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Allostery is a fundamental regulatory mechanism of protein function.
Despite notable advances, understanding the molecular determinants
of allostery remains an elusive goal. Our current knowledge of allostery
is principally shaped by a structure-centric view, whichmakes it difficult
to understand the decentralized character of allostery. We present a
function-centric approach using deep mutational scanning to elucidate
the molecular basis and underlying functional landscape of allostery.
We show that allosteric signaling exhibits a high degree of functional
plasticity and redundancy through myriad mutational pathways. Resi-
dues critical for allosteric signaling are surprisingly poorly conserved
while those required for structural integrity are highly conserved, sug-
gesting evolutionary pressure to preserve fold over function. Our re-
sults suggest multiple solutions to the thermodynamic conditions of
cooperativity, in contrast to the common view of a finely tuned allo-
steric residue network maintained under selection.

allostery | deep mutational scanning | functional plasticity | molecular
dynamics simulation

Cellular processes are mediated by intermolecular and intra-
molecular interactions of proteins. Allostery is the intra-

molecular modulation of protein activity through perturbation at
a distal site and constitutes a dominant mode of posttranslational
regulation of proteins. Over the decades, we have made major
strides in gaining an atomic-level understanding of how proteins
fold, catalyze reactions, and interact with other biomolecules.
However, understanding the molecular rules governing allostery,
a fundamental property of proteins, remains an elusive goal 60 y
after its discovery (1–3). The knowledge gap exists because the
decentralized character of allostery makes it challenging to in-
tuitively understand and predict how a distal residue affects an
active site some 40–50 Å away (4). Mechanisms of catalysis or
binding are routinely explained by mutating a limited set of
residues as these processes are driven by local interactions. This
classical reductionist approach of studying function with a lim-
ited set of mutations does not scale for a systemic, protein-wide
property like allostery as it explores only a small fraction of
available sequence space. Therefore, our current understanding
of allostery is principally shaped by a structure-centric paradigm
based either on conformational heterogeneity (induced fit and
conformational selection) (5–8), comparison of crystallographic
snapshots to infer residues linking allosteric and active sites (9),
mapping residues undergoing correlated motion by NMR (10,
11), or identifying coevolving residues (12). In rare instances,
when functional screens were painstakingly carried out, they
revealed complex allosteric networks that cannot be gleaned by
examining the structure alone (13). Therefore, while structure
offers vital clues, validating the functional contribution of a
residue is the clearest evidence of its role in allostery.
Here, we reframe the problem by advancing a function-centric

approach guided by structure and free energy calculations to
elucidate the molecular basis and the functional landscape of
allostery. Allosteric switchability is defined as the ability to switch
between inactive and active states in a ligand-dependent manner.
To investigate the underlying functional landscape, we disrupted
allosteric switchability of a bacterial transcription factor (TF)

and restored function through alternative paths by systematic,
protein-wide mutational scanning. This revealed remarkable
functional plasticity as allosteric switchability could be recon-
stituted after disruption through myriad mutational combinations.
While the degree of functional plasticity is site-specific, structural
models indicate that recovery of function may be commonly
achieved through modulation of DNA or ligand interactions.
Phylogenetic analysis revealed that residues critical for allosteric
signaling are surprisingly poorly conserved while those required
for structural integrity are highly conserved. This suggests stronger
evolutionary pressure to preserve fold over function. Molecular
dynamics (MD) simulations showed conformational distributions
of wildtype are distinct from those of a disrupted mutant but
strikingly similar to a rescued mutant, suggesting different muta-
tional paths lead to the same functional state. Our comprehensive
function-centric framework is applicable to other allosteric pro-
teins and can lead to a biochemical understanding of disease-
associated mutations, discovery of druggable allosteric sites, and
broad molecular principles of allostery.

Plasticity of Allostery
Our model system is tetracycline repressor (TetR, 207 residues),
an all-helical (α1–α9), dimeric bacterial TF comprised of ligand-
and DNA-binding domains (LBD and DBD) (SI Appendix, Fig.
S1). As with all allosteric proteins, inactive and active states of
TetR correspond to distinct free energy minima (14). TetR re-
presses gene expression by binding to a promoter (inactive state),
and ligand induction releases TetR from that promoter (active
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state) resulting in transcription. In simplified terms, allosteric
switching occurs because free energy of ligand binding is greater
than the free energy difference between inactive and active states,
which provides the necessary driving force for conformational
stabilization (Fig. 1A, ΔGLIG > ΔGDIFF,WT) (15). Detailed ther-
modynamics are described in SI Appendix, Fig. S2. A mutated TetR
may no longer be ligand-inducible if the mutation, without reduc-
ing ligand affinity, increases free energy difference (ΔGDIFF) be-
tween inactive and active states by stabilizing the inactive state,
destabilizing the active state, or both. We term these variants
“locked” in a constitutively inactive state as “dead” (Fig. 1A,
ΔGLIG < ΔGDIFF,D). A dead variant may be rescued by a com-
pensatory mutation(s) that restores wildtype-like free energy dif-
ference (Fig. 1A, ΔGLIG > ΔGR); this we term a “rescued” variant.
To characterize the plasticity of allosteric networks, we devised a

“disrupt-and-restore” strategy. This two-stage, high-throughput,
GFP-based mutational screen (16) of TetR involves first disrupting
and subsequently restoring allosteric signaling (Fig. 1B). We used
commercially available chip oligonucleotides (Twist Biosciences) to
encode a library of point mutants by single-site saturation muta-
genesis of each TetR residue (207 residues × 19 mutants/residue ∼
3,900 variants). Compared to random mutagenesis, which gives rise
to multiple mutations per variant, chip oligonucleotides enable
systematic and comprehensive examination by prespecifying all
single mutations at each residue. Due to limitations in the length of
oligonucleotides, the full library of single-site variants was built by
cloning nonoverlapping tiled libraries across the length of TetR.
First, we sought to disrupt signaling by screening for dead variants.
We sorted cells expressing low levels of GFP when incubated with
ligand (anhydrotetracycline; aTC) such that their fluorescence level
was comparable to uninduced wildtype TetR. We then clonally
confirmed that the variants are not ligand-inducible. Their ability
to repress transcription confirmed that the dead variants were well-
folded proteins bound to DNA. After excluding mutations at
ligand-contacting residues, we found allosterically inactivating dead
variants were distributed all across TetR, including one (G102D)
previously identified (17). Since rescuing each dead variant re-
quired separate mutational screens, we chose to focus only on five
different dead variants. To avoid regional biases, the five dead
variants were chosen from different regions of TetR for the rescue
screen, although, in principle, any dead variant could have been
chosen. The five dead variants were R49A (α4 near DBD), D53V
(α4 near LBD), G102D (α6 at LBD-DBD interface), N129D
(surface exposed on α8), and G196D (α9 at dimerization interface)
(SI Appendix, Fig. S1). Next, on each dead variant’s background, we
constructed another protein-wide single-site saturation mutant li-
brary and devised a sorting scheme to expressly enrich allosterically
activatable rescued variants (SI Appendix, Fig. S3A). Cells con-
taining the rescue library were incubated with ligand to enrich for
potential rescued variants by sorting cells expressing high levels of
GFP (Fig. 1B).
To quantify allosteric coupling, we calculated fold induction,

the ratio of GFP expression with and without inducer of indi-
vidual clones after sorting. The fold induction of wildtype TetR
was 47 and that of all dead variants (R49A, D53V, G102D,
N129D, and G196D) was ∼1.0. Clonal testing confirmed that
allosteric switchability was indeed restored by compensatory
mutations in all five dead backgrounds (Fig. 1C and SI Appendix,
Fig. S4). Although induced reporter expression of some variants
was comparable to wild type (SI Appendix, Fig. S4), fold induc-
tion of all rescued variants was below wild type, showing com-
pensatory mutations only partially rescued function (Fig. 1C). It
is possible that multiple compensatory mutations may be required
to regain function to the level of wild type. In fact, the gratuitous
triple mutant (G102D/C195F/Q200P), likely present due to syn-
thesis or cloning errors, gave the highest fold induction of 34.
Dead variants N129D and, to a lesser extent, D53V gave largely
uniform fold induction for all rescuing mutations, suggesting that

there could be an upper limit to reconstitution of function for
individual dead variants (with double mutant screening). Sites for
compensatory mutations were within 10–20 Å and others as far as
40–50 Å away from the site of mutation in the dead variant
(Fig. 1D), suggesting that allosterically coupled residues in TetR
are distributed across the protein. Since the five dead variants
have no unique attribute except that they are in different regions
of the protein, we concluded that other dead variants might also
be rescued by distal compensatory mutations. Such a distributed
network of allosterically coupled pairs of residues with no ap-
parent spatial relationship suggests that satisfying thermodynamic
conditions of cooperativity may be sufficient to maintain allostery
in TetR.
Several important insights emerged from these results. First,

TetR exhibits a high degree of allosteric plasticity evidenced by
the ease of disrupting and restoring function through several
mutational paths. This suggests the functional landscape of al-
lostery is dense with fitness peaks, unlike binding or catalysis
where fitness peaks are sparse. Second, allosterically coupled
residues may not lie along the shortest path linking allosteric and
active sites but can occur over long distances because thermo-
dynamic balancing does not require spatial connectivity (18, 19).
Third, allosteric signaling occurs through redundant and robust
networks instead of a finely tuned unique pathway.

Site-Specific Rescuability of Allosteric Dysfunction
Two key questions emerged from the screen. Are some dead
variants easier to rescue than others and why? Are there com-
mon structural mechanisms of rescue? To answer these ques-
tions, we sought to exhaustively map and quantify rescuing
mutations for each dead variant and examine possible common
rescue modes. We define “rescuability” as the ease of rescuing
function and quantify rescuability using the strength of allosteric
response measured by fold induction and the number of unique
rescuing mutations. We sorted each rescue variant library for low
GFP cells without inducer to enrich DNA-bound, repressed
variants (SI Appendix, Fig. S3B). Whereas the previous screening
scheme expressly enriched allosterically active variants by sorting
GFP-positive cells after ligand induction, here we only enrich
DNA-bound variants. This allows us to estimate rescuability of
each variant by clonally testing the DNA-bound population and
counting the number of functional variants. For each library, we
then clonally induced 192 variants and determined the number
of unique ligand-responsive clones and their induction level. We
classified rescued clones into three groups based on their fold
induction: inactive (<5-fold), moderate (5- to 10-fold), or strong
rescues (>10-fold) (Fig. 2A).
A clear gradient in rescuability existed from easy to hard as

follows based on the number of unique rescuing variants:
N129D > G196D > D53V > R49A > G102D (Fig. 2A and 2B).
The same ranking emerged when the five variants were ordered
based on average fold induction of all 192 screened clones (SI
Appendix, Fig. S5). Since the number of clones screened is only a
fraction of all possible rescuing variants for each dead variant,
the clonal screens only indicate trends in rescuability. Compre-
hensive double mutant cycling screen by sort-sequencing would
fully reveal differences in rescuability between dead variants.
Leveraging the wealth of dead-rescue allosteric coupling data,
we wanted to infer potential structural mechanisms leading to
reconstitution of function. Instead of individually sequencing
hundreds of colonies, we deep sequenced all active variants (≥5-
fold induction) as a barcoded pool to identify all rescues but
cannot pair genotype and phenotype.
We exhaustively mapped each dead variant and their corre-

sponding rescuing mutations to look for focal regions of rescue
(Fig. 2B). We observed two broad types of rescuing patterns: those
specific to an individual dead variant and those common to mul-
tiple dead variants akin to allele-specific and global suppressors
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Fig. 1. ”Disrupt-and-restore” strategy to characterize plasticity of TetR allostery. (A) A simplified thermodynamic model of allosteric signaling (detailed
model SI Appendix, Fig. S2). (Left) Ligand binding provides the driving force to switch from inactive to active state in wild type. (Center) A disrupting mutation
(dead variant) makes TetR constitutively inactive due to larger energy difference. (Right) Allosteric function is restored (rescued variant) by energetic
rebalancing via distal compensatory mutations. (B) Two-stage protein-wide mutational scanning to first disrupt and subsequently restore allosteric signaling
using a GFP-based transcriptional reporter system. (C) Fold induction of individual variants (mean ± SEM) in the presence in 1 μM aTC of three biological
replicates. All rescue variants are significantly different from the corresponding dead (P < 0.001 unless noted; *P < 0.05, **P < 0.01). (D) Five dead variants
(black spheres), their corresponding rescued variants (colored spheres), and distances between them (dashed lines).
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observed before (20, 21). The first group were unique rescuing
mutations for each dead variant converging at a few key regions
indicating that variant-specific regional bias may exist (Fig. 2B and
SI Appendix, Table S1). However, no obvious structural mecha-
nism of rescue could be gleaned from the regions where these
rescuing mutations were found. An exception was N129D, for
which a high concentration of rescuing mutations fell along α9,
suggesting restoration of allosteric signaling through the dimer-
ization interface. The second, more striking group, were rescuing
mutations for multiple dead variants converging on specific resi-
dues in LBD or DBD. This tantalizingly suggested a common
structural mechanism of rescue irrespective of the dead variant.
Using Rosetta software, we generated structural models of res-
cuing mutations at these sites for closer structural inspection.
Rescuing mutations at the DBD appeared to generally weaken
protein–DNA interactions. In the DBD, mutation of capping
glycine G35 will likely reduce helix-turn-helix stability and E37F
result in loss of key amino acid–nucleobase interaction (Fig. 2C).
In the LBD, mutants such as F67Q and T112Q appeared to
strengthen interactions with ligand by additional hydrogen bonds
(Fig. 2C). Common rescuing variants (global suppressors) appear
to counteract greater stability of the repressed state of the dead
variant by weakening affinity for DNA or strengthening affinity for
ligand. Suppressor mutations have been shown to restore function,
binding, or stability of an inactivating mutation in various proteins
(20–23). Our results are consistent with a limited screen of sup-
pressor mutations of induction-deficient TetR variants, which
were found largely in the dimerization interface and at ligand- or
DNA-binding positions (20).
Taken together, these results suggest that many structural

mechanisms may lead to rescued function, and dominant modes of
rescue appear to be mediated through modulation of ligand, DNA,
and dimerization interface interactions. Furthermore, we posit that

the ease of rescuing a dead variant may correlate with the degree of
stabilization of the inactive state (Fig. 2D) i.e., a more stable dead
variant could be harder to rescue than a less stable dead variant.
This argument is consistent with N129D and G196D being relatively
exposed residues (smaller energy perturbation) and, hence, easier to
rescue while the remaining three are more buried and consequently
harder to rescue (Fig. 2A).

Structural Hotspots More Conserved than Allosteric
Hotspots
Next, we examined evolutionary conservation and structural
context of residues critical for allosteric signaling (hotspots). To
comprehensively map allosteric hotspots, we deep sequenced
single-site TetR mutants that repressed GFP but were not
ligand-inducible (SI Appendix, Fig. S3C, Table S2, and Dataset
S1). We found hundreds of inactivating mutations nearly seven
times greater than what was previously known (SI Appendix, Fig.
S6) (13). We classified 57 residues as allosteric hotspots (47 after
excluding ligand-contacting residues) if 25% or more mutations
at that position inactivated function. The hotspots clustered into
four regions. Region 1 is at the interface of the DBD and LBD
on α4 and α6, region 2 is a short motif connecting α7 and α8,
region 3 is at the dimer interface on α8, and region 4 is at the
C-terminal end on α9 (Fig. 3B). Earlier studies identified hot-
spots in region 1, although not comprehensively, but hotspots in
regions 2, 3, and 4 were previously unknown.
Catalytic or binding sites are under strong evolutionary se-

lection as reflected in their high sequence conservation even
among distant homologs. We aligned TetR-family homologs to
determine if allosteric hotspots too are under evolutionary selection.
To our surprise, allosteric hotspots showed low sequence conser-
vation in the TetR family. In fact, highly conserved residues and
allosteric hotspots neatly separated into distinct, nonoverlapping

Fig. 2. Site-specific differences and structural mechanisms of rescue of function. (A) Percentage of rescued clones whose allosteric activity, based on fold
induction, is strong (>10), moderate (5–10), or inactive (<5). (B) Distribution of rescuing mutations (Upper) for each dead variant (Lower) shown in different
colors. Each line connects dead and rescuing variants, and its thickness represents number of rescuing mutations at that position. (C) Rosetta structural models
of LBD and DBD rescue mutations. Potential common mechanisms of rescue include weaker interaction between DBD and DNA (G35 and E37F) or stronger
interactions between LBD and ligand (F67Q and T112Q). (D) Free energy landscape hypothesizing relationship between rescuability and energy gap between
inactive and active states. Larger gap (deeper well) is harder to rescue than smaller gap (shallower well).
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groups (Fig. 3A, red points and green lines). To assess the sensi-
tivity of this result to different thresholds for classifying a residue
as a hotspot, we determined the number and location of hotspots
at different thresholds. At 10%, 25%, and 50% thresholds, there
are 67, 57, and 34 hotspots, respectively. However, changing the
definition of a hotspot to be more or less strict affects the overall
number of hotspots in the dataset, but the regions of functional
importance are consistent at all thresholds (SI Appendix, Fig. S7).
Based on their location in the DBD (Fig. 3B, green regions), we
hypothesized that conserved residues may be required for struc-
tural integrity and DNA binding. Since TetR is a repressor, any
mutation that destabilizes, reduces DNA-binding, or interferes
with dimerization will constitutively express GFP. To evaluate the
functional role of conserved residues, we used deep sequencing to
determine single-site mutants constitutively expressing reporter
without ligand (SI Appendix, Fig. S6 and Dataset S1). We term
these “broken” hotspots as they impair TetR’s ability to repress
gene expression. Indeed, the location of broken hotspots over-
lapped with conserved sites, confirming the role of conserved
residues in maintaining structural integrity and DNA binding
(Fig. 3A, blue points). Compared to allosteric hotspots, the broken
hotspots were significantly more conserved on average (SI Ap-
pendix, Fig. S8A). An earlier study on known mutations that al-
losterically inactivate TetR suggested that these residues have
higher conservation scores than other residues in the protein (24).
A plausible reason for this difference in conclusion could be our
high throughput screen revealed three times more allosteric hot-
spots than was previously known. A computational study com-
paring known catalytic and allosteric site residues in 56 enzymes
similarly concluded that allosteric sites are less conserved than
functionally essential catalytic sites (25).

Protein topology plays an important role in determining
structure and function. A simplified network representation of
protein structures as nodes and edges has been effective un-
derstanding residue contributions to protein folding (26),
protein–protein interactions (27), and functionally important
residues in enzymes (28). We investigated if allosteric hotspots
could be recognized based on their local structural context.
Computational approaches predict allosteric hotspots based on
the connectivity of a residue to all other residues (residue cen-
trality score), which is rooted in the premise that residues with
dense interactions act as preferred transmission nodes for signal
propagation (24, 28, 29). Structure-based analysis of several
protein families showed that central residues were crucial for
efficiency of signaling (29). We compared residue centrality
score at every position and location of allosteric hotspots and
found that although hotspots had a higher centrality score on
average than all other positions in the protein (SI Appendix, Fig.
S8B), residues with lower centrality score were also allosteric
hotspots (Fig. 3C). To understand the relationship between al-
losteric hotspots and centrality score, we classified all residues of
TetR based on their centrality score as “high,” “medium,” or
“low” and counted the number of allosteric hotspots within each
group (SI Appendix, Fig. S9). One out of 30 low centrality score
residues (3.3%), 32 of 134 medium centrality score residues
(23.4%), and 21 of 33 high centrality score residues (63.6%) are
allosteric hotspots. Residues with low centrality score include
floppy loops and peripheral ends of the DBD and do not appear
to play a critical role in allosteric signaling. Residues with me-
dium centrality score include many surface-exposed sites on
helices, which likely represent sites that are sources or sinks of
allosteric signaling. Residues with high centrality scores are
buried deep in the dimerization interface and between and LBD

Fig. 3. Allosteric hotspots are not highly conserved. (A) Comparison of allosteric hotspots (red dot, ligand-contacting residues excluded) with highly con-
served residues (green lines). Residues critical for structural integrity and activity (DNA-binding) by experimental validation are shown as blue dot. Each dot
represents the number of unique point mutants at a position that make TetR constitutively inactive (red) or active (blue). (B) Allosteric hotspots (red, ligand-
contacting residues excluded) and conserved residues (green) separate into distinct groups on TetR structure with only two overlapping residues (black). (C)
Location of allosteric hotspots (red) overlaid on residue centrality score of every residue (black line). (D) Loss of allosteric signaling at hotspots R49 (Upper Left)
and E128 (Upper Right) is likely due to loss of salt bridge or hydrogen bond interactions with inactive mutations (Lower Left and Lower Right).
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and DBD. These likely play a key role in signal transmission. To
understand at an atomic level what makes a residue an allosteric
hotspot, we modeled using Rosetta two hotspots with high (R49)
and low (E128) residue centrality scores (30). R49 of one
monomer makes a critical salt bridge with D150 in the second
monomer. Allosteric signaling may be lost because mutations at
this position break the salt bridge (Fig. 3D). Surface-exposed
residue E128 forms a hydrogen bond with Q180 in α9 of the
second monomer. Mutations at E128 lose the hydrogen bond,
potentially disrupting signaling between dimers (Fig. 3D).
Low conservation of allosteric hotspots, although surprising at

first, is consistent with high functional plasticity. Evolution ap-
pears to favor preserving structural integrity and activity (DNA
binding) because their disruption by mutational drift may be
harder to restore than allostery. Clustering of hotspots in distinct
regions suggests that signaling occurs through coordinated,
decentralized action instead of the shortest path between LBD
and DBD. Separation of allosteric hotspots from structural and
DBD residues indicates each property could evolve indepen-
dently, leading to orthologs adapted to new niches.

Free Energy Landscapes of Allosteric Mutants
To further investigate if functional similarities between wildtype
and rescued variant, and functional differences between wildtype
and dead variant, are reflected in global structural properties and
conformational distributions, we conducted explicit solvent MD
simulations at the microsecond time scale. The simulations were
carried out for ligand-bound TetR (without DNA) to understand
how remote mutations impact the distribution of active and in-
active conformations in the ligand-bound state for all three TetR
systems (wildtype, dead, and rescued). We chose wildtype,
G102D (dead), and G102D/C195F/Q200P (rescued) for MD
simulations. We expected to see pronounced differences in
conformational ensembles for this dead-rescue pair because
G102D was hardest to rescue, but G102D/C195F/Q200P gave
highest fold induction among all rescued variants (Figs. 1C and
2A). All three TetR systems are structurally stable with a similar
backbone rmsd of 2–2.9 Å relative to wildtype crystal structure
and similar magnitudes of thermal fluctuations (Fig. 4A). To
further calibrate the conformational ensembles sampled in our
MD simulations, we conducted additional apo state simulations
for the wildtype TetR and computed the SAXS profiles for both
the apo and ligand-bound states (SI Appendix, Fig. S10). The
computed profiles showed excellent agreement with experi-
mental data (31), providing further support to the conformations
sampled in our microsecond-scale simulations. Compared to
G102D, the triplet mutant features larger displacements relative
to wild type near the additional mutation sites (C195F/Q200P),
including a large fraction of the α4/α5 loop (Fig. 4B). The region
in the DNA-binding domain that connects α3/α4 also undergoes
a larger average displacement relative to wild type in the triplet
mutant compared to G102D (Fig. 4B). Evidently, the additional
remote mutations (C195F/Q200P) lead to subtle but persistent
structural differences in the DNA-binding site more than 35 Å
away. We have also examined a range of properties relevant to
the motional coupling between protein residues (SI Appendix,
Figs. S11 and S12), such as positional covariance matrix (SI
Appendix, Fig. S13), conformational entropy (SI Appendix, Fig.
S14), distribution of community and hub residues (SI Appendix,
Fig. S15), and suboptimal pathways that connect ligand- and
DNA-binding sites (SI Appendix, Fig. S16). These properties do
not exhibit any robust or distinct features among the systems
simulated here at the microsecond time scale, consistent with our
experimental finding that allostery in TetR does not involve a
unique, finely tuned pathway.
However, the underlying free energy landscapes projected onto

principal components and locally scaled diffusion maps (LSDMaps)
(32) revealed remarkable differences among the three TetR systems

(Fig. 4 C and D). The principal components describe large ampli-
tude motions while the LSDMaps aim to capture slow motions, thus
the two types of analyses complement each other (33). The free
energy landscape projected onto the first two principal components
(Fig. 4C and see SI Appendix, Fig. S17 for projections along indi-
vidual principal components) showed a higher degree of similarity
between wild type and the triple mutant, with G102D being clearly
different. Similarly, the LSDMap landscapes of the wild type and
the rescued mutant resemble each other in shape and locations of
free energy basins, while the landscape of the dead mutant is sig-
nificantly different (Fig. 4D). Projections along higher principal
components or diffusion coordinates, by contrast, are similar for all
three systems. The first two principal component eigenvectors (SI
Appendix, Figs. S18 and S19), especially the second one, involve
pendulum type of motions of DNA-binding domains that were
proposed to affect DNA binding affinity (Movies S1 and S2) (34,
35). Therefore, the different conformational distributions along the
primary principal components in different TetR variants are likely
functionally relevant as observed in NMR studies of a TetR ho-
molog, QacR (36). However, we caution that it remains challenging
to assign quantitative DNA-binding affinities to the different con-
formations sampled in these simulations. Even with 1 μs of unbiased
simulation, it is unlikely that we have completed the sampling of a
protein system like TetR. Thus, one should not equate Fig. 4 C and
D with the schematic free energy landscapes shown in Fig. 1A or SI
Appendix, Fig. S2. Therefore, within the framework of these simu-
lations, we focused on a qualitative comparison of free energy
landscapes of wildtype, dead, and rescued variants. For more
quantitative comparisons, such as relative populations of key con-
formational basins outlined in SI Appendix, Fig. S2, enhanced
sampling techniques are needed. Nevertheless, these results clearly
highlight that mutations remote from the ligand- and DNA-binding
sites may lead to sequence-specific changes in the conformational
distribution that ultimately get manifested as significant perturba-
tion in function. It is encouraging that these changes are observed in
unbiased MD simulations at the microsecond time scale, and we
anticipate that additional insights can be gleaned with enhanced
sampling simulations in the future. Combined with biophysical
characterization, these simulations will help better define the nature
of change in conformational ensembles of TetR upon inducer
binding (37) or mutations.

Conclusions
The conclusions of this study compel us to reexamine the evo-
lutionary, structural, and biophysical nature of allostery. On the
one hand, structural biology studies suggest a physically contig-
uous pathway transmitting allosteric signals across the protein.
However, our functional screen reveals that allosteric coupling
exists between distal, physically disconnected pairs of residues,
which are close to neither the ligand- or the DNA-binding do-
mains. Furthermore, the surprising preponderance of mutational
combinations that preserve allosteric signaling, the majority of
which do not fall along a contiguous pathway, raises the question
of why does such a high degree of functional plasticity exist? One
possibility is these rescued double mutants are conditionally
neutral mutations that permit TetR to drift in mutational space
without appreciable loss of fitness under existing selection
pressure (38, 39). However, if the selection pressure changes, a
population of genetic variants accumulated by neutral drift could
readily adapt under the new conditions. The conditionally neu-
tral mutations may allow TetR to sample new conformational
states that may confer new ligand specificities without abrogating
native function (40). This may partly explain the extraordinary
diversity of ligands binding to TetR-family proteins (41). These
results also have important implications for design of allosteric
proteins. It may be beneficial to use all of the conditionally
neutral mutants as starting scaffolds for structure-guided design
to diversify sampling in structural and functional space. A critical
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assumption in statistical coupling analysis and other coevolution-
based approaches is that nature imposes evolutionary pressure at
specific sites to preserve allosteric coupling. Our case study of
TetR challenges this assumption because we find that allosteric
sites are not necessarily conserved, although allostery by itself
may be conserved (42). Conservation of specific sites may be a
feature of catalysis or binding, which strongly depend on key
local molecular interactions. In contrast, since allostery is sys-
temic, balancing of thermodynamic forces can be satisfied by
decentralized functional constraints in many possible ways without
the need for conserving specific sites. This idea is qualitatively
consistent with the mechanistic models (18, 37) that highlight the
ensemble nature of allostery, although further studies are required
to better define, at the molecular level, the changing conforma-
tional ensembles upon inducer binding or mutation. Future mu-
tational studies on other TetR-family members may reveal if

common lynchpin sites and couplings exist within the family that
can be recognized from sequences alone. Together with machine
learning, large datasets like ours linking structural effects of mu-
tations to function can help develop heuristic molecular rules,
such as gain/loss of salt bridges or hydrogen bonds (R49 and E128,
Fig. 3D), for allosteric communication (43). Furthermore, simu-
lating molecular trajectories of tens or hundreds of mutants will
help us interpret how conformational heterogeneity of protein en-
sembles is related to protein function. This is an exciting direction
for the field of MD simulations where MD is used not just as a
validation and explanatory tool but also for function prediction.

Materials and Methods
Plasmid Construction. We constructed a sensor plasmid with TetR(B) (Uniprot
P04483) cloned into a low-copy backbone (SC101 origin of replication) car-
rying spectinomycin resistance. The tetRb gene was driven by a variant of
promoter apFAB61 and Bba_J61132 RBS (44). On a second plasmid,

Fig. 4. Free energy landscapes of wildtype, dead, and rescued mutants consistent with function. (A) Backbone RMSDs of wildtype TetR, dead (G102D), and
rescued (G102D/C195F/Q200P) variants over time shows stable structures. (B) Average structures of dead and rescued variants over the last 800 ns of simu-
lation. Thickness of ribbon and color scale reflect RMSD per residue relative to average wildtype TetR structure over this time window. (C) Two-dimensional
free energy landscapes projected onto first and second principal components show strong similar conformational distributions of wildtype and rescued
variant, but distinct from dead variant. (D) Two-dimensional free energy landscapes from the locally scaled diffusion map analysis of wildtype, dead, and
rescued variants also observe similar conformational distributions for the wildtype and rescued variant, with the dead variant being distinct.
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superfolder GFP (45) was cloned into a high-copy backbone (ColE1 origin of
replication) carrying kanamycin resistance under the control of the ptetO
promoter. To control for plasmid copy number, RFP was constitutively
expressed with the BBa_J23106 promoter and Plotkin RBS (44) in a divergent
orientation to sfGFP.

Library Synthesis. A comprehensive single-mutant TetR library was generated
by replacing wildtype residues at positions 2–207 of TetR to all other 19
canonical amino acids (3,914 total mutant sequences). Oligonucleotides
encoding each single-point mutation were synthesized as single-stranded
Oligo Pools from Twist Bioscience and organized into subpools spanning
the tetRb gene: residues 2–39, 40–77, 78–115, 116–153, 154–191, 192–207.
Oligo pools were encoded as a concatemer of the forward priming se-
quence, a BasI restriction site (5′-GGTCTC), six-base upstream constant re-
gion, tetR mutant sequence, six-base downstream constant region, a BsaI
site (5′-GAGACC), and the reverse priming sequence. Subpools were resus-
pended to 25 ng/μL and amplified using primers specific to each oligonu-
cleotide subpool with KAPA SYBR FAST qPCR (KAPA Biosystems; 1-ng
template). A second PCR amplification was performed with KAPA HiFi (KAPA
Biosystems; 1-μL qPCR template, 15 cycles maximum). We amplified corre-
sponding regions of pSC101_tetR_specR with primers that linearized the
backbone, added a BsaI restriction site, and removed the replaced wildtype
sequence. Vector backbones were further digested with DpnI, BsaI, and
Antarctic phosphatase before library assembly.

We assembled mutant libraries by combining the linearized sensor
backbone with each oligo subpool at a molar ratio of 1:5 using Golden Gate
Assembly Kit (New England Biolabs; 37 °C for 5 min and 60 °C for 5 min,
repeated 30 times). Reactions were dialyzed with water on silica membranes
(0.025-μm pores) for 1 h before transformed into DH10B cells (New England
Biolabs). Library sizes of at least 100,000 colony-forming units (cfu) were
considered successful. DH5α cells (New England Biolabs) containing the re-
porter pColE1_sfGFP_RFP_kanR were transformed with extracted plasmids
to obtain libraries of at least 100,000 cfu.

Rescue variant libraries were synthesized as described above using sensor
plasmid of each dead variant as the linearized backbone. To avoid mutations
close in sequence space, the oligo subpool containing the mutation was not
cloned into the library—for example, the G102D library did not contain
mutations spanning residues 78–115 in TetR. All double-mutant libraries
contained 3,192 possible sequences, except for the G196D rescue library,
which contained 3,610 sequences.

Fluorescence Activated Cell Sorting. All library cultures and clonal variants
were grown for 16 h at 37 °C in lysogeny broth (LB) containing 50 μg/mL
kanamycin (kan) and 50 μg/mL spectinomycin (spec). Libraries were seeded
from a 50-μL aliquot of glycerol stocks and grown to an OD600 ∼0.2 before
induction with 1 μM aTC. Saturated library cultures were diluted 1:50 in 1×
phosphate saline buffer (PBS), and fluorescence intensity was measured on a
SH800S Cell Sorter (Sony). Remaining uninduced cultures were spun down
and plasmids were extracted for next-generation sequencing to represent
the presorted library distribution. We first gated cells to remove debris and
doublets and selected for variants constitutively expressing RFP. The induc-
tion profile of wildtype TetR was used as reference in drawing gates on GFP
fluorescence to identify DNA-bound and rescued variants in the double-
mutant rescue libraries (SI Appendix, Figs. S3 A and B). Libraries were sor-
ted in the absence of inducer between ∼10–1,000 RFU (fluorescence distri-
bution of repressed wildtype TetR, DNA-bound) to identify DNA-bound
variants or in the presence of 1 μM aTC ∼30,000–200,000 RFU (fluorescence
distribution of inducted wildtype TetR, active) to identify rescues. A total of
500,000 events were sorted for each gated population, and cells were re-
covered in 5 mL of LB for 1 h before cultures were plated. Rescue variants
identified in Fig. 1 were identified by clonally screening ∼200–400 colonies
from the sorted population for each double-mutant rescue library.

To identify dead variants in the TetR single-mutant library, DNA-bound
variants were sorted in the presence and absence of 1 μM aTC using the
distribution of repressed wildtype TetR to define the sorting gate (Fig. 3C).
Cells were sorted as above before antibiotics were added and cultures
grown for an additional 6 h until an OD600 ∼0.2 was reached for plasmid
extraction and sequencing. Each library was grown, sorted, and sequenced
in duplicate. Dead variants analyzed in Fig. 1 were identified by sorting and
plating DNA-bound variants in the presence of 1 μM aTC and clonally
screening ∼300 colonies from the sorted population.

Clonal Screening and Flow Cytometry. To screen for dead and rescuing vari-
ants, individual colonies were picked and grown to saturation in a 96-well
plate for 8 h. Nonfluorescent colonies under blue light were selected in these

screens to select for variants with DNA-binding capability in the absence of
inducer. Saturated cultures were diluted 1:50 in LB-kan/spec and grown in
the presence and absence of 1 μM aTC for 16 h before OD600 and GFP
fluorescence (Gain: 40; Excitation: 488/20; Emission: 525/20) were read on a
multiplate reader (Synergy HTX, BioTek). Fluorescence was normalized to
OD600, and the fold inductions for each variant were computed as the ratio
of induced and noninduced fluorescences. Variants with at least 10-fold
induction were plated, confirmed in triplicate, and Sanger sequenced
(Functional Bioscience). Selected variants were diluted 1:50 into 1× PBS be-
fore being measured on the Attune NxT Flow Cytometer (Thermo Fisher
Scientific). A one-way ANOVA followed by a Tukey-HSD (honest significant
difference) post hoc test was performed for each group of dead and rescue
variants to confirm rescues were functionally more active than the dead.

Quantifying Rescuability. Rescue variant libraries were grown in the absence
of inducer, and nonfluorescent cells were sorted to select for DNA-bound
variants. For each rescue variant library, we randomly selected and screened
192 nonfluorescent colonies after sorting to determine the percentage of
cells that recovered some degree of function. Fold induction for each indi-
vidual variant was measured on the plate reader, and variants with at least
fivefold induction were pooled and prepped for deep sequencing. To
identify the number of unique variants in the screen, an initial group of all
192 variants was prepped for sequencing. The average fold induction of all
192 screened clones for each dead variant was calculated and a one-way
ANOVA with a Tukey-HSD post hoc test performed to compare rescuability.

Next-Generation Sequencing and Analysis. Libraries were prepared from
plasmids extracted from the presorted, sorted, and pooled libraries to
identify dead and rescued variants. Libraries were sequenced with a 2 × 250
sequencing run in which the TetR gene was broken into two fragments to
cover the entire encoding region. Libraries were amplified with two primer
sets, one specific to the encoding region of interest (residues 2–115 or
116–207) adding the next-generation sequencing priming region, and a
second outer pair adding the unique barcode and library adapter. Libraries
were amplified in a two-step PCR. First, inner primers were added at a final
concentration of 125 nM each and reaction run for 11 cycles before 7× the
concentration of the outer stem primers was added (0.9 μM) and another 8
cycles were run. Inactive variant libraries were sequenced with a 2 × 250
MiSeq run through the University of Wisconsin–Madison Biotechnology
Center and Genewiz (Amplicon-EZ).

Paired-end Illumina sequencing reads were merged with FLASH (Fast
Length Adjustment of SHort reads) using the default software parameters
(46). Phred quality scores (Q) were used to compute the total number of
expected errors (E) for each merged read (47). Reads exceeding the maxi-
mum expected error threshold (Emax) of 1 were removed. To identify in-
active variants, nonfluorescent cells in the single-mutant library were sorted
in duplicate in both the presence and absence of 1 μM aTC and prepped for
sequencing along with the initial, unsorted library. Sequencing reads within
each barcoded sample were normalized to 200,000 total reads and then by
the number of variants within each sample before a cutoff of 10 reads was
applied to reduce noise. Raw and normalized sequencing reads show good
correlation between replicates for all samples (SI Appendix, Fig. S20).

Variants with at least 25 reads in both the presence and absence of ligand
in both replicates were identified as “dead.” Altering the threshold used to
define a mutation as dead to 10, 25, or 50 read counts changes the total
number of dead mutations present in the library (1,057, 728, and 452, re-
spectively) but does not change the regions of functional importance within
the protein (SI Appendix, Fig. S21). Positions with 25% or more dead variants
were termed allosteric, or dead, hotspots. Variants present in the presorted
libraries but not in either nonfluorescent (±1 μM aTC) were assumed to be
largely fluorescent. We termed these variants “broken” as they are pre-
dicted to destabilize the protein and/or affect DNA binding. Positions in
which 25% or more mutations broke the protein were termed broken
hotspots. Sequencing of variants from the rescuability screen were prepared
as above and a cutoff of 10 reads was applied to identify the presence of a
variant. Rescued variants with two or more compensatory mutations were
found in the screen, but only single-mutant compensatory mutations were
used for further analysis.

Sequence Conservation. TetR homologs were generated using HMM search
(https://www.ebi.ac.uk/Tools/hmmer/) (48) against UniProtKB database with
TetR(B) sequence as query. Sequences with alignment coverage less than
95% of full-length TetR(B) were removed from consideration. The remaining
sequences were aligned using Clustal Omega (49). After applying a redun-
dancy cutoff of 90%, we were left with ∼1,900 sequences, which was used to
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evaluate sequence conservation score within Jalview (50). Conservation
score in Jalview is computed by AMAS tool (51), and positions with a score of
seven or more were termed highly conserved. A two-sample t test was used
to compare the average conservation score of residues classified as dead or
broken (P = 0.0002).

ddG Calculations and Structural Models of Mutations. The crystal structure of
TetR(B) with bound [Minocycline:Mg]+ and DNA-bound TetR(D) dimer
structures were obtained (PDB ID codes: 4ac0 and 1qpi) and water molecules
removed before calculations run; the bound ligand was also removed from
TetR(B). All modeling calculations were performed using the Rosetta mo-
lecular modeling suite v3.9. Single-point mutants were generated using the
standard ddg_monomer application (30), which enables local conforma-
tional to minimize energy. For TetR(B), calculations were run at every posi-
tion in protein for all 20 amino acids, generating 50 possible mutant and
wildtype structural models for each protein variant. Structures with the
lowest total energy from the 50 mutant and wildtype models were used to
calculate ddG and served as models for structural analysis. Calculations for
DNA-bound TetR(D) variants were prepared and analyzed in similarly, but
only select rescuing mutations at G35 and E37 were run.

MD Simulations. The missing residues 160–164 of the TetR(B) crystal structure
(PDB ID code: 4ac0) were modeled in CHARMM-GUI. To ensure a stable
hydrogen bond interaction between residue 64 and aTC, the protonation
state of residue 64 was set to be HSE, as was done in a previous computa-
tional analysis of the TetR system (52). For mutants, corresponding residues
were mutated.

For each TetR system, the initial structure was solvated in a rectangular box
solvated with ∼27,300 TIP3P water molecules with a 15.0 Å of edge distance.
There were 87–89 Na+ and 77 Cl- counter ions added to ensure neutrality at
an ionic strength of 0.15 M, resulting in a box of around 88 × 88 × 88 Å3

using periodic boundary conditions. All simulations (∼88,700 total atoms)
were performed in OpenMM using the CHARMM36m force field. CHARMM-
GUI was used to generate input files. Particle mesh Ewald with the Ewald
error tolerance of 0.0005 was used to calculate electrostatic interactions; the
tolerance stands for the average fractional error in forces that is acceptable.
The van der Waals interaction was treated with a switching scheme for
distances between 10 and 12 Å. Energy minimization was carried out with
10,000 steps of the L-BFGS algorithm. The system was then equilibrated in
the NVT ensemble at 303.15 K for 250 ps. Langevin dynamics was used with a
collision frequency of 1 ps−1. During minimization and equilibration, small
harmonic restraints were applied to both protein backbone and sidechain
atoms, with force constants of 400 kJ/(mol·nm−2) and 40 kJ/(mol·nm−2), re-
spectively. After equilibration, all atoms were released and no restraint was
applied. Production simulations were carried out in the NPT ensemble at
303.15 K using Langevin dynamics with a friction coefficient of 1 ps−1.
MonteCarloBarostat was used with the pressure of 1 bar and the pressure
coupling frequency of 100 steps. In equilibration and production runs,
all water molecules were rigid and all bonds involving hydrogen atoms
were constrained using HBonds constraints in OpenMM, allowing a time
step of 2 fs.

Data and Materials Availability. All study data are included in the article and
SI Appendix.
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