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Rapid and accurate determination of atomistic
RNA dynamic ensemble models using NMR
and structure prediction
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Joseph D. Yesselman9✉ & Hashim M. Al-Hashimi 1,2✉

Biomolecules form dynamic ensembles of many inter-converting conformations which are

key for understanding how they fold and function. However, determining ensembles is

challenging because the information required to specify atomic structures for thousands of

conformations far exceeds that of experimental measurements. We addressed this data gap

and dramatically simplified and accelerated RNA ensemble determination by using structure

prediction tools that leverage the growing database of RNA structures to generate a con-

formation library. Refinement of this library with NMR residual dipolar couplings provided an

atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently sup-

ported by comparisons to quantum-mechanical calculations of NMR chemical shifts, com-

parison to a crystal structure of a substate, and through designed ensemble redistribution via

atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs

support the generality of this approach and the potential to make the determination of

atomic-resolution RNA ensembles routine.
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The functions of many regulatory RNAs crucially depend on
changes in three-dimensional (3D) structures that occur in
response to a diverse array of cellular inputs, including

the binding of small-molecule ligands1, proteins2, epitran-
scriptomic modifications3, mutations4, and even to nascent RNA
elongation during transcription5. Initially described as changes
from one 3D structure to another, these transitions are now better
understood as changes in dynamic ensembles of many inter-
converting conformations, from one conformational distribution
to another6.

To deeply understand RNAs at a level that ultimately makes it
possible to rationally manipulate their behavior in drug discovery
and synthetic biology, we need the ability to determine their
dynamic ensembles at atomic resolution. This however presents a
challenge to current biophysical techniques: the information
required to specify the position of all atoms in thousands of
conformations in an ensemble far exceeds the information con-
tent of experimental measurements.

NMR spectroscopy is a rich source of ensemble-averaged
measurements, and in combination with computational model-
ing, has been applied with success to determine ensembles of
proteins at atomic resolution7–9. In contrast, fewer atomic-level
experimental measurements are typically available for character-
izing RNA ensembles6. Moreover, while computational modeling
methods such as molecular dynamics (MD) simulations are
needed to address the experimental data gap10, nucleic acid force
fields remain underdeveloped relative to proteins, and MD
simulations of RNAs often poorly predict experimental data even
for simple motifs11,12. Shortcomings in RNA force field potentials
can be addressed using experimental data to readjust the popu-
lations of conformers in MD-generated ensembles13. However,
simulation times are typically short relative to the dynamic
timescales measured experimentally, and force field limitations
may prevent sampling of particular conformations; ensemble
models refined using the experimental data therefore would not
include conformations that were not sampled in the original MD
simulation. Enhanced sampling approaches can be used, but can
lead to an erroneous sampling of high energy conformations,
thereby increasing the possibility of over-fitting the data14.
Compounding these difficulties is the lack of methods for asses-
sing the accuracy of various structural features in an RNA
ensemble.

To address the data gap, as well as markedly simplify and
accelerate RNA ensemble determination, we took advantage of
structure prediction tools that leverage the growing database of
RNA structures to directly generate a conformation library that
broadly samples energetically favorable 3D conformations given a
secondary structure (Fig. 1). We used Fragment Assembly of

RNA with Full-Atom Refinement (FARFAR)15, given its high
performance in extensive tests of blind prediction of 3D RNA
structure16. We then determined RNA ensembles by using pre-
viously published NMR residual dipolar coupling (RDC) data17,18

to guide the selection of conformers from the FARFAR-
library12,19,20. Finally, we used quantum-mechanical calcula-
tions of NMR chemical shifts21 and cross-validation analysis12 to
test the accuracy of the generated ensembles (Fig. 1).

Results
FARFAR-library better predicts TAR RDCs compared to MD-
generated library. We tested our approach on the transactivation
response element (TAR) (Fig. 2a) from HIV-122,23, which has
served as a model system for bulge motifs. As one of the most
common RNA secondary structural elements, bulges often serve
as dynamic joints connecting helical elements, enabling their
relative orientation to change adaptively during folding and
function12,22–24. We used FARFAR to directly generate a con-
formation library (N= 10,000) from an input TAR secondary
structure only constraining Watson–Crick base pairs (bps)
observed by NMR and assuming an idealized A-form geometry25

for these bps while predicting the structure for all remaining
nucleotides (“Methods”). We then tested and optimized the
FARFAR-library using a rich data set of four independent RDCs
(~8 RDCs per nucleotide) previously measured for four TAR
molecules that were variably elongated to modulate alignment
relative to the NMR magnetic field12,20.

Intriguingly, the FARFAR-library showed better agreement
with the RDCs (Fig. 2b) as compared to a previously reported12

TAR library (Anton-MD) that was generated by subjecting
an experimentally determined NOE-based NMR structure of
TAR (PDBID 1ANR)22 to MD simulations with the CHARMM36
force field26 (Fig. 2c; RMSD 8.0 versus 8.6 Hz). An optimized
ensemble with N= 20 conformers (Supplementary Fig. 1b)
was generated (“Methods”) by using the agreement with the
RDCs to guide selection of conformers from the FARFAR-library
(Fig. 2d)12,19. The optimized FARFAR-NMR ensemble also better
predicted the RDCs (RMSD 3.1 Hz) relative to the optimized
Anton-MD-NMR ensemble (RMSD 3.6 Hz) obtained using a
similar procedure and the Anton-MD library (Fig. 2e and
Supplementary Fig. 1b). Cross validation12,14 showed that the
improved RDC agreement was not due to over-fitting (Supple-
mentary Fig. 1c, d).

The improved agreement observed with the FARFAR-NMR
ensemble, while small, was surprising given that the global inter-
helical distribution27 of the Anton-MD-NMR TAR ensemble had
been independently validated via X-ray scattering interferometry
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Fig. 1 The FARFAR-NMR pipeline. An RNA conformation library is generated by Rosetta FARFAR structure prediction using an RNA secondary structure.
The FARFAR-NMR ensemble can be refined from the conformation library using NMR RDCs and cross-validated by computing NMR chemical shifts using
QM/MM calculations.
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(XSI)28. Indeed, the FARFAR-NMR and Anton-MD-NMR
ensembles show comparable agreement with the RDCs measured
for helical bps (Fig. 2d, e) and the two ensembles sample similar
inter-helical orientational distributions (Fig. 2f, g and Supple-
mentary Fig. 2a–d).

Rather, the improved agreement was primarily driven by the
RDCs measured in the locally more flexible bulge residues. For
the FARFAR-NMR ensemble, the RDC RMSD (1.8 Hz) for bulge
residues (Fig. 2d) was within experimental error (~2 Hz), but it
was substantially higher (3.7 Hz) for the Anton-MD-NMR
ensemble (Fig. 2e). The bulge RDC RMSD could not be improved
by running MD simulations using different force fields or by
running multiple simulations using the CHARMM36 force field
with simulating annealing to more broadly sample conforma-
tional space (“Methods”) (Fig. 2h). It appears that improved
conformational sampling in the FARFAR-library makes it
possible to surpass the accuracy with which the TAR bulge can
be described using conventional MD simulations. This improved
performance is particularly noteworthy when considering that
solving a high-resolution structure and then running MD can in
totality consume several months and often years whereas the

FARFAR-library is generated within 24 h running on 100 cores in
parallel.

FARFAR-NMR ensembles better predict chemical shifts com-
pared to MD. To further evaluate the accuracy of the FARFAR-
NMR TAR ensemble, we substantially expanded the breadth and
depth of atomic-level experimental data that can be brought to
bear when evaluating the accuracy of RNA ensembles by pre-
dicting ensemble-averaged 1H, 13C, and 15N chemical shifts (~15
chemical shifts per nucleotide) using quantum-mechanical AF-
QM/MM calculations21,29. Although rich in structural informa-
tion that is complimentary to that obtained from RDCs, the
agreement between measured chemical shifts and values pre-
dicted from crystal structures of nucleic acids has traditionally
been poor21,30. We recently showed in studies of DNA duplexes
that at least some of this disagreement originates from neglecting
ensemble-averaging when predicting 13C chemical shifts29. This
revelation and the improved FARFAR-NMR TAR ensemble led
us to test this approach on flexible RNAs and to extend it by
incorporating 1H and 15N shifts (Fig. 3a).
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Remarkably, good agreement was observed between the
measured 1H, 13C, and 15N base and sugar chemical shifts and
values back-calculated for the FARFAR-library (Supplementary
Fig. 3a). The agreement improved substantially for the FARFAR-
NMR ensemble following RDC optimization for 48% of the atom-
types analyzed, while the agreement was unaffected for the
remaining atom-types (Fig. 3b and Supplementary Fig. 3b). The
agreement was poor for any one conformer member of the
ensemble, underscoring the critical importance of ensemble-
averaging (Supplementary Fig. 4). The R2 values were >0.5 for
~70% of all the nuclei examined and the RMSD for 13C
(0.18–0.63 ppm) was decreased relative to the value of 3.6 ppm
obtained previously for a static representation of a simple RNA
motif21 and that obtained for RDC-selected DNA duplex
ensembles (0.66–1.27 ppm)29 using the same QM/MM approach.
The agreement with an independent set of measurements that
were not used in ensemble determination and that is highly
sensitive to structural features of the base, sugar, and backbone
strongly suggests that the FARFAR-NMR ensemble describes the
solution behavior of TAR with atomic accuracy (<2 Å,
“Methods”).

In sharp contrast, the agreement was much weaker for the
Anton-MD-NMR ensemble relative to FARFAR-NMR for 90% of
the atom-types, particularly for the sugar chemical shifts, some of
which show no apparent correlation even following RDC
optimization (Fig. 3c, d, Supplementary Fig. 3c–h and Supple-
mentary Discussion). These results establish the utility of
chemical shifts computed using quantum-mechanical calculations
in RNA ensemble validation and also show that the improved
accuracy of the FARFAR-NMR ensemble relative to Anton-MD-
NMR is even greater than revealed by the RDC data alone (also
see below).

FARFAR ensemble broadly samples the sugar-backbone con-
formation at bulge nucleotides. We compared the FARFAR-
NMR and Anton-MD-NMR ensembles (Fig. 4a) to better
understand the features responsible for the more accurate
ensemble description of the TAR bulge. Approximately 75% of
the conformers in the FARFAR-NMR ensemble have the cano-
nical UCU bulge, while the remaining 25% have a non-canonical
AUC bulge that forms through a single nucleotide register shift
(Supplementary Fig. 5a and Supplementary Discussion). In con-
trast, conformers in the Anton-MD-NMR ensemble sample a
broader set of junction topologies some of which deviate from the
NMR-derived Watson–Crick pairing (Supplementary Fig. 5b and
Supplementary Discussion), potentially contributing to the poor
agreement observed for the imino 15N/1H chemical shifts (Fig. 3c
and Supplementary Fig. 3).

In addition, despite having a narrower range of junction
topologies, the sugar-pucker distributions (defined by angle δ) for
bulge residues in the FARFAR-NMR ensemble are broader
(Fig. 4b, c), substantially enriched in the non-canonical C2′-endo
conformation (Fig. 4d) relative to the Anton-MD-NMR ensem-
ble, and are in better agreement with the NMR-derived31 sugar
puckers (Fig. 4e and Supplementary Fig. 6a). Moreover, ~15% of
the conformers in the FARFAR-NMR ensemble had all three
bulge residues simultaneously in the C2′-endo conformation
whereas none did in the Anton-MD-NMR ensemble (Fig. 4f).
Excluding all conformers containing C2′-endo sugar puckers in
U23, C24, U25, A22 or U40 from the FARFAR-library
diminished the RDC agreement to a level similar to the Anton-
MD derived ensembles again confirming that the improved
agreement is not due to over-fitting of the data (Supplementary
Fig. 6b, c). Similar behavior was observed for the backbone
torsion angle γ (Fig. 4b), which shows a greater sampling of non-

gauche+ angles in the FARFAR relative to the Anton-derived
ensembles (Fig. 4c and Supplementary Fig. 6b, d). This difference
can account for the better agreement observed for sugar chemical
shifts31 in the FARFAR-NMR versus Anton-MD-NMR ensem-
bles (Fig. 3b–d).

It should be noted that sugar repuckering observed in the
FARFAR-NMR ensemble likely occurs on the fast nanosecond to
microsecond timescales and is distinct from the slower micro-
second to millisecond timescale repuckering modes reported
recently for TAR using NMR chemical exchange measurements
that are coupled to localized changes in base pairing and
secondary structure when forming low-populated “excited
states”31.

Atomic view of coaxial stacking and cooperative flipping of
bulge nucleotides. What causes conformers in the FARFAR-
NMR ensemble to more greatly sample non-canonical sugar-
backbone conformations at the bulge relative to conformers in the
Anton-MD-NMR ensemble? Unpaired pyrimidine RNA nucleo-
tides unconstrained by other interactions are enriched in the C2′-
endo conformation (C2′-endo:C3′-endo is 40:60)32; C3′-endo
becomes the predominant sugar-pucker when the nucleotides
form bps or stack intra-helically31. Consistent with these expec-
tations, in the FARFAR-NMR ensemble, ~80% of the residues
with C2′-endo sugar puckers were extra-helical (Fig. 5a and
Supplementary Fig. 5a). Moreover, linear inter-helical conformers
within the FARFAR-NMR ensemble had a strong preference to
have all three bulge residues simultaneously flip out and be
enriched in C2′-endo sugar puckers (Fig. 5b, c, Supplementary
Fig. 5a and Supplementary Movie 1). Such coaxial inter-helical
conformations have previously been hypothesized to exist within
the TAR ensemble based on the Mg2+ dependence of the inter-
helical ensemble24 and a crystal structure of Ca2+-bound TAR33.

Strikingly, one of the coaxial conformations in the FARFAR-
NMR ensemble superimposes with the Ca2+-bound TAR crystal
structure with a heavy-atom RMSD of 2.4 Å (Fig. 5d). Thus, the
TAR crystal structure captures a substate of the ensemble in
solution, providing support for the validity of the FARFAR
ensemble and underscoring limitations of static structures as
accurate representations of RNAs in solution. In sharp contrast,
none of the conformations in the Anton-MD-NMR ensemble had
the two helices coaxially stacked, and none had all three bulge
residues simultaneously flipped out and with C2′-endo sugar
pucker (Fig. 5a–c and Supplementary Fig. 5b). Based on the
population of conformations in which all three bulge residues are
simultaneously flipped out relative to the population in which
individual bulge residues are flipped out in the FARFAR-NMR
ensemble (Fig. 5a and Supplementary Movie 1), the three bulge
residues simultaneously flip out with estimated cooperativity of
~2 kcal/mol (“Methods”). This cooperativity may arise because
flipping of all three bulge residues permits favorable coaxial
stacking of the helices (Fig. 5a, Supplementary Fig. 5a and
Supplementary Movie 1). Indeed, changing the sequence identity
of the Watson–Crick bps at the interface of the two TAR helices
such to promote inter-helical stacking34 results in a predomi-
nantly coaxially stacked conformation in which all three bulge
residues are simultaneously flipped out.

Further test of the TAR ensemble using atomic mutagenesis.
We put key atomic features of the FARFAR-NMR ensemble to a
test by rationally redistributing the conformer populations via
atomic mutagenesis. The bulge residues in kinked, unstacked
conformations are more likely to adopt the C3′-endo sugar pucker
relative to these residues in the coaxially stacked conformations
(Fig. 5c). This difference leads to a prediction: substitutions like
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2′-O-Methyl (Nm) modifications (Fig. 5e) at U23 or C24 that bias
the sugar pucker toward C3′-endo will favor the unstacked over
stacked conformational states, although the effect will be small
(~0.2 kcal/mol per substitution)35.

To test this feature of the ensemble, we incorporated Nm
modifications at U23 and C24 and assessed the resultant
ensemble using NMR chemical shift measurements. Indeed,
methylating either U23 or C24 resulted in chemical shift
perturbations in 2D NMR spectra of TAR (Fig. 5f and
Supplementary Fig. 7) throughout the bulge and neighboring
residues that are directed towards the chemical shifts of the

unstacked conformation24, as expected for a cooperative redis-
tribution in favor of the kinked conformation.

Applications to TAR bulge variants and in presence of Mg2+.
To test the generality and limits of our approach, we used
FARFAR-NMR to generate ensembles for three additional TAR
mutants (Fig. 6a) containing one (U1-TAR), two (U2-TAR), and
seven (U7-TAR) bulge nucleotides in the absence and presence of
Mg2+. The conformational dynamics of these TAR bulge variants
have recently been characterized using NMR24, though with only
a single set of RDCs for each variant, other than for U2-TAR in
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absence of Mg2+ where two sets of RDC measurements were
made20. With the exception of U7-TAR in the absence of Mg2+,
the agreement observed between RDCs measured for these TAR
mutants and values computed for the FARFAR-library or
FARFAR-NMR ensembles was similar to that obtained for TAR
(Fig. 6b and Supplementary Fig. 8). The lower agreement for U7-
TAR in the absence of Mg2+ may reflect limited structural
information for kinked RNAs with long bulges24 and/or a need to
sample a much larger number of conformations.

The FARFAR-NMR ensembles reproduce trends in ensemble
properties observed previously for the bulge variants based on an
independent analysis of RDCs and chemical shifts24. The average
and standard deviation of the inter-helical bend angle in the
FARFAR-NMR ensembles are in good agreement with values
reported based on an order tensor analysis of the RDCs24, which
does not involve explicit ensemble modeling (Fig. 6c). In addition,
the distributions of the bend angle have the expected bimodal
character24 with a narrow stacked state and broader set of kinked
conformations and with Mg2+ increasing the population of the
stacked state (Fig. 6d–f). These results suggest that FARFAR-

NMR can be used to generate ensembles for simple RNA motifs
under a variety of conditions in solution.

Initial applications to other RNAs. To test the general applic-
ability of FARFAR-NMR to larger and more complex RNAs, we
used FARFAR to generate conformation libraries for four addi-
tional RNAs: human telomerase P2ab36, the fluoride riboswitch
apo state37, the preQ1 Class I riboswitch holo state38 and the
preQ1 Class II riboswitch holo state39. These RNAs range in size
between 35 and 59 nucleotides and include three riboswitches
with complex tertiary structures (Fig. 7a). The secondary struc-
tures of these RNAs were inferred from prior NMR studies36–39.
In addition to the secondary structure, long-range non-
Watson–Crick bps, which can be identified based on analysis of
imino resonances were also specified as restraints during the
FARFAR ensemble calculations (“Methods”). We determined
preliminary ensembles for these RNAs using a single set of pre-
viously published RDCs and compared the results with the
reported solution NMR structures determined using a combina-
tion of RDCs and NOE data.
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In all cases, the FARFAR-NMR ensembles generated using the
FARFAR-library reproduced the RDCs (RDC RMSD= 2.7–3.3 Hz)
within experimental precision (Supplementary Fig. 9). The
ensembles in all cases contain substates that are similar to those
in the NMR structures, superimposing with all-atom RMSDs of
2.3–4.0 Å (Fig. 7b–d). The inter-helical orientation in the FARFAR-

NMR ensembles also agreed well with that from the NMR
structures (Fig. 7b, c). These examples support the generality of the
approach but are expected to have limited precision since they were
determined based on a single set of RDCs. Further refinement of
these ensembles will require measurements of additional RDC data
sets followed by evaluation using our chemical shift approach.
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Fig. 6 Dynamic ensembles of TAR and its bulge variants in the absence and presence of 3mM Mg2+. a Secondary structure of TAR and its bulge
variants (U1-TAR, U2-TAR, and U7-TAR). The bps at different helices used for defining the Euler angles are highlighted in yellow. b RDC RMSD for
ensembles of TAR variants with ensemble size N obtained using FARFAR-NMR. c Comparison between the average bend angle (<|βh|>) and its standard
deviation for the FARFAR-NMR (N = 2000, “Methods”) derived ensembles with the best-fit |βh| values obtained from an order tensor analysis of the
RDCs24. The error bar in the order tensor analysis corresponds to half the cone radius angle assuming an isotropic model69. d, e Distributions of the inter-
helical bend angle magnitude |βh| for the ensembles (N = 2000, “Methods”) in the absence d and presence e of Mg2+. f The FARFAR-NMR ensembles of
TAR and its bulge variants in the absence (upper) and presence (lower) of 3 mMMg2+. The ensemble size (N) is labeled below for each TAR bulge variant.
Motifs in the ensembles are color-coded as in a.
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Discussion
FARFAR-NMR lays the foundation for a new paradigm for
ensemble determination by combining the most easily obtained
and most reliably measured NMR data with 3D structure pre-
diction. The approach can immediately be applied to render
many existing NOE-based NMR structures of RNAs currently in
the PDB into dynamic ensembles, without the need for additional
measurements, and the accuracy of these ensembles can be
evaluated using published chemical shift data. It should therefore
be possible to rapidly and greatly expand the number of atomistic
models of ensembles available for RNAs, and new RNA structures
can now be reported as ensembles, not merely as measures of
structural uncertainty but as more accurate and complete repre-
sentations of the RNA’s structural properties.

While we have focused on FAFAR, our approach can be
extended to other RNA structure prediction programs40 and can
also incorporate other sources of experimental data6. Given its
higher throughput, FARFAR-NMR may enable broader and
deeper explorations of ensemble behavior across multiple differ-
ent RNA motifs under varying solution conditions, providing a
broad view of the RNA ensemble landscape that is impossible to
attain with current methods. The approach can also be extended
to proteins by leveraging advances in protein structure prediction
to determining protein ensembles41.

Our ability to extensively explore potential conformations of
the TAR bulge, and to extensively test the accuracy of resulting
ensembles using chemical shifts resulted in unexpected new
insights about the TAR ensemble. We have obtained an unpre-
cedented atomic view of the bulge ensemble and how coaxial
stacking of helices cooperatively expels bulge residues into an
extra-helical conformation with non-canonical sugar-backbone
conformations.

Our results show that it is now possible to bring to bear the
power of the NMR chemical shift to assess the accuracy of RNA
ensembles. Information about motional averaging obtained from
accurate ensembles allows accurate chemical shifts to be com-
puted even for highly flexible residues. In the future, it may be
possible to directly use chemical shifts in ensemble determination.
Such an approach might obviate the need for multiple RDC data
sets and further accelerate ensemble determination.

Our results also suggest that there may be biases in MD in at
least some current RNA force fields11. These force fields favor
intra-helical conformations with canonical sugar-backbone con-
formations for the flexible nucleotides in and around the bulge of
TAR. By using chemical shifts and RDCs, it should be possible to
greatly expand the data that is available for testing and guiding
the optimization of MD-based methods.

While the conformational sampling in the FARFAR-NMR
approach is limited by the current repertoire of high-resolution
structures of RNA motifs, we can anticipate continual improve-
ments as more structures of RNAs are determined. Future studies
should explore other approaches for determining ensembles from
the FARFAR generated library including Bayesian approaches13

and compare the generated ensembles with those generated using
data-driven approaches such as simulated annealing42 and
restrained MD43. Our preliminary application to complex tertiary
RNAs underscores the importance of having information
regarding long-range contacts when generating the FARFAR-
library (Supplementary Fig. 9).

In conclusion, FARFAR-NMR lays the foundation for a new
paradigm for RNA ensemble determination by combining reli-
ably measurable NMR data with 3D structure prediction. The
approach can immediately be applied to render many existing
NMR structures of RNAs that were determined using conven-
tional approaches into dynamic ensembles, and their accuracies
can be tested using the available chemical shift data. The

approach is general, rapid, and can also incorporate additional
sources of experimental data. Given its ease of implementation
and higher throughput, FARFAR-NMR has the potential to
unleash the ensemble description of RNAs to all corners of
biology, from which a deeper and broader understanding of
folding and function will undoubtedly emerge.

Methods
Generating ensembles using FARFAR. FARFAR15 is implemented as the rna_-
denovo program in Rosetta Software Suite. FARFAR requires as input the RNA
sequence, which can be constrained by an optional secondary structure. The input
secondary structures for TAR and its bulge variants were derived based on the
imino 1H resonances in NMR spectra. Therefore, Watson–Crick base pairing was
imposed for G18-C44, C19-G43, A20-U42, G21-C41, G26-C39, A27-U38, G28-
C37, and C29-G36, whereas nucleotides in the apical loop and bulge, and the
terminal G17-C45 bp were unconstrained. Given the indirect NMR observation of
the A22-U40 bp in U2-TAR by H6(C5)NN experiment as reported previously24,
two sets of FARFAR simulations were conducted for each TAR variant with A22-
U40 either paired or unpaired. Interestingly, with the exception of U2-TAR,
constraining A22-U40 when generating FARFAR-libraries did not improve the
agreement with the RDCs for TAR and other variants. This highlights the
importance of differentiating between well-formed versus labile bps, an important
advantage offered by NMR as compared to other methods for determining sec-
ondary structure such as chemical probing. Thus, all the FARFAR-libraries in this
study correspond to those in which the A22-U40 bp is not constrained, except for
the U2-TAR ensemble in the absence of Mg2+. The input secondary structures of
TAR and its bulge variants were summarized in Supplementary Tables 2–5.

The secondary structure constraints of other RNAs including human
telomerase P2ab36, fluoride37, and preQ1 Class I38 and Class II39 riboswitches were
derived from prior NMR studies based on a combination of observed imino 1H
resonances, HNN-COSY experiments, direct observation of resonances in slow
exchange, and 15N chemical shifts, and are summarized in Supplementary
Tables 6–9. For these RNAs, non-Watson–Crick base pairing was also imposed
during the FARFAR calculations using the “-obligate_pair_explicit” flag with the
specification of Leontis–Westhof (LW) classification (Supplementary Tables 6–9).
Specifically, for the U-G bp in UUCG apical loop, the bp geometry was set to
“tSW” and only G in the syn conformation (χ between 0 and 100°)44 was kept.
Additional inspection of steric clashes was performed on these bps specified by the
“-obligate_pair_explicit” flag to remove stereochemically unreasonable structures.
To significantly reduce the run time, we modeled the helices of TAR and its bulge
variants, human telomerase P2ab, and fluoride riboswitch as static idealized A-
form helices shown previously to satisfy NMR RDC data in RNA24,25. For preQ1
Class I and II riboswitches, since the helices are involved in tertiary interactions, a
better RDC RMSD was achieved while allowing the helices to deviate from the
idealized A-form during the calculation.

rna_helix.py is a python wrapper for the Rosetta executable rna_helix.
rna_helix.py is available in $ROSETTA/tools/rna_tools/bin, where $ROSETTA is
the Rosetta installation path.

rna_helix.py -seq gcag cugc -resnum 18-21 41-44 -o helix1.pdb
rna_helix.py -seq gagc gcuc -resnum 26-29 36-39 -o helix2.pdb
in which RNA sequences of both strands as well as their residue indices are

required as input. While generating FARFAR-library assuming idealized A-form
helices, we then executed rna_denovo with the following command:

rna_denovo -nstruct 100 -s helix_1.pdb helix_2.pdb -fasta input.fasta
-secstruct_file input.secstruct -minimize_rna true

where -nstruct is the number of models per run, which is 100 in the current
study, -fasta is the path of a fasta file containing the RNA sequence, -secstruct is the
path of a file (input.secstruct) containing the RNA secondary structure in dot-
bracket notation, -minimize_rna true minimizes the RNA after fragment assembly,
and -s specifies the path to the pdb files that contain static structures of our helices
we do not wish to generate via fragment assembly to save computation (the fasta,
secstruct files as well as example commands can be found in Supplementary
Tables 2–9).

The entire procedure was repeated 100–200 times and 10,000 structures were
randomly selected from the entire resulting output with Rosetta energy units < 0
(for TAR and its bulge variants) to remove models that potentially may have chain
breaks and severe steric clashes, which do not satisfy the RDCs (Supplementary
Fig. 1a), to generate the FARFAR-library (N= 10,000). The Rosetta energy cutoff
for human telomerase P2ab, fluoride riboswitch, preQ1 Class I riboswitch and
preQ1 Class II riboswitch was set to be 50, 200, 150, 100, respectively. The cutoff
was determined as described for TAR (Supplementary Fig. 1a).

Molecular dynamics (MD) simulations. Simulations of HIV-1 TAR starting from
the PDB structure 1ANR using the CHARMM36 force field26 (8.3 μs) were per-
formed as described previously12. The structures from this simulation were then
clustered based on the heavy-atom RMSD of TAR (excluding the apical loop and
terminal bp) using the cluster command in the CPPTRAJ suite45 to give 16 struc-
tures, which served as starting points for the simulated annealing runs. The
simulated annealing simulations using the CHARMMM 36 force field were
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performed with the GROMACS MD simulation package46. GROMACS force field
files for CHARMM36 were obtained from (http://mackerell.umaryland.edu/
charmm_ff.shtml#gromacs) as of March 2019. The structures were solvated with a
rhombic dodecahedral box of TIP3P47 water molecules, with box size chosen such
that the boundary was at least 10 Å away from any of the RNA atoms, and was then
neutralized using Na+ ions. After energy minimization without restraints, the
system was then gradually heated to a temperature of 300 K using a Nose–Hoover
thermostat48 (τ= 0.1 ps), under constant volume conditions for 100 ps with har-
monic restraints on the solute (20 kJ/mol/nm2). The restraints were gradually
reduced in two 50 ps NVT equilibration steps (10 and 5 kJ/mol/nm2, respectively).
This was followed by two 50 ps NVT and NPT equilibration steps at 300 K without
restraints on the solute. NPT equilibration was performed using a modified
Berendsen thermostat with a stochastic term49 with τ= 0.1 ps and at 1 bar using a
Berendsen barostat with τ= 2.0 ps. Simulated annealing was then performed by
subjecting the system to a pair of successive 50 ps NVT and NPT equilibration
steps at 400 and 300 K. This was followed by a 5 ns NVT equilibration step at 300 K
prior to the production run (500 ns). A non-bonded cutoff of 10 Å was used for
treating short-range non-bonded interactions while the particle mesh Ewald
method was used to treat long-range electrostatic interactions. Non-bonded van-
der Waals forces were switched to 0 from 8 to 10 Å. Covalent bonds involving
hydrogen were constrained using the LINCS algorithm to enable the use of a 2 fs
timestep. A total of 625 equally spaced snapshots were obtained from each of the 16
production runs to get create a pool of 10,000 conformers for RDC selection.

MD simulations of TAR starting from the PDB structure 1ANR using the ff99
force field50 with and without χOL3 corrections for RNA51 were performed using
periodic boundary conditions as implemented in the AMBER MD simulation
package52. All starting structures were solvated using a truncated octahedral box of
TIP3P47 water molecules with box size chosen such that the boundary was at least
11 Å away from any of the RNA atoms for all simulations with the ff99 force field
with χOL3 corrections. For the TAR simulations using the ff99 force field without
χOL3 corrections, the system was solvated in a truncated octahedral box of SPC/E
water molecules such that the boundary was at least 15.4 Å away from any of the
RNA atoms. Na+ ions treated using the Joung–Cheatham parameters53 was then
added to neutralize the charge of the system in all cases. The system was then
energy minimized in two stages with the solute being fixed (with restraint of 500
kcal/mol/Å2) during the first stage. Equilibration and production runs (1 μs) were
then performed as described previously54.

Simulations of TAR starting from PDB 1ANR using the DESRES force field55

were performed using the GROMACS MD simulation package46. DESRES force
field files for GROMACS were obtained from a port by Giovanni Bussi (https://
github.com/srnas/ff/tree/desres). The starting structure (PDB 1ANR) was
solvated using a rhombic dodecahedral box of TIP4P-D56 water molecules, with
box size chosen such that the boundary was at least 10 Å away from any of the
RNA atoms. Na+ ions treated using the parameters from MacKerell et al. 57

were then added to neutralize the charge of the system. After energy
minimization without restraints, the system was then gradually heated to a
temperature of to 298 K using a modified Berendsen thermostat with a
stochastic term49 (τ= 0.1 ps), under constant volume conditions for 100 ps with
harmonic restraints on the solute (1000 kJ/mol/nm2). The system was then
allowed to equilibrate for 100 ps under constant pressure (1 bar), using the
Parinello–Rahman barostat58 (τ= 2 ps) and temperature (at 298 K, using a
modified Berensen thermostat49, τ= 0.1 ps) conditions, with harmonic
restraints on the solute (1000 kJ/mol/nm2). This was followed by NPT
equilibration for 30 ns without harmonic restraints, following by a production
run of 1 μs. A non-bonded cutoff of 9 Å was used for treating short-range non-
bonded interactions while the particle mesh Ewald method was used to treat
long-range electrostatic interactions. All bonds were constrained using the
LINCS algorithm to enable the use of a 2 fs timestep. A set of evenly (5 ps)
spaced snapshots were used for subsequent analysis of all simulations using the
CPPTRAJ suite of programs45.

Additional MD simulations using the ff99 force field with χOL3 corrections were
also performed to assess the extent to which sampling of sugar puckers in the bulge
could be influenced by changes in the starting structures used for the simulations
(Supplementary Fig. 10). Two starting structures were derived from PDB 1ANR
with the sugar puckers of U23 (TARU23 C2′-endo) and U25 (TARU25 C2′-endo)
individually switched from C3′-endo to C2′-endo, and another was a conformer
from the FARFAR-NMR ensemble (TARFARFAR) in which the sugar puckers of
U23, C24 and U25 were all C2′-endo. The starting structures for the TARU23 C2′-

endo and TARU25 C2′-endo simulations were generated by the superposition of a C2′-
endo uridine nucleotide onto U23/U25 in 1ANR using the uridine base atoms, and
replacing the sugar-backbone atoms with those of the superimposed C2′-endo
uridine. For TARU23 C2′-endo and TARU25 C2′-endo, only the backbone of the C2′-
endo uridine was fixed during an energy minimization, while for TARFARFAR, all
the heavy atoms were fixed during minimization.

NMR residual dipolar coupling (RDC) data. The RDC data (sugar C1′-H1′/C2′-
H2′/C3′-H3′/C4′-H4′ and base C8-H8/C6-H6/C2-H2/C5-H5/N1-H1/N3-H3) used
in the RNA ensemble determination were reported previously12,36–39 and are
summarized in Supplementary Table 1. The raw data can also be downloaded from
https://github.com/alhashimilab/RDC.

RDC calculations. Ensemble-averaged RDCs were calculated by computing the
RDCs for each conformer in an ensemble using the program PALES59. PALES
computes RDCs based on global molecular shape. The RDC was computed using a
cylindrical wall model using the following command:

pales -pdb input.pdb -inD input_rdc.tab -outD output_rdc.tab -H -pf1 -wv 0.022
where -pdb is the path of an input PDB file (input.pdb), -inD is the path

of an input data file indicating the bond vectors for which RDC should be
computed (input_rdc.tab), -outD is the path of the output file containing all the
calculated RDCs, -H means selecting all atoms including proton and -pf1 -wv
specifies the pf1 effective concentration (0.022 g/mL) assuming a rod liquid
crystal model.

The RDC values were then averaged over all conformers in an ensemble
assuming that they are equiprobable. Individual scaling factors were applied to the
predicted RDCs of each construct to account for the difference of alignment
magnitude in part arising due to differences in phage concentrations in the
experiments, as described previously12. The elongated constructs were elongated in
silico using an idealized A-form geometry prior to RDC calculation as described
previously12.

The TAR apical loop was modeled using the wild-type CUGGGA loop12. As
reported previously for the Anton-MD-NMR ensemble12, replacing the loop with
the UUCG loop44 used to measure RDCs minimally impacted the RDC agreement
for the FARFAR ensembles (Supplementary Fig. 1e, f). This is consistent with prior
NMR studies showing that the apical loop replacement minimally impacts the
dynamics of the bulge12,60.

Sample and select (SAS). We used the SAS approach19 to generate ensembles
from a structured pool that best satisfied the measured RDCs. Briefly, a simulated
annealing Monte Carlo sampling scheme was used to select an ensemble that
minimizes the cost function depicting the differences between the measured and
predicted RDCs:

χ2 ¼
P

j

PN
i ðLj ´Dcalc

i;j � Dexp
i;j Þ

N
; ð1Þ

Dcalc
i;j and Dexp

i;j are the calculated and measured RDCs, respectively, of the ith
bond vector measured on the jth TAR construct, Lj is the overall scaling factor of
alignment magnitude for construct j, and N is the total number of bond vectors.
The initial effective temperature for simulation annealing was 100 and decreased by
a factor of 0.9 in every step for a total of 5 × 105 steps. A series of SAS runs were
performed varying the ensemble size from N = 1 to an ensemble size in which the
RDC RMSD reaches a plateau (Supplementary Figs. 1b, 8, and 9). The resultant
ensemble size for different RNA ensembles were: N = 4 (U1-TAR, no Mg2+), N =
10 (U2-TAR, no Mg2+), N = 20 (TAR, no Mg2+), N = 10 (U7-TAR, no Mg2+),
N = 4 (U1-TAR, with Mg2+), N = 5 (TAR, with Mg2+), N = 5 (U7-TAR, with
Mg2+), N = 10 (human telomerase P2ab), N = 10 (fluoride riboswitch), N = 10
(preQ1 Class I riboswitch) and N = 10 (preQ1 Class II riboswitch). To analyze
distributions of structural parameters (Figs. 4, 6, 7 and Supplementary Fig. 2), we
also generated larger sized ensembles by running SAS multiple times to ensure the
total size N = 2000 for all systems.

The SAS analysis of TAR and its bulge variants excluded RDCs from the flexible
terminal G17-C45 bp as well as those of the C29-G36 bp flanking the apical loop,
given differences between the apical loop sequences used to measure RDCs (wild-
type or UUCG) and to model (wild-type) TAR. Note that RDCs from G17-C45 and
C29-G36 bp were included in the prior study12 and this explains the small
differences in RDC RMSD for the two Anton-MD-derived ensembles relative to
that reported earlier.

Cross-validation analysis. Cross-validation was performed using two approaches
as described previously12. In one approach (inactive random, Supplementary
Figs. 1c, d, 8, 9), 10% of the RDC data was randomly removed and SAS was used to
generate an ensemble. The RMSD between measured and predicted RDCs was then
computed for the left out RDC data. This procedure was repeated 10 times and the
final RDC RMSD was averaged over all ten independent runs. For TAR (absence of
Mg2+) where we have RDCs measured on four constructs, a second mode (inactive
media, Supplementary Fig. 1c, d) of cross-validation was also performed, in which
the RDC data set of each construct was left out individually before running SAS.
The RMSD between measured and predicted RDCs was then computed for the left
out RDC data set. The final RDC RMSD is averaged over the four iterations
corresponding to leaving out each RDC data set.

NMR chemical shift data. The 1H, 13C, and 15N chemical shift assignments of
TAR have been published previously31,60 and were compared to quantum-
mechanical chemical shift predictions. The numerical populations for C2′-endo
shown in Fig. 4e were obtained based on the C1′ chemical shift assuming a linear
dependence between the range 86 ppm (100 % C2′-endo)54 and 94 ppm (100 %
C3′-endo)31.

Automated fragmentation quantum mechanics/molecular mechanics (AF-
QM/MM) chemical shift calculations. Chemical shift calculations were per-
formed using a previously described fragmentation procedure21. Each RNA
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structure was subjected to five steps of conjugate gradient minimization with
harmonic restraints of 2 kcal/mol Å2 on all heavy atoms; this regularizes bond
lengths and angles to minimize the noise in the results that can arise from very
small changes in these geometric parameters. Next, each structure was broken into
“quantum” fragments centered on each nucleotide, containing 2–6 neighboring
nucleotides, using a heavy-atom distance cutoff of 3.4 Å. The effects of RNA atoms
outside the quantum region, and of water and ions in the solvent, were represented
as point charges uniformly distributed on the molecular surface of the quantum
region and resolved by fitting to Poisson−Boltzmann calculations using the
“solinprot” program from the MEAD package61,62. The quantum region was
assigned a local dielectric ε of 1 (vacuum); the remaining RNA region had an ε of 4,
and the solvent region an ε of 80. GIAO chemical shift calculations were carried
out for each fragment, using version 5.0 of the demon-2k program63 using the
OLYP functional64 with the pcSseg-1 (triple-ς plus polarization) basis set optimized
for chemical shifts65 for the central nucleotide (whose results are reported here),
and a DZVP basis for the remaining atoms. Reference shieldings were computed
for tetramethylsilane (TMS) using the same functional and basis set. The ensembles
of Anton-MD-NMR, FARFAR-NMR as well as a randomly selected Anton-MD
and FARFAR-library of size N = 20 were examined. A linear correction was
applied to the predicted chemical shifts for each nucleus type individually as
described previously29. Note that R2 can be artificially low for spins with small
ranges of chemical shifts (e.g., ~1 ppm for C3′/C4′/C6 for central
Watson–Crick bps).

Ensemble analysis. All the ensemble structure visualization was performed in
PyMOL (https://pymol.org/). The local backbone and sugar torsion angles (Fig. 4b)
were calculated using X3DNA-DSSR66. The inter-helical Euler angles (αh, βh, γh)
were computed as described previously27 (Figs. 2, 5, 6, 7 and Supplementary
Figs. 2, 5). Briefly, the two RNA helices connected by a junction were aligned to two
idealized A-form RNA helices (upper helix and lower helix), respectively, and the
relative orientation was specified by the inter-helical Euler angles between the
upper and lower helix. For TAR and its bulge variants, helix II from G26 to G28
was aligned to the upper helix and helix I from C19 to G21 was aligned to the lower
helix, respectively. For human telomerase P2ab, the P2b helix from C89 to G91 was
aligned to the upper helix and the P2a helix from U80 to U82 was aligned to the
lower helix, respectively. For fluoride riboswitch, the P2 helix from G23 to U25 was
aligned to the upper helix and the P1 helix from G2 to G4 was aligned to the lower
helix, respectively. For preQ1 Class I riboswitch, the P2 helix from C33 to A35 was
aligned to the upper helix and the P1 helix from A5 to G7 was aligned to the lower
helix, respectively. For the preQ1 Class II riboswitch, the P4 helix from G37 to G39
was aligned to the upper helix and the P2 helix from G5 to G7 was aligned
to the lower helix, respectively. The sign of αh and γh is inverted relative to pre-
viously reported values12 such that a positive and negative inter-helical twist angle
(αh+ γh) corresponds to over- and under-twisting, respectively67.

Junctional topology (Supplementary Fig. 5) was defined as the base-pairing
mode, which is detected by X3DNA-DSSR66. If two bases are forming a bp with
Leontis–Westhof (LW) classification as “cWW” (e.g., Watson–Crick bp, Wobble
bp), a solid line is indicated between the two bases, whereas other LW
classifications are indicated as a dashed line (Supplementary Fig. 5).

TAR conformers were considered to be coaxially stacked when the bases
comprising A22-U40 and G26-C39 or G21-C41 and U25-U40, were stacked with
each other, as defined by X3DNA-DSSR66.

The lower bound estimate of pairwise RMSD between two ensembles was
defined as the following: Consider two ensembles A and B with size NA and NB. For
every conformer in ensemble A, we found the corresponding conformer in
ensemble B that has the lowest pairwise RMSD. This procedure was repeated for
every conformer in A to obtain a total of NA RMSD values. We then took the root
mean square of all these NA RMSD values. The procedure was also repeated
considering ensemble B. Then the minimum of the two root mean square values
were selected as a lower bound of the similarity between the two ensembles. By this
definition, Anton-MD-NMR and FARFAR-NMR ensembles differ by 3.7 Å while
ensembles obtained from multiple independent FARFAR-NMR runs typically
differ by 1.4 Å on average.

The cooperativity of flipping bulge nucleotides out was computed from the
FARFAR ensemble as follows—for U23, C24, and U25, the probability of
independently flipping out was computed as:

Pðnt outÞ ¼ Nðnt outjother nt inÞ
Nðnt outjother nt inÞ þ Nðnt injother nt inÞ ; ð2Þ

where N(nt out | other nt in) is the number of FARFAR-NMR conformers with the
nucleotide (nt) of interest being flipped out with the other nucleotides (among U23,
C24, and U25) being flipped in, and N(nt in | other nt in) is the number of
FARFAR-NMR conformers with U23, C24, and U25 flipped in. Flipping in and
flipping out of U23, C24, and U25 were gauged by visual examination of the
conformers (Supplementary Fig. 5). The probability of simultaneously flipping out
U23, C24, and U25 without cooperativity as then computed as the product of the
probabilities of independently flipping out each nucleotide as defined above, i.e.,

PðU23;C24;U25 outÞ ¼ PðU23 outÞ � PðC24 outÞ � PðU25 outÞ: ð3Þ

This was then compared to the observed probability of U23, C24, and U25
being flipped out P(U23, C24, U25 out obs), which was computed as the fraction of
FARFAR-NMR conformers with U23, C24 and U25 flipped out (8/20).
Cooperativity was defined as:

�RT lnðPðU23;C23;U25 out obsÞ
PðU23;C23;U25 outÞ Þ; ð4Þ

where R is the universal gas constant, T is the temperature in Kelvin (298 K).

NMR sample preparation. TAR, TAR-Nm-U23, and TAR-Nm-C24 RNA samples
were synthesized using a MerMade 6 Oligo Synthesizer (BioAutomation) via solid-
phase synthesis using standard phosphoramidite chemistry and deprotection
protocols. 2′-TBDMS protected phosphoramidites (ChemGenes) and 1 μmol
standard synthesis columns (1000 Å) were used. The final 5′-DMT (4,4′-dime-
thoxytrityl) was removed during the synthesis for DMT-off deprotection and
PAGE purification. Removal of nucleobase and phosphate protecting groups and
cleavage from the 1 μmol columns was achieved using 1 ml of 30% ammonium
hydroxide and 30% methylamine (1:1) followed by a 2-h incubation at room
temperature. The solution was then air-dried and dissolved in 100 μL DMSO and
125 μL TEA-3HF, followed by 2.5 h incubation at 65 °C following Glen Research
protocols (https://www.glenresearch.com/reports/gr19-22) for 2′-O deprotection.
The sample was then ethanol precipitated overnight, air-dried, then dissolved in
water for gel purification using a 20% (w/v) polyacrylamide gel with 8M urea and
1× Tris/borate/EDTA. The RNA was removed from the excised gel by electro-
elution in 1× Tris/acetic acid/EDTA followed by ethanol precipitation. The RNA
was annealed in the water at a concentration of 50 µM by heating at 95 °C for 5 min
followed by cooling on ice for 60 min. It was then buffer exchanged using an
Amicon Ultra-15 centrifugal filter (EMD Millipore) with a 3 kDa cutoff into NMR
buffer (15 mM sodium phosphate, 25 mM NaCl, 0.1 mM EDTA) at pH 6.4. The
final concentrations were: ~0.8 mM for TAR, 2.5 mM TAR-Nm-U23, and 1.4 mM
TAR-Nm-C24. TAR was also buffer exchanged into NMR buffer containing 3 mM
Mg2+.

NMR spectroscopy. All the NMR 2D HSQC experiments in this study were
carried out on Bruker Avance III 600-MHz NMR spectrometer equipped with a
triple-resonance cryogenic probed at 25 °C. NMR Data were processed using
NMRpipe68 and analyzed using SPARKY (T.D. Goddard and D.G. Kneller,
SPARKY 3, University of California, San Francisco), respectively. The resonance
assignments for Nm-modified TAR were obtained based on the previously reported
assignments of TAR31,60 and further confirmed using 2D NOESY experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding authors upon
reasonable request. Rosetta FARFAR commands as well as its required input files are
included in Supplementary Information. The raw RDC data used in this study can be
downloaded from https://github.com/alhashimilab/RDC. The FARFAR-NMR and
Anton-MD-NMR ensembles of TAR (N= 20) as well as the idealized A-form helix used
for in silico elongation can be downloaded from https://github.com/alhashimilab/
Ensemble. The FARFAR-NMR ensemble of TAR (N= 20) with the chemical shifts and
RDCs data has been deposited to the Biological Magnetic Resonance Data Bank under
the accession code 30788 and the Protein Data Bank under the accession code 7JU1.

Code availability
The Rosetta software suite is available at https://www.rosettacommons.org/software/
academic. The AFNMR programs are available at https://github.com/dacase/afnmr.
Custom in-house Python scripts for sample and selection are available at https://github.
com/alhashimilab/PySAS. Custom in-house Python scrips for calculation of inter-helical
Euler angles are available at https://github.com/alhashimilab/ABG_calc.
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