformation and entropy, as observed in other proteins47,48. 
A similar interplay likely modulates allostery in the hTS example dis-
cussed above. In hTS, the interaction between an N-terminal IDR and the 
globular domains may influence the side chain fluctuations underlying 
positive cooperativity. Intriguingly, this IDR segment is absent in the 
Escherichia coli homolog of TS, which is also dimeric but is noncoop-
erative49. In addition to IDRs, local unfolding, leading to a substantial 
increase in residue conformational entropy, provides another poten-
tial ‘entropic reservoir’. In adenylate kinase, mutations that affect the 
amount of local unfolding in lid subdomains are important for different 
aspects of catalysis, with an underlying entropic mechanism driving 
the changes in free energy50. These examples suggest that the modu-
lation of thermodynamics by the entropy of unfolded or intrinsically 
disordered segments influences the dynamics of folded regions and 
can, therefore, tune the free energy of binding and allostery.

In addition to the large changes in entropic reservoirs, small fluc-
tuations within folded domains can contribute substantially to spatial 
entropic redistribution (Fig. 3b). The interplay between the backbone 
and side chains in entropic spatial redistribution plays out in the rela-
tionship of peptide binding in PDZ domains. The third PDZ domain 
from the postsynaptic scaffolding proteins PSD-95 or PDZ3 (also known 
as SAP90) shows a connection between a non-essential distal α-helix 
and binding affinity. Truncation of α-helix 3 (α3) reduces peptide bind-
ing affinity by 21-fold, even though it is over 6 Å away from the binding 
site. The lack of change in chemical shifts shows that this change is not 
due to a major structural perturbation. Rather, the dynamics of the 
unbound state are altered by the truncation. In the wild-type protein, 
the side chains are much more rigid relative to the truncated variant. 
While, in the peptide-bound state, both wild type and the truncated 
variant have similar side-chain fluctuations. The change in binding 

affinity therefore results in increased entropic penalty in the receptor. 
In this context, the α3 truncation is artificial, but it is a site where other 
domains are commonly linked to PDZ domains and may highlight a 
mechanism of interdomain allosteric communication51. This type of 
interaction is reminiscent of the ‘entropic reservoirs’ discussed above; 
however, in this case, the dominant entropic contribution is on the 
side chain fluctuations of the folded domain, not on the backbone 
of the terminal segment. The dominance of side chain fluctuations 
in dictating the entropic contributions also played out in a study in 
the homologous second PDZ domain of human tyrosine phosphatase 
1E (PTPN1). This PDZ domain demonstrates clear spatial redistribu-
tion: side chains around the binding site lose entropy, while specific 
distal residues increase entropy52. As in the PDZ3 example, there is no 
evidence from chemical shifts that suggests a major conformational 
change. This result suggests that sub-ångström changes in positions 
can be amplified nonlinearly to enable alternative conformations of 
side chains at neighboring residues, greatly contributing to the num-
ber of states the protein populates. This is a provocative mechanism 
for a protein to have evolved ways to ‘transfer’ areas of higher entropy 
(that is, more dynamics) through creating new voids and changes in 
rotamer states8.

The most extensive evidence for this mechanism emerges from 
correlations between changes in NMR order parameters and calo-
rimetry measurements. This correlation has been most extensively 
studied by Wand and colleagues in calmodulin, which binds various 
peptides with roughly similar overall binding affinity, but with distinct 
entropic and enthalpic profiles. For example, upon binding a pep-
tide derived from smooth muscle myosin light-chain kinase peptide 
(smMLCKp), the receptor loses side chain conformational entropy, 
especially around the smMLCKp binding site53. This result agrees with 
the direction and magnitude of the estimate of residual conformational 
entropy from calorimetry. In a series of papers, the authors extended 
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Fig. 3 | Proteins have evolved to counter entropy loss at the binding site by 
increasing disorder in distant sites. a, Upon binding, the binding site tends 
to lose conformational entropy; however, entropy can be redistributed to 
distal regions, which could favor binding (teal). By contrast, if distal regions do 
not increase their entropy, the protein will play a larger entropic penalty that 
disfavors binding (orange). b, Entropic redistribution upon binding can occur 

in many different ways. As represented by the PDZ domain, upon binding the 
peptide (red), entropy (represented by the number of conformational boxes) 
can be redistributed from binding site residues to distal regions. This can 
occur through entropic reservoirs, like a transition from ordered (α-helix) to 
disordered (IDR). It can also be distributed throughout the protein, observed by 
residues accessing new rotameric states or increased harmonic disorder.
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this work to six peptides, each with similar affinity to calmodulin20. 
The contribution of conformational entropy to the binding affinity of 
these peptides varies widely, ranging from highly favorable to highly 
unfavorable. In each case, the average change in side-chain NMR order 
parameters correlated with the estimates from calorimetry, leading to 
the concept of the ‘entropy meter’42 (Fig. 4).

This entropy meter represents the transformation of the dynami-
cal indicator of conformational entropy into a quantitative metric. 
The entropy meter concept has now generalized to 28 protein–ligand 
complexes from eight different protein receptors42. Many of these 
examples do not have a clear spatial relationship of changes in entropy 
upon binding. However, it is difficult to discern whether this is due to 
the sporadic methyl side chain probes used to determine the protein 
conformational entropy or the lack of spatial entropic redistribu-
tion in these systems. A spatial pattern is observed in the catabolite 
activator protein (CAP), a dimeric protein that binds DNA in a cyclic 
AMP-dependent manner54,55. After cyclic AMP binding, CAP undergoes a 
large conformational change to a state compatible with DNA binding. A 
series of mutants exhibit similar overall binding affinities, but entropic 
contributions swing by almost 30 kcal mol−1. Across these mutants, 

the ones with entropically driven binding have increased side chain 
fluctuations in side chains distal from the DNA-binding site, while the 
residues near to DNA experience a loss of flexibility. This spatial redis-
tribution of entropy has also been demonstrated in protein–protein 
interactions, such as the activation of TGF-β56. The concept of how 
entropic contributions cluster in space has also been examined as a 
function of pressure in ubiquitin and for protein–protein interactions 
in barnase–barstar57,58. These studies also demonstrate clustering of 
side chains that increase or decrease flexibility in a correlated manner, 
suggesting that the redistribution of side chain fluctuations may be 
an evolved feature of proteins to modulate the free energy of folding 
and binding.

To assess the general trends of entropic spatial redistribution 
after ligand binding, we identified ~700 pairs of high-resolution 
X-ray crystal structures in which the only difference was the presence 
of a small-molecule ligand. We then rebuilt multiconformer mod-
els containing well-supported alternative conformations into the 
experimental data. These models allow us to estimate crystallographic 
order parameters24 for each model and compare the conformational 
entropy change upon ligand binding10. A striking finding emerges: 
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y axis, the estimated protein −TΔS (in which T denotes temperature, and ΔS 
denotes entropy) from experimental calorimetry. Each point represents a 
unique protein–ligand complex, and each color represents a different protein. 
Caro et al.42 established a linear relationship between the average ΔNMR order 
parameter and calorimetric binding entropy. Proteins plotted: calmodulin 
(green data points), CAP (blue data points), galectin, hen egg white lysozyme 
(HEWL), PDZ3, PDZ2, dihydrofolate reductase (DHFR) and SAP (purple data 
points). Data are from ref. 43.
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the conformational entropy lost at the binding sites is correlated with 
entropy gained at distal sites. We also observed diversity in the amount 
of entropy redistributed based on both the protein and the ligand 
involved. Even for a single receptor, different ligands result in distinct 
patterns of entropy redistribution. Two ligands that cause equivalent 
reductions in entropy in the active site can differ by ~±1–2 kcal in the 
response at distal sites. This difference can occur because the ligands 
will engage different parts of the binding site in specific interactions 
that induce distinct patterns of spatial entropic redistribution. For 
example, in the kinase CDK2, the patterns of entropy in type I inhibi-
tors, which bind to the active-like conformation, are more similar to 
other type I inhibitors than those in type II inhibitors, which bind to 
an inactive-like conformation. Similarly, type II inhibitors were more 
similar to each other than they were to type I inhibitors. However, even 
within the type I inhibitors, ligands still showed unique patterns of 
conformational entropy, highlighting the possibility of designing for 
these features. The potential for tuning ligand properties to redistrib-
ute entropy also is evident across the entire dataset. Ligands with more 
specific and oriented interactions (for example, hydrogen bonds) lead 
to greater local reductions in entropy, and those binding events driven 
by apolar ligands lead to lower local reductions in entropy. Critically, 
these observations of spatial entropic redistribution are due to small, 
distributed changes in side chain alternative conformations and har-
monic motions (B factors), which are less well captured by traditional, 
single-state structural models. This example highlights the critical 
importance of modeling the conformational ensemble to move toward 
a predictive understanding of the contributions of conformational 
entropy to ligand binding.

The importance of side chain entropy and the relevance of spatial 
redistribution to ligand binding extends beyond soluble proteins 
to membrane proteins. Many membrane proteins have high side 
chain conformational entropy in their apo state, which may offset the 
entropic penalty of sitting in the membrane59. The modulation of these 
dynamics upon ligand binding can influence binding and allostery60. 
For example, some GPCRs exhibit similar binding affinities for agonists 
and antagonists61. Several studies have identified how subtle changes in 
side chain conformational dynamics in the presence of either agonists 
or antagonists can influence the relative stability of specific conforma-
tions compatible with distinct binding downstream partners62,63. These 
results suggest a role for conformational entropy, located in specific 
distal regions of the protein, in controlling the free energy of binding 
and the output of allosteric signaling.

The concept of spatial entropic redistribution extends our think-
ing of the contributors to the free energy of binding to the rest of the 
scaffold. This strategic transfer of entropy is likely a fundamental aspect 
of dynamic allostery, where proteins distribute their inherent disorder 
in a controlled manner to facilitate allosteric regulation. There are 
multiple mechanisms that nature can harness to optimize the entropic 
contribution from distal regions. These include ‘entropic reservoirs’, 
such as IDRs and local unfolding, and subtle conformational changes 
to well-packed regions poised to increase side chain fluctuations. This 
mechanistic diversity emphasizes how the optimization of free energy 
can come from unexpected places and calls attention to the oppor-
tunity for considering entropy to predictably tune binding affinity.

Catalytically competent ensembles formed by 
enzyme scaffolds can stabilize the transition state
Enzymes catalyze chemical reactions through a high-energy transition 
state, in which active site residues are precisely arranged to orient 
specific chemical groups responsible for catalysis. It follows that the 
positioning requirements will lead to an extreme reduction of con-
formational entropy for active site residues. How can this penalty be 
offset? One solution is having these residues pre-organized in the apo 
or substrate-bound states. Another is the Circe effect, in which the 
substrate binds in such a constrained, almost unique conformation 

that is entropically disfavored64. A third potential strategy is for the 
enzyme to allow a much broader set of transition states, reducing the 
entropic penalty required in the binding site65. Finally, it is also possible 
to extend the concept of spatial redistribution for equilibrium ligand 
binding to catalysis. The capacity of residues in the rest of the enzyme 
(‘the scaffold’) to adopt many states compatible with the positioning 
of catalytic residues throughout the catalytic cycle66,67 can contribute 
favorably to reducing the entropic penalty of active site positioning. 
In extreme cases, if the scaffold conformational entropy is higher in 
the transition state than in the ground state, it can reduce the height 
of the barrier and entropically favor catalysis. This concept extends 
beyond the chemical step, which in most cases has a narrow transition 
state ensemble, to other steps of the catalytic cycle, each of which 
can be rate limiting (for example, substrate binding, product release, 
conformational change, etc.). We call the ensemble of states compat-
ible with the rate-limiting step of catalysis the catalytically competent 
ensemble (Fig. 5a).

Strong evidence for the importance of scaffold conformational 
entropy in catalysis emerges from a series of time-resolved crystal-
lographic, NMR and computational studies of the homodimeric 
enzyme fluoroacetate dehalogenase (FAcD)68,69. Although the enzyme is 
dimeric, upon substrate binding at one active site, the other protomer 
does not bind substrate and can be considered an extended part of the 
scaffold. With clever mutations and substrate analogs, these studies 
show how solvent and protein scaffold entropy support the active site 
organization responsible for the chemical step of catalysis. This change 
to the scaffold occurs without any major backbone changes in any part 
of the catalytic cycle but is evident in changes in B factors, alternative 
conformations of side chains, the number of bound waters and NMR 
measurements of dynamics. Importantly, it is the contributions of 
distal residues and distal water molecules, not just water molecules 
displaced by the small molecules bound in the active site, that dominate 
this entropic contribution. In addition, an analysis of MD trajectories 
using rigidity theory identified interprotomer allosteric pathways that 
suggest the mechanism of how these changes occur. Collectively, these 
studies reveal how entropy can favor conformations responsible for 
rate-limiting steps of the catalytic cycle via increased conformational 
multiplicity of the scaffold and the release of solvent. The interplay 
between solvent and scaffold calls attention to the importance of 
holistically modeling the conformational dynamics of the entire sys-
tem, not just the active site.

The catalytically competent ensemble model can also be expanded 
to understand the operating principles of large macromolecular 
machines. For example, the ribosome undergoes many large structural 
rearrangements during the catalytic steps involved from initiation to 
elongation. These rearrangements involve the making and breaking 
of many interactions that are relatively straightforward to interpret 
enthalpically. An elegant series of single-molecule fluorescence reso-
nance energy transfer experiments leveraged temperature to probe 
the relative importance of enthalpy and entropy when two different 
charged tRNAs are bound to the ribosome. They revealed that both 
the equilibrium and the rate of interconversion between the two con-
formational states of the ribosome, GS1 (associated with initiation) 
and GS2 (associated with elongation), have distinct entropic contribu-
tions depending on the identity of the tRNA present. The model that 
emerges is that tRNAMet, which is critically important for initiation, 
and tRNAPhe, which only plays a role in elongation, differ in how they 
affect ribosome conformational dynamics. The energetic basis of 
this difference is driven by entropy favoring the corresponding states 
and barriers, indicating that the ribosome has evolved to manipulate 
entropy in response to specific tRNA-binding events that bias toward 
functionally relevant states (Fig. 5b). How exactly this entropic differ-
ence is partitioned between broadening the transition state itself or 
increasing the conformational entropy of the scaffold (including bound 
metals and water) remains an open question. This and other studies 
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demonstrating how the ribosome harnesses entropy during peptide 
bond formation70 suggest a complex interplay of different entropic 
forces during its conformational and catalytic cycles of translation71.

The catalytically competent ensemble model also provides an ener-
getic grounding for how conformational dynamics can be correlated 
with the evolvability of proteins. The relationship between increased 
conformational dynamics and evolvability is often discussed as alter-
ing the probability of active site conformational states72, but it can 
extend to the energetic stabilization contributed by distal entropy in a 
catalytically competent ensemble. Promiscuous reactions are the first 
step toward evolutionary novelty. A broader conformational ensemble, 
locally in the active site and in distal residues that increase the overall 
conformational entropy, can promote such promiscuous reactions. 
Indeed, there is evidence for an increased error rate for tRNAMet on the 
ribosome73, which suggests that the entropically favored transition 
state may also be broader at the active site. This model also provides a 
hypothesis for contributing to some distal mutations accumulated in 
directed evolution experiments, especially for enzymes that change 
flexibility in regions beyond the active site74,75. With this framework, the 
challenge remains to quantify how conformational heterogeneity in 
the protein scaffold (or, in the case of the ribosome, the ribosomal RNA 
scaffold), substrate and solvent molecules alters the conformational 
ensemble in a way that affects both the equilibrium and the transition 
rates between different functional steps of a catalytic cycle.

Future directions in exploring conformational 
entropy
Failing to explicitly account for conformational entropy in structural 
biology skews our understanding of thermodynamics, hindering our 
ability to harness this free energy source. Conformational entropy 
modulates free energy through three main mechanisms: entropic pre-
payment, spatial entropic redistribution and the catalytically compe-
tent ensemble. However, the lack of widespread structural ensemble 

representations limits our ability to explicitly explain the contributions 
of entropy and leverage this driving force for the prospective design 
of function76. Conformational ensembles, grounded in experimental 
data, will allow entropy to be integrated with probabilistic accounting of 
enthalpic-dominated interactions such as hydrogen bonds, salt bridges 
and hydrophobic contacts to ground the complex interplay between 
structure, dynamics and function in thermodynamics.

The most prominent link between conformational entropy and 
structural ensembles has been inferred from NMR order parameters. 
However, there is ambiguity in the structural elements that give rise to 
a set of order parameters, as outlined in Fig. 1. One way to resolve this 
ambiguity is to use experimental data as a bias in MD simulations28,30. 
This approach has provided insights into how mutations, counterin-
tuitively, stabilize chymotrypsin inhibitor 2 through increased side 
chain fluctuations in the hydrophobic core30. The use of experimental 
biases in simulation is currently distinct from improved modeling 
and refinement methods that create structural ensemble models in 
X-ray crystallography or cryo-EM10,23,77–83. Once refined, these models 
can simultaneously extract conformational entropy and structural 
interpretations10, unhindered by the timescale constraints in NMR 
and MD simulations. Integrating multiple datasets simultaneously, 
particularly time-resolved84 or fragment-soaking experiments85, can 
further augment conformational entropy–structure discovery. The 
interface of experimental data, AlphaFold-type machine learning 
approaches and MD simulations will surely catalyze developments 
in quantifying conformational entropy86,87. Machine learning already 
realizes some of this immense potential for ensemble discovery and 
model generation across length scales in cryo-EM88,89. Understanding 
the relationship between latent spaces leveraged by these machine 
learning techniques and the underlying thermodynamics of the sys-
tem may help guide the generative ensemble process to be even more 
predictive biologically. These methodological advancements also 
necessitate better data structures than static Protein Data Bank files 
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to represent ensemble-level features76. Advancing the modeling and 
encoding of data to better account for protein dynamics will facilitate 
breakthroughs in structural ensemble predictions, enabling a more 
facile interpretation of the conformational ensemble and how it relates 
to conformational entropy and protein function.

As we improve representations of macromolecules, it will be 
increasingly important to consider the cellular context, which can 
provide other sources of entropy, including solvent and ligands. Much 
attention has been focused on the behavior at the binding site, with 
the reduction of the ligand ensemble into a single state being coun-
tered by the displacement of ordered water molecules. However, in 
high-resolution X-ray crystallography data, multiple conformations 
of ligands are often detected in binding sites, suggesting that many 
protein–ligand complexes have multiple binding states90–92 and indi-
cating that ligand binding results in less entropic loss than previously 
believed. Additionally, as seen in the FAcD model, solvent plays a critical 
role beyond the binding site. Furthermore, solvent and ligand entropy 
changes can lead to entropy–entropy compensation as observed in 
galectin-3C93. To gain a deeper insight into the entropic implications 
of solvent interactions, it is crucial to refine our modeling and ther-
modynamic interpretation of first and second shell water molecules, 
particularly those in exchange with the bulk solvent and thus ‘partially 
occupied’, as revealed by MD simulations94. Creating a more atomistic 
model of the entropic contributions of solvent may reconcile outlier 
observations in the entropy meter, which links side chain fluctuations 
to experimental isothermal titration calorimetry (ITC) data and moves 
us closer to predicting the entropic impact of a perturbation.

Integrating structural and entropic features from conformational 
ensemble models will open up the use of a powerful lens to drive down 
ligand binding affinity and stabilize protein conformational states in 
design. Traditional drug design emphasizes optimizing the comple-
mentarity of a small molecule with the binding site. While this can 
improve enthalpy, it almost completely ignores entropy (except for 
consideration of the entropy gained by a displaced solvent at the bind-
ing site). However, ligand properties, such as the number of hydrogen 
bonds, are associated with a difference in conformational entropy10. 
Furthermore, minor chemical changes can substantially affect entro-
pies and affinities, as seen in the hTS case where a single methyl group 

difference leads to vastly different entropies19. How minor ligand 
changes propagate to protein conformational entropy differences 
remains a mystery (Fig. 6). Structural perturbations do not necessar-
ily propagate through the structure via a series of dramatic ‘domino’ 
conformational changes from one binding site to the distal site. Instead, 
distributed and nonlinear changes throughout the ensemble lead to 
changes in distal dynamics (entropy) or the dominant conformational 
state (enthalpy). Examining these through a free energy landscape 
perspective, any conformational changes modify the system’s free 
energy landscape and thus function, highlighting the need to combine 
rather than isolate these features. Likewise, protein design, optimized 
for protein packing and stability, now faces the next frontier: design-
ing improved binders and enzymes95,96. While prepaying entropic 
cost by establishing order in the ground state has been explored97, 
spatial entropic redistribution, achieved by increasing conformational 
entropy in functionally distal regions, is harder to design98. Integrating 
structural and entropic changes from natural versus designed enzymes 
could lead to innovative ways to design functional proteins.

Collectively, the examples discussed here reveal distinct strategies 
discovered by nature to optimize the free energy of functionally impor-
tant states. Although it is easier to explicitly represent and discuss 
specific and enthalpically directed interactions like hydrogen bonds, 
improved ensemble representations of macromolecular structure 
should allow us to integrate structural and entropic information for 
the prospective design of function. After all, nature cares about free 
energy, regardless of whether the source is easy to describe. Even if the 
energetic impact of conformational entropy is relatively small in some 
cases, the move from ensemble-averaged singular representations of 
protein structure to ensemble views could parallel the revolution cata-
lyzed by single-cell methods in genomics. In single-cell work, the diver-
sity of cell types and behaviors masked by bulk methods leads to new 
insights into the properties of systems99. Indeed, the configurational 
entropy of cell types may also have a role in tissue organization, con-
necting the importance of considering statistical mechanical concepts 
in decoding function across scales100. In the case of macromolecules, 
we look forward to future work highlighting how rare states contribute 
to specific functions and leveraging conformational entropy as part of 
the toolkit to solve design, catalysis and cellular signaling challenges.

Ligand 2

Ligand 1

Binding site Distal site

Fig. 6 | We propose the idea that spatial entropic redistribution be leveraged 
in ligand design. Upon binding of two highly related ligands (teal and purple), 
a single binding site leucine changes rotamer states. Simultaneously, the 
conformational entropy of distal regions (represented by the number of unique 

conformations) substantially differs between the two ligands. This leads the teal 
ligand-bound state to have more conformational entropy in the distal region, 
which could increase the binding affinity of the teal ligand compared to that of 
the purple ligand.
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